JPS62152180A - Manufacture of silicon crystal for solar cell - Google Patents

Manufacture of silicon crystal for solar cell

Info

Publication number
JPS62152180A
JPS62152180A JP60292223A JP29222385A JPS62152180A JP S62152180 A JPS62152180 A JP S62152180A JP 60292223 A JP60292223 A JP 60292223A JP 29222385 A JP29222385 A JP 29222385A JP S62152180 A JPS62152180 A JP S62152180A
Authority
JP
Japan
Prior art keywords
crystal
silicon
column
traveling
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60292223A
Other languages
Japanese (ja)
Inventor
Kiichi Nakamura
中村 紀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60292223A priority Critical patent/JPS62152180A/en
Publication of JPS62152180A publication Critical patent/JPS62152180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To change a eutectic metal into an Si crystal for a solar cell by using a traveling zoning method by employing Sn as the eutectic metal to polysilicon having high purity. CONSTITUTION:One end surface of a polysilicon column 1, both end surfaces thereof are flat and parallel, is dipped in Sn under the state of melting, and a uniform Sn film 2 is attached. The lean ground surface of single crystal Si 3 is brought into contact with the Sn film 2, an Sn attached surface A is heated at 90 deg.C and another end surface B at 1,050 deg.C by 4-7, the column is thermally insulated 8, 12 and a heat flow in the column is directed only in the axial direction. Temperature difference in the melt phase is brought to 10 deg.C and an axial temperature gradient to 321 deg.C/cm, and the column is processed at melt-phase travel speed of approximately 7mum/min and a cooling rate in the melt phase of approximately 0.2 deg.C/min. According to the constitution, a crystal available for a substrate for a solar cell is acquired automatically at low cost by means of simple equipment as compared to an FZ method.

Description

【発明の詳細な説明】 本発明aへ耐11瓜基板用のノリ二ノ帖晶で1x価に製
造する方法に閑丁/)ものでの9、七のV38はソーメ
ノスa (sxm崖ER8・す)型反応万式に:り製造
ざ2’Lる牛尋坏用尚セB1疋多帖晶円住t11をJ媒
(共−の相手)とするトラベリングノー二ノク云(1°
raveli邸乙OΩ1邦)r用いて、−戊渋し疋、姑
晶膣τ侍り結晶体Vこ叢戻丁ゐことで安点としている。
DETAILED DESCRIPTION OF THE INVENTION To the present invention (a), the method for producing 1x valence with Norininocho crystal for 11-resistant melon substrates is described. ) In the type reaction Banshiki: rimanuza 2'L Ushihiro Kyoyo Naouse B1 疯田CHO Crystal Enju t11 as J medium (co-partner) Traveling No. 2 Nokuun (1°
Raveli residence OΩ1 country) r is used as a low point by using - 戊士し疋, 觑 Crystal vagina τ attendance and crystal body V こ LUSH return d ゐ.

多結晶ソリ二ノ?用いて傳奴した人1−直池では、−奴
に結晶校界が灸故千↑すfVC対して−j贋となり、ま
た少畝干ヤリでに対して丹結せ甲心となるので、結晶粒
経が小さい揚脅には、几ぼ変模幼率の高いlll1を得
ることが出来ない。
Polycrystalline solinino? In Naoike, the person who used it to deceive the person, the crystal school world was moxibusted to him, and it became a fake against the fVC, and he also became a strong believer against the small unedged spear. It is not possible to obtain lll1 with a high grain deformation rate for grains with small grain diameters.

而して進講には結晶校経とじては500ym以上が望ま
しく 1 +nm以上の徨杼になっている結晶の場合に
は、その電気特性は単結晶を用いfctルCの値と、r
よとんど同等でろるとさ扛ている。
Therefore, it is desirable for the crystal calibration to be 500 ym or more for the course.In the case of a crystal with a diameter of 1 + nm or more, its electrical characteristics are determined by using a single crystal and the value of
It's pretty much the same and I'm disappointed.

上記シーメンスC型反応方式で製造ざ扛た高純度多結晶
シリコン出征で1よ、一般に結晶st壱は非常に小さい
、1mして当該多結晶シリコンの生産性を尚めるたのに
2反応LBC科友刀スψのトリクロルシラン彦厩′ft
高めたり、反応を〃u圧で行なり場合には結晶板f蚤は
更に小さくなる。鎚ってこのl\の状態では尤逼変M幼
車の艮い多結晶シリコン入嚇電池にすることが出来ない
In the case of high-purity polycrystalline silicon manufactured using the Siemens C-type reaction method mentioned above, the crystal ST1 is generally very small. Trichlorsilane Hiko'ft of Kayutosu ψ
If the pressure is increased or the reaction is carried out at 〃u pressure, the crystal plate f fleas will become even smaller. In this condition, the hammer cannot be made into a polycrystalline silicon-containing battery like a young car.

そこでトラベリングゾーニンクffi’に用いて結晶紋
の成長をaなわぜQ・ トラベリンクゾーニング沃は、説に公矧のエフに、結晶
体の一端かり他端に同σて、当該結晶棒金4収する1貞
と吐一点で共融する第2の吻X’l:))IJえて形成
せしめ友融歇ノー金移動さぞ、融歇層の進行前方〃諷ら
進行後方にかけて第1図示のような温度勾配忙与えて第
2図示の工うな臓0瓢−曳の移動状況説明図において、
進行前号向に&ユTるソース帖晶体IlJ質を、−四金
介して後続する低温姐jのサブストレート結晶上に液相
エピタキシィしていく方法である。酸層の結晶体の一端
かり他端えの移動は、結晶体に与えた温度勾配によって
自動的に進何する。な2第2図に2いてtalrcサブ
ストレート結晶、(0)はエヒタ千ンヤル層、l+Jは
−Jθ、 ldJμンースソ一体を示す。
Therefore, traveling zoning ffi' is used to increase the growth of the crystalline pattern. A second proboscis X'l that is eutectic at one point: Given the temperature gradient, in the diagram explaining the movement of the eel and gourd in the second diagram,
This is a method in which the source crystalline IlJ material that flows in the forward direction is subjected to liquid phase epitaxy onto the following low-temperature substrate crystal via -4 metal. The movement of the acid layer from one end of the crystal to the other progresses automatically depending on the temperature gradient applied to the crystal. 2 In Fig. 2, 2 shows the talrc substrate crystal, (0) shows the Echta thousand layer, l+J shows -Jθ, ldJμ, and so on.

本発明においては、上記第2の吻貞として、謙(bnJ
全選択する。その理由は 1、シリコンと同族の41曲でめ9、シリコン中に混入
しても4屯m、I’(恐β瞥忙及ばざない。
In the present invention, Ken (bnJ
Select all. The reason for this is 1. There are 41 members of the same family as silicon.

一1固牧+衡関係が単調でめρ、共晶点を持たない。11 The fixed + equilibrium relationship is monotonous, and there is no eutectic point.

1、一点が低くかり佛点が高くC1扱い易い、半4午凰
高M1度多結晶円任を単結晶出任に変換する方法として
IZ法が既に工業的に広く実用化されている。この半導
体用多結晶は、純度の上では既に光分に制い状態にめ9
、iZ@全採用するのは精製の目的ではなく、単結晶化
と比抵仇合わせ金目的としていると言える。
1. The IZ method has already been widely used industrially as a method of converting a half -4 phase height M1 degree mitative yen to a single crystal departure, which is low and is easy to handle as a C1. In terms of purity, this polycrystal for semiconductors has already reached a state where it is resistant to light.
, it can be said that the purpose of fully adopting iZ@ is not for the purpose of refining, but for the purpose of single crystallization and resistivity matching.

今当該半導体用多超晶FIEEを人#4電池用基板にに
侯する観点から見ると、単結晶にlではする必景がなく
、姑晶枚を大さくさせるだけで光分でLvジ、この目的
からすれは、7Z床にLりなくて4%  トラベリング
ノー二ンク法で光分での9、かつ鴻t−共融の相手とナ
ルは、品質上の問題派生も無い。
Now, from the point of view of applying the multi-supercrystalline FIEE for semiconductors to the substrate for human #4 batteries, there is no necessity to make it with a single crystal. For this purpose, there is no L on the 7Z floor, 4% in the traveling non-ink method, and there are no quality problems with the eutectic partner and null.

この工う+S*全共mlの相手とするトラベリングンー
ニング法に’C9b半導体用の高@A度シリコン多結晶
金1人1匂!を戊用基収としてM用な成長した紹晶徨を
佇′)fC,結晶体に友洟する方法V工1、原料と処理
法の組付せにひいて、併規なものでの心。
This method is used for the traveling gunning method for this +S*all ML partner, with high @A degree silicon polycrystalline gold for C9b semiconductors per person and one smell! As a base material for use, the grown Shao crystal for M is placed. .

[J1°2法に比較して設電が量率でかつ無々しし易い
処かり、目的とする結晶の製遺コストを伽滅する上で役
にたつ ことをt#畝としている。
[Compared to the J1°2 method, the electric power can be supplied at a higher quantity rate and more easily, and the t# ridge is useful in reducing the production cost of the desired crystal.

次に本元明方法の夾翔例にりさこ6を説明す心。Next, I will explain Risako 6 as an example of the original Akira method.

実極例1 111  直径IQQmm長6200 mm)半49F
用%M品’/シコン円住山t−サンプルとじて用い、そ
の−濶ft浴融状態にるる4 ノm t2+に反して海
面に一様に4換′?r、何層させる。4膜厚さは100
〜600/’I11が望ましい、な2サンプルIIJO
I間端面μ、予V平也かつ相互に半行にしてひく。
Actual pole example 1 111 Diameter IQQmm Length 6200 mm) Half 49F
%M product'/Shikon Ensumiyama T-sample is used and its -ft bath is melted at 4 nm t2+, and it is uniformly converted to 4 at the sea surface? r. How many layers? 4 film thickness is 100
~600/'I11 is desirable, 2 samples IIJO
The end surfaces μ between I and V Heiya are drawn in half a line with each other.

12+  上記サンプルを第3図示の装置にtットする
。多結晶円柱山の1膜を付層させた端面に′fB7tI
さセテ、単結晶シリコンのイ14” l f d ’7
二−ハ?、その研Δ面が!9易膜と刈面するエフにして
ゴく、次に円柱の直扇戻付層面(ムとTる)かは源側に
t9%反対−0層面(8面とする)が高温側になるLり
に円柱同温波勾配で保持しながう円柱勿全体のに*mg
−cで、圧面温度を90′C,Bi温度を1050°C
に保つ=9にしγ;。なお図にひいて(3)ぽサブスト
レート結晶、141(5)L6J 17−はヒーター、
(8Jrj:隔絶へ埴叡、(すj 曲は 温 度 ms
’lD  ぽ 熱 流 イt 1 u は断熱 板 で
 のる。
12+ Place the above sample into the apparatus shown in the third figure. 'fB7tI on the end face with one layer of polycrystalline cylindrical mountain
14" l f d '7 of single-crystal silicon
Two-ha? , that sharp side! 9 Easy membrane and cutting surface F and go, then the straight fan return layer surface of the cylinder (Mu and Tru) is t9% opposite to the source side - 0 layer surface (assumed to be 8 surface) will be the high temperature side *mg of the entire cylinder, which is maintained by the cylinder isothermal wave gradient.
-c, pressure surface temperature is 90'C, Bi temperature is 1050°C
Keep = 9 and γ;. In addition, according to the figure, (3) Po substrate crystal, 141 (5) L6J 17- is a heater,
(8Jrj: Hanei to isolation, (Sj song is temperature ms
The heat flow is mounted on an insulating board.

(,3ノ  円柱内での熱流ば、高温側jでろる8面か
り低温仰jでろるA面に向かり軸方向にの与生起し、手
住万同1Cは熱流が存在しないLりVC1円柱表面を沫
温、断熱した。
(, 3) Heat flow in the cylinder occurs in the axial direction from the 8th surface on the high temperature side j to the A surface on the low temperature side. The surface of the cylinder was insulated.

14+  5LI(J時間上記状態に床付すゐことにニ
ジ、融m、ユB面VC到遜し、そILに洋い出任全体が
出発時の値紹晶状、襟かう結晶粒がltmn以上に収艮
しic状感に変化しているのが呟祭さ8足(1)不りa
同での高温側と低温側との温度差はLOT; 、 □m
1方向温IJE Q & CJ 21 ’L: / c
mと04ざ7した。献却移鯛速度を約7ノ追/工、ユと
して、憑拓う借迷戚は幻LJ、2°V 1lllQ テ
のった。
14 + 5LI (J time when the above state is reached, the Niji, melting m, and U B side VC are far superior, and the entire starting point is in the starting value, crystalline, and the crystal grains are more than ltmn. The one that has calmed down and turned into an ic-like feeling is the 8 feet (1) Not a
The temperature difference between the high temperature side and the low temperature side at the same time is LOT; , □m
One direction temperature IJE Q & CJ 21'L: / c
m and 04 the 7th. With the dedication transfer speed of about 7 k/tech and Yu, the possessed indebted relative got on the phantom LJ, 2°V 1llllQ Te.

果翔しIJ2 Ill  正補ンリコンcr内で融解し−その甲へ環索
刀スを吹込んで共存する釜繕不眺吻を埴1こ物の形VC
度えて糸外へ研出することに工9、部分的にンリ二ンの
積装を行ない、後この1牧を正方形偵断面を持つ長い・
、鋳型に注入しC長方形の涛物τ侍た。
The fruit flies IJ2 Ill Melts in the correctional conlicon cr - blows a ring rope into the instep and coexists with the cauldron no view proboscis 1 Komono form VC
After grinding out the threads again, I carried out partial loading of Nrinin, and after that I carried out a long wire with a square rectangular surface.
Then, it was poured into a mold and a rectangular shape was obtained.

(2)  この涛物金前例と同じLりにトラベリングゾ
ーニング法により結晶粒成長を行fxvせた。
(2) Crystal grain growth was carried out by the traveling zoning method in the same manner as in this rolling gold example.

この場せ、祷物中に言mさnる不@物が夫々の偏析係数
の大きさに従って一ノー内向化面で偏析し、収艮エビタ
千シイ盾が−f:rLに応じC精製さnていることが4
#1祭ざ扛た。
In this case, the impurities mentioned in the prayer are segregated on the introverted surface according to the size of their respective segregation coefficients, and the convergence Evita thousand shields are C refined according to -f:rL. 4.
#1 Festival was held.

【図面の簡単な説明】[Brief explanation of drawings]

添附の図面は本発明方法の実施ttlを示す略図で、第
1図は温度4配図、第2図μm用の移動状況説明図、第
3図は夷―状況説明略図でりゐ。 な2図におい・てIal vよりブストレート結晶、E
IWJエピタ千シャル層、IQlは−11(d)はソー
ス姑晶体を示し、1iJ1エサンプル、121 wl 
d (,5nJ Ill 、LJ rJサブストレート
結晶%14)1611ti月7ノμじ一ター1(勾は 
熱、c d &  、 L!jl ulJ ri li
k L 計 、uH工熱vrt=m  、 wり は断
wP14!L、固りよ錨膜何層面、IBI Vよ12面
とス対の曲でめる。
The accompanying drawings are schematic diagrams illustrating the implementation of the method of the present invention, in which Figure 1 is a four-temperature diagram, Figure 2 is a diagram illustrating the movement situation for μm, and Figure 3 is a schematic diagram illustrating the situation. In Figure 2, the blasted crystal, E
IWJ epitaxial layer, IQl is -11 (d) indicates source crystal, 1iJ1 sample, 121 wl
d (,5nJ Ill, LJ rJ substrate crystal %14) 1611ti month 7 no μji 1 (gradient is
Heat, cd &, L! jl ulJ ri li
kL meter, uH engineering heat vrt=m, wri is cut off wP14! L, how many layers of anchor membrane are there, IBI V, 12 sides and the curve of the pair.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体シリコン単結晶用の原料として製造されて
いる多結晶シリコンを、太陽電池用基板として有用な結
晶粒を成長させた状態の結晶体(多結晶あるいは単結晶
)に変換させるにあたり、錫を共融金属とするトラベリ
ングゾーニング法を用いることを特徴とする太陽電池用
シリコン結晶の製造法。
(1) When converting polycrystalline silicon, which is produced as a raw material for semiconductor silicon single crystals, into a crystalline substance (polycrystal or single crystal) in which crystal grains have grown, which is useful as a substrate for solar cells, tin A method for producing silicon crystal for solar cells, characterized by using a traveling zoning method using as a eutectic metal.
(2)トラベリングゾーニング法で処理する原料結晶に
、半導体用高純度多結晶シリコンに代えて、金属ケイ素
を塩素処理して部分的に精製したシリコンの角形鋳造体
を用いることを特徴とする特許請求の範囲(1)記載の
太陽電池用シリコン結晶の製造法。
(2) A patent claim characterized in that, instead of high-purity polycrystalline silicon for semiconductors, a rectangular cast body of silicon partially refined by chlorine treatment of metallic silicon is used as the raw material crystal to be processed by the traveling zoning method. A method for producing silicon crystal for solar cells according to scope (1).
(3)トラベリングゾーニングの温度条件として(a)
融相内の軸方向温度勾配の値を200〜650℃/cm (b)融相移動後方のエピタキシャル層内軸方向温度勾
配の値を1〜10℃/cm に設定することを特徴とする特許請求の範囲(1)(2
)記載の太陽電池用シリコン結晶の製造法。
(3) Temperature conditions for traveling zoning (a)
A patent characterized in that the value of the axial temperature gradient within the melt phase is set to 200 to 650°C/cm. (b) The value of the axial temperature gradient within the epitaxial layer after the melt phase movement is set to 1 to 10°C/cm. Scope of claims (1) (2)
) The method for producing silicon crystal for solar cells described in .
JP60292223A 1985-12-26 1985-12-26 Manufacture of silicon crystal for solar cell Pending JPS62152180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292223A JPS62152180A (en) 1985-12-26 1985-12-26 Manufacture of silicon crystal for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292223A JPS62152180A (en) 1985-12-26 1985-12-26 Manufacture of silicon crystal for solar cell

Publications (1)

Publication Number Publication Date
JPS62152180A true JPS62152180A (en) 1987-07-07

Family

ID=17779095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292223A Pending JPS62152180A (en) 1985-12-26 1985-12-26 Manufacture of silicon crystal for solar cell

Country Status (1)

Country Link
JP (1) JPS62152180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249687A (en) * 1988-03-30 1989-10-04 Uchu Kankyo Riyou Kenkyusho:Kk Method for growing single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249687A (en) * 1988-03-30 1989-10-04 Uchu Kankyo Riyou Kenkyusho:Kk Method for growing single crystal
JP2610034B2 (en) * 1988-03-30 1997-05-14 株式会社宇宙環境利用研究所 Single crystal growth method

Similar Documents

Publication Publication Date Title
CN104846437A (en) Gallium-doped crystalline silicon with uniformly distributed resistivity and preparation method thereof
TWI595124B (en) Manufacturing method of polysilicon ingot
JPS62152180A (en) Manufacture of silicon crystal for solar cell
JPH0242295B2 (en)
JPH10203893A (en) Highly strong quartz glass crucible and its production
JPS6046539B2 (en) Method for manufacturing silicon crystal film
US5891244A (en) Apparatus for the manufacture of SOI wafer and process for preparing SOI wafer therewith
JPH01132116A (en) Crystal product, preparation thereof, and semiconductor device prepared thereby
JPS6317291A (en) Method for growing crystal and device therefor
JP2003243732A (en) Thermoelectric material, and method and apparatus for manufacturing thermoelectric material
JPH0354819A (en) Manufacture of soi substrate
JPS59102891A (en) Preparation of silicon single crystal
DE2334811C2 (en) Process for the production of CdCr deep 2 Se deep 4 single crystals
JPH0426454Y2 (en)
JPS60204692A (en) Preparation of cdte crystal
JPH04187585A (en) Device of growing crystal
JP2977297B2 (en) Crystal manufacturing method
JPS6256394A (en) Method for growing compound semiconductor single crystal
CN117721522A (en) Czochralski crystal growing furnace heating device, working method thereof and Czochralski crystal growing furnace
JP2601204B2 (en) Solid-state recrystallization of compound semiconductors
JPS62143898A (en) Production of iii-v compound semiconductor single crystal
KR930002959B1 (en) Method of casting crystaline silicon
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPH0314765B2 (en)
JPS63185885A (en) Crystal growing device of horizontal type