JPH10203893A - Highly strong quartz glass crucible and its production - Google Patents

Highly strong quartz glass crucible and its production

Info

Publication number
JPH10203893A
JPH10203893A JP747597A JP747597A JPH10203893A JP H10203893 A JPH10203893 A JP H10203893A JP 747597 A JP747597 A JP 747597A JP 747597 A JP747597 A JP 747597A JP H10203893 A JPH10203893 A JP H10203893A
Authority
JP
Japan
Prior art keywords
crucible
quartz glass
main body
crystallized glass
glass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP747597A
Other languages
Japanese (ja)
Inventor
Hiroshige Abe
啓成 安部
Kazutaka Terajima
一高 寺嶋
Susumu Maeda
進 前田
Hideo Nakanishi
秀夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Coorstek KK
Mitsubishi Materials Silicon Corp
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Sumco Techxiv Corp
Mitsubishi Materials Silicon Corp
Kagaku Gijutsu Shinko Jigyodan
Komatsu Electronic Metals Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Mitsubishi Materials Silicon Corp, Kagaku Gijutsu Shinko Jigyodan, Komatsu Electronic Metals Co Ltd, Toshiba Ceramics Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP747597A priority Critical patent/JPH10203893A/en
Publication of JPH10203893A publication Critical patent/JPH10203893A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles

Abstract

PROBLEM TO BE SOLVED: To obtain a highly strong quartz glass crucible whose outer surface is reinforced with a crystallized glass layer, whose main body is not deformed during the growth of a single crystal silicon for a long time, and which can thereby grow the non-rearranged single crystal silicon, by forming the crystallized glass layer on the outer surface of the crucible main body comprising amorphous quartz glass. SOLUTION: In this highly strong quartz glass crucible 10, a crystallized glass layer 12 is formed on the whole outer surface of the crucible main body 11. The crystallized glass layer 12 comprises the crystals and the glass, and has a crystallinity of 5-10% and an average thickness of 0.1-10mm. The method for producing the highly strong quartz glass crucible comprises tightly adhering a carbon-made bottomed cylindrical reinforcing member having an outer surface corresponding to the inner surface of the crucible main body 11 comprising amorphous quartz glass to the inner surface of the crucible main body 11, similarly tightly adhering a carbon-made bottomed cylindrical reinforcing member having an inner surface corresponding to the outer surface of the crucible main body 11 to the outer surface of the crucible main body 11 to nip the crucible main body 11 with both the reinforcing members, thermally treating the assembly in an oxygen atmosphere at 1500-1600 deg.C for 1-20hr to soften the inner and outer surfaces of the crucible main body 11, and subsequently crystallize the softened inner and outer surfaces at temperatures below the softening point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(以下、CZ法という)により単結晶シリコンを育成
するために用いられる高強度石英ガラスルツボ及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength quartz glass crucible used for growing single-crystal silicon by the Czochralski method (hereinafter referred to as CZ method) and a method for producing the same.

【0002】[0002]

【従来の技術】CZ法では、非晶質の石英ガラスルツボ
の内部でシリコンを融解し、シリコン融液上面に触れた
種結晶を静かに回転させながら上方に引上げる。種結晶
に触れた融液は種結晶を通して熱を失って、種結晶の上
に凝固する際に種結晶の結晶方位に従って析出し、単結
晶棒(インゴット)として引上げられる。近年、大口径
のインゴットが製造されるようになると、必然的に育成
装置内の部品のサイズが大きくなり、育成中の装置内の
温度は高まり、石英ガラスルツボ自体の温度も軟化点近
くになる。
2. Description of the Related Art In the CZ method, silicon is melted inside an amorphous quartz glass crucible, and a seed crystal touching the upper surface of a silicon melt is pulled upward while gently rotating. The melt that has touched the seed crystal loses heat through the seed crystal, precipitates according to the crystal orientation of the seed crystal when solidifying on the seed crystal, and is pulled up as a single crystal rod (ingot). In recent years, when large-diameter ingots have been manufactured, the size of the components in the growing apparatus inevitably increases, the temperature in the growing apparatus increases, and the temperature of the quartz glass crucible itself also approaches the softening point. .

【0003】[0003]

【発明が解決しようとする課題】そのため、従来の非晶
質の石英ガラスからなるルツボでは、単結晶育成中に石
英ガラスの軟化現象によりルツボが変形し、シリコン融
液を適切に保持できなくなることがあった。このため、
このルツボで育成した単結晶シリコンは育成中に熱応力
に起因する転位、即ち有転位結晶になる比率が高かっ
た。本発明の目的は、ルツボ外面を結晶化ガラス層によ
り強化して、長時間の育成中にルツボ本体が変形せず、
これにより無転位の単結晶シリコンを育成し得る高強度
石英ガラスルツボ及びその製造方法を提供することにあ
る。
Therefore, in the conventional crucible made of amorphous quartz glass, the crucible is deformed due to the softening phenomenon of the quartz glass during the growth of the single crystal, and the silicon melt cannot be held properly. was there. For this reason,
The single crystal silicon grown by the crucible had a high ratio of dislocations caused by thermal stress during the growth, that is, the ratio of the dislocation crystals. The object of the present invention is to strengthen the outer surface of the crucible with a crystallized glass layer so that the crucible body is not deformed during long-term growth,
Accordingly, it is an object of the present invention to provide a high-strength quartz glass crucible capable of growing dislocation-free single crystal silicon and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1及び図2に示すように、非晶質の石英ガラスからな
るルツボ本体11の外面に結晶化ガラス層12が形成さ
れた高強度石英ガラスルツボ10,20である。ルツボ
本体11の外面に結晶化ガラス層12を形成することに
より、ルツボ本体の温度が非晶質の石英ガラスの軟化点
に達しても、結晶化ガラス層12がルツボ本体の形態を
保ち、変形を防ぐ。結晶化ガラス層の形成される部分は
図1に示すルツボ本体の外面全体に限らず、外面の一部
分でもよい。この場合、図2に示すルツボ本体11の周
壁外面に上下方向に間隔をあけて複数形成するばかりで
なく、その他の外面部分でもよい。また結晶化ガラス層
は外面に連続せずに斑点状又は外周面に1本の環状又は
複数本の環状(横縞状)に形成してもよい。斑点状の場
合、ルツボ本体の外面1cm2当り1個以上斑点状の結
晶化ガラス層が形成されることが好ましい。
The invention according to claim 1 is
As shown in FIGS. 1 and 2, high strength quartz glass crucibles 10 and 20 each having a crystallized glass layer 12 formed on the outer surface of a crucible body 11 made of amorphous quartz glass. By forming the crystallized glass layer 12 on the outer surface of the crucible main body 11, even if the temperature of the crucible main body reaches the softening point of amorphous quartz glass, the crystallized glass layer 12 maintains the shape of the crucible main body and deforms. prevent. The portion where the crystallized glass layer is formed is not limited to the entire outer surface of the crucible body shown in FIG. 1, but may be a part of the outer surface. In this case, not only a plurality of the outer peripheral surfaces of the peripheral wall of the crucible body 11 shown in FIG. Further, the crystallized glass layer may be formed in a single ring or a plurality of rings (horizontal stripes) on the spot or on the outer peripheral surface without being continuous with the outer surface. In the case of a spotted shape, it is preferable that one or more spotted crystallized glass layers are formed per 1 cm 2 of the outer surface of the crucible body.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、図1に示すように、結晶化ガラス層12が
ルツボ本体11の外面全体に形成された高強度石英ガラ
スルツボ10である。結晶化ガラス層12をルツボ本体
11の外面全体に形成することにより、ルツボ本体が結
晶化ガラス層で覆われ、極めて耐熱性のある高強度石英
ガラスルツボ10となる。
[0005] The invention according to claim 2 is the invention according to claim 1, wherein a high-strength quartz glass crucible 10 in which a crystallized glass layer 12 is formed on the entire outer surface of a crucible body 11 as shown in FIG. It is. By forming the crystallized glass layer 12 on the entire outer surface of the crucible body 11, the crucible body is covered with the crystallized glass layer, and the high-strength quartz glass crucible 10 having extremely high heat resistance is obtained.

【0006】請求項3に係る発明は、請求項1に係る発
明であって、図2に示すように、結晶化ガラス層12が
ルツボ本体11の周壁外面に上下方向に間隔をあけて複
数形成された高強度石英ガラスルツボ20である。ルツ
ボ本体11の外面に複数本の縦縞状に結晶化ガラス層を
形成することにより、少ない結晶化面積で石英ガラスル
ツボ20を効率良く高熱に対して耐久性を強めることが
できる。
The invention according to claim 3 is the invention according to claim 1, wherein a plurality of crystallized glass layers 12 are formed on the outer surface of the peripheral wall of the crucible body 11 at intervals in the vertical direction as shown in FIG. The high strength quartz glass crucible 20 is obtained. By forming a plurality of crystallized glass layers in the form of a plurality of vertical stripes on the outer surface of the crucible main body 11, the quartz glass crucible 20 can efficiently enhance the durability against high heat with a small crystallization area.

【0007】請求項4に係る発明は、図3に示すよう
に、非晶質の石英ガラスからなるルツボ本体11の外面
に酸素雰囲気中で酸水素炎21を吹付けてこの外面に結
晶化ガラス層を形成する高強度石英ガラスルツボの製造
方法である。直火にてルツボ本体11の外面を高熱処理
するため、短時間に結晶化ガラス層を形成できる。
According to a fourth aspect of the present invention, as shown in FIG. 3, an outer surface of a crucible body 11 made of amorphous quartz glass is sprayed with an oxyhydrogen flame 21 in an oxygen atmosphere to form a crystallized glass on the outer surface. This is a method for producing a high-strength quartz glass crucible for forming a layer. Since the outer surface of the crucible body 11 is subjected to high heat treatment by direct heat, a crystallized glass layer can be formed in a short time.

【0008】請求項5に係る発明は、図4に示すよう
に、非晶質の石英ガラスからなるルツボ本体11をその
内面及び外面にカーボン製の補強材26及び27を当て
て補強し、この補強したルツボ本体11を酸素雰囲気中
で1500〜1600℃の温度で熱処理してルツボ本体
11の外面に結晶化ガラス層を形成する高強度石英ガラ
スルツボの製造方法である。成形したルツボ本体11を
その結晶化温度まで高めても、補強材26及び27で補
強されているため、ルツボ本体11の形が崩れず、その
内面及び外面に結晶化ガラス層を均一の厚さで形成する
ことができる。
In the invention according to claim 5, as shown in FIG. 4, the crucible body 11 made of amorphous quartz glass is reinforced by applying carbon reinforcing materials 26 and 27 to the inner and outer surfaces thereof. This is a method of manufacturing a high-strength quartz glass crucible in which a reinforced crucible body 11 is heat-treated at a temperature of 1500 to 1600 ° C. in an oxygen atmosphere to form a crystallized glass layer on the outer surface of the crucible body 11. Even if the formed crucible body 11 is raised to its crystallization temperature, the crucible body 11 is reinforced by the reinforcing members 26 and 27, so that the shape of the crucible body 11 does not collapse, and a crystallized glass layer is formed on the inner surface and the outer surface with a uniform thickness. Can be formed.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて詳しく説明する。図1に示すように、本発明の
第1実施形態の高強度石英ガラスルツボ10は結晶化ガ
ラス層12がルツボ本体11の外面全体に形成される。
また理解を容易にするため、ルツボ本体11の厚さは誇
張して示している(図2〜図5も同じ)。結晶化ガラス
層では結晶とガラスが混在し、その結晶化度は5〜10
0%である。好ましくは20〜100%である。この結
晶化ガラス層の平均厚さは0.1〜10mm、好ましく
は2〜5mmである。結晶化ガラス層の結晶化度が5%
未満では、又はその平均厚さが0.1mm未満では、ル
ツボ本体の耐熱性が十分に増大しない。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIG. 1, a high-strength quartz glass crucible 10 according to a first embodiment of the present invention has a crystallized glass layer 12 formed on the entire outer surface of a crucible body 11.
For easy understanding, the thickness of the crucible body 11 is exaggerated (the same applies to FIGS. 2 to 5). In the crystallized glass layer, crystals and glass are mixed, and the degree of crystallinity is 5-10.
0%. Preferably it is 20 to 100%. The average thickness of the crystallized glass layer is 0.1 to 10 mm, preferably 2 to 5 mm. The crystallinity of the crystallized glass layer is 5%
If it is less than 0.1 mm or the average thickness is less than 0.1 mm, the heat resistance of the crucible body will not be sufficiently increased.

【0010】第1実施形態の高強度石英ガラスルツボの
製造方法を図3に基づいて説明する。図3に示すよう
に、非晶質の石英ガラスからなるルツボ本体11の内面
にこの内面に相応する外面を有するカーボン製の有底筒
体の補強材26を密着させる。次いでルツボ本体11の
外面にこの外面に相応する内面を有するカーボン製の有
底筒体の補強材27を密着させる。両方の補強材26及
び27を図示しないクランプで締付けて、補強材26及
び27でルツボ本体11を挟持する。このようにして補
強したルツボ本体11を酸素雰囲気中で1500〜16
00℃の温度で1〜20時間熱処理する。これによりル
ツボ本体の内面及び外面が軟化する。1時間未満では非
晶質の石英ガラスの軟化が不十分であり、20時間を越
えると必要以上に軟化が進み、ルツボ本体の形態の維持
が困難になる。熱処理後、軟化点以下にすると、軟化し
ていた両面が結晶化する。補強材26及び27を外して
両面に結晶化ガラス層を有するルツボ本体を純水で洗浄
する。
A method for manufacturing a high-strength quartz glass crucible according to the first embodiment will be described with reference to FIG. As shown in FIG. 3, a reinforcing member 26 of a bottomed cylinder made of carbon and having an outer surface corresponding to the inner surface is adhered to the inner surface of the crucible body 11 made of amorphous quartz glass. Next, a reinforcing member 27 of a bottomed cylinder made of carbon and having an inner surface corresponding to the outer surface is brought into close contact with the outer surface of the crucible body 11. The two reinforcing members 26 and 27 are fastened by a clamp (not shown), and the crucible body 11 is held between the reinforcing members 26 and 27. The crucible body 11 reinforced in this manner is placed in an oxygen atmosphere at 1500 to 16
Heat treatment at a temperature of 00 ° C. for 1 to 20 hours. Thereby, the inner surface and the outer surface of the crucible body are softened. If the time is less than 1 hour, the softening of the amorphous quartz glass is insufficient, and if the time exceeds 20 hours, the softening proceeds more than necessary, and it becomes difficult to maintain the shape of the crucible body. After the heat treatment, if the softening point is lowered, the softened both sides are crystallized. After removing the reinforcing members 26 and 27, the crucible body having the crystallized glass layers on both surfaces is washed with pure water.

【0011】次に第2実施形態の高強度石英ガラスルツ
ボの製造方法を図4及び図5に基づいて説明する。この
結晶化ガラス層の厚さ及び結晶化度は第1実施形態と同
じである。図5に示すように、第2実施形態の高強度石
英ガラスルツボ20は結晶化ガラス層12が非晶質の石
英ガラスからなるルツボ本体11の周壁外面に上下方向
に間隔をあけて複数形成される。図4に示すように、非
晶質の石英ガラスからなるルツボ本体11が回転軸24
により回転するテーブル25上に載せられる。この回転
テーブル25の側部上方にはテーブル上のルツボ本体1
1の外面に向けて酸水素炎21を吹出すノズル22が設
けられる。このノズル22は図示しない駆動装置により
昇降するようになっている。非晶質の石英ガラスからな
るルツボ本体11の外面に結晶化ガラス層を縦縞状形成
するには、酸素雰囲気中でルツボ本体11を固定した
後、図示するようにノズル22を水平にして酸水素炎2
1の先端がルツボ本体11の上端の外面に当るように位
置調整する。所定時間酸水素炎21を吹付けると、外面
の温度は1500〜1600℃になり、吹付けた外面部
分は軟化する。次いでノズル22をゆっくりと下降させ
る。酸水素炎が吹付けられなくなった外面は軟化点より
温度が低くなり結晶化する。ノズル22がルツボ本体1
1の下端外面に達したところで回転テーブル25を僅か
な角度だけ回転し、テーブル25が停止した後、ノズル
22を上昇させる。ノズル22がルツボ本体11の上端
外面に達したところで回転テーブル25を僅かな角度だ
け回転し、テーブル25が停止した後、ノズル22を下
降させる。以下、同様にこのノズルの昇降とテーブルの
回転を交互に行い、ルツボ本体11の外面に酸水素炎2
1を吹付ける。その後縦縞状に外面に結晶化ガラス層を
有するルツボ本体を純水で洗浄する。
Next, a method of manufacturing a high-strength quartz glass crucible according to a second embodiment will be described with reference to FIGS. The thickness and crystallinity of this crystallized glass layer are the same as in the first embodiment. As shown in FIG. 5, a plurality of high-strength quartz glass crucibles 20 of the second embodiment are formed at intervals in the vertical direction on the outer peripheral surface of the crucible body 11 in which the crystallized glass layer 12 is made of amorphous quartz glass. You. As shown in FIG. 4, the crucible body 11 made of amorphous quartz glass is
On the rotating table 25. The crucible body 1 on the table is placed above the side of the turntable 25.
A nozzle 22 that blows out the oxyhydrogen flame 21 toward the outer surface of the fuel cell 1 is provided. The nozzle 22 is moved up and down by a driving device (not shown). In order to form a crystallized glass layer on the outer surface of the crucible body 11 made of amorphous quartz glass in the form of vertical stripes, the crucible body 11 is fixed in an oxygen atmosphere, and then the nozzle 22 is set horizontally as shown in FIG. Flame 2
The position is adjusted so that the tip of the first piece contacts the outer surface of the upper end of the crucible body 11. When the oxyhydrogen flame 21 is sprayed for a predetermined time, the temperature of the outer surface becomes 1500 to 1600 ° C., and the sprayed outer surface portion softens. Next, the nozzle 22 is slowly lowered. The outer surface where the oxyhydrogen flame is no longer sprayed becomes lower in temperature than the softening point and crystallizes. The nozzle 22 is the crucible body 1
When the rotary table 25 reaches the outer surface at the lower end of the table 1, the rotary table 25 is rotated by a small angle, and after the table 25 stops, the nozzle 22 is raised. When the nozzle 22 reaches the outer surface of the upper end of the crucible body 11, the rotary table 25 is rotated by a small angle, and after the table 25 stops, the nozzle 22 is lowered. Hereinafter, similarly, the raising and lowering of the nozzle and the rotation of the table are alternately performed, so that the oxyhydrogen flame 2
Spray 1 Thereafter, the crucible body having a crystallized glass layer on the outer surface in the form of vertical stripes is washed with pure water.

【0012】[0012]

【実施例】次に本発明の実施例を比較例とともに説明す
る。上述した第1及び第2実施形態の高強度石英ガラス
ルツボを用いて、また比較のためルツボ本体の外面に結
晶化ガラス層を有しない従来の石英ガラスルツボを用い
て、それぞれシリコン単結晶を育成した。即ち、同形同
大に形成され同一の非晶質の石英ガラスから作られた加
工済の第1及び第2実施形態の高強度石英ガラスルツボ
(以下、実施例1及び実施例2という)と、実施例1,
2と同形同大に形成され同一の非晶質の石英ガラスから
作られた未加工の従来の石英ガラスルツボ(以下、比較
例1という)を同一のCZシリコン単結晶育成装置に設
置し、それぞれのルツボ本体に同一の多結晶シリコンを
充填し、不活性ガス中で多結晶シリコンを融解した後、
種結晶をシリコン融液に浸し、これを引上げ、単結晶イ
ンゴットをそれぞれ同一条件で製造した。
Next, examples of the present invention will be described together with comparative examples. Silicon single crystals are grown using the high-strength quartz glass crucibles of the first and second embodiments described above, and for comparison, a conventional quartz glass crucible having no crystallized glass layer on the outer surface of the crucible body for comparison. did. That is, the processed high-strength quartz glass crucibles of the first and second embodiments (hereinafter, referred to as Examples 1 and 2) which are formed into the same shape and the same size and made of the same amorphous quartz glass. Example 1,
An unprocessed conventional quartz glass crucible (hereinafter, referred to as Comparative Example 1) formed of the same amorphous quartz glass having the same shape and size as that of Comparative Example 2 was installed in the same CZ silicon single crystal growing apparatus, After filling each crucible body with the same polycrystalline silicon and melting the polycrystalline silicon in an inert gas,
The seed crystal was immersed in a silicon melt, pulled up, and manufactured single crystal ingots under the same conditions.

【0013】実施例1、実施例2及び比較例1の単結晶
インゴットの晶癖線の有無から育成した単結晶インゴッ
トが無転位結晶か、有転位結晶かを調べた。育成した総
結晶本数に対する無転位結晶本数の百分率を表1に示
す。
From the presence or absence of habit lines of the single crystal ingots of Example 1, Example 2 and Comparative Example 1, it was examined whether the single crystal ingot grown was a dislocation free crystal or a dislocation crystal. Table 1 shows the percentage of the number of dislocation-free crystals with respect to the total number of grown crystals.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかなように、比較例1の石英
ガラスルツボから作られた単結晶インゴットの無転位結
晶本数が30%であったのに対して、実施例1及び実施
例2の比率はそれぞれ90%及び89%を示し、実施例
1及び実施例2の高強度石英ガラスルツボは育成中に極
めて変形しにくいことが判った。
As is clear from Table 1, the ratio of the dislocation-free crystals of the single crystal ingot made from the quartz glass crucible of Comparative Example 1 was 30%, whereas the ratio of Examples 1 and 2 was 30%. Indicates 90% and 89%, respectively, indicating that the high-strength quartz glass crucibles of Example 1 and Example 2 were extremely unlikely to deform during growth.

【0016】[0016]

【発明の効果】以上述べたように、本発明の方法により
シリコン融液が接する石英ガラスルツボのルツボ本体の
外面に結晶化ガラス層を形成し、この高強度石英ガラス
ルツボを用いてCZ法により単結晶を製造すると、結晶
化ガラス層を有するルツボ本体は従来の非晶質の石英ガ
ラスのみからなるルツボ本体よりも熱的に安定であるた
め、従来のルツボよりも強度が増加する。そのため高温
で長時間ルツボは変形せずにシリコン単結晶を育成する
ことができ、その結果、無転位で結晶を製造することが
できる。
As described above, according to the method of the present invention, a crystallized glass layer is formed on the outer surface of the crucible main body of a quartz glass crucible in contact with the silicon melt, and the high strength quartz glass crucible is used by the CZ method. When a single crystal is manufactured, the crucible body having a crystallized glass layer is more thermally stable than a conventional crucible body made of only amorphous quartz glass, and thus has a higher strength than a conventional crucible. Therefore, a silicon single crystal can be grown without deforming the crucible at a high temperature for a long time, and as a result, a crystal can be produced without dislocation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の高強度石英ガラスルツ
ボの中央縦断面図。
FIG. 1 is a central longitudinal sectional view of a high-strength quartz glass crucible according to a first embodiment of the present invention.

【図2】本発明の第2実施形態の高強度石英ガラスルツ
ボの中央縦断面図。
FIG. 2 is a central longitudinal sectional view of a high-strength quartz glass crucible according to a second embodiment of the present invention.

【図3】本発明の第1実施形態の高強度石英ガラスルツ
ボの製造方法を示す断面図。
FIG. 3 is a cross-sectional view illustrating a method for manufacturing a high-strength quartz glass crucible according to the first embodiment of the present invention.

【図4】本発明の第2実施形態の高強度石英ガラスルツ
ボの製造方法を示す断面図。
FIG. 4 is a sectional view showing a method for manufacturing a high-strength quartz glass crucible according to a second embodiment of the present invention.

【図5】本発明の第2実施形態の高強度石英ガラスルツ
ボの斜視図。
FIG. 5 is a perspective view of a high-strength quartz glass crucible according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10,20 高強度石英ガラスルツボ 11 ルツボ本体 12 結晶化ガラス層 21 酸水素炎 26,27 補強材 10, 20 High-strength quartz glass crucible 11 Crucible body 12 Crystallized glass layer 21 Hydrogen oxyflame 26, 27 Reinforcing material

フロントページの続き (72)発明者 安部 啓成 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 寺嶋 一高 神奈川県海老名市中野206番地の3 (72)発明者 前田 進 神奈川県平塚市四之宮2612番地 コマツ電 子金属株式会社内 (72)発明者 中西 秀夫 東京都新宿区西新宿1丁目26番2号 東芝 セラミックス株式会社内Continued on the front page (72) Inventor Hironari Abe 1-5-1, Otemachi, Chiyoda-ku, Tokyo Within Mitsui Material Silicon Co., Ltd. (72) Inventor Kazutaka Terashima 206-2 Nakano, Ebina City, Kanagawa Prefecture 3 (72) Inventor Susumu Maeda 2612 Shinomiya, Hiratsuka-shi, Kanagawa Prefecture Inside Komatsu Electronic Metals Co., Ltd. (72) Hideo Nakanishi 1-26-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Toshiba Ceramics Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非晶質の石英ガラスからなるルツボ本体
(11)の外面に結晶化ガラス層(12)が形成された高強度石
英ガラスルツボ。
1. A crucible body made of amorphous quartz glass
A high-strength quartz glass crucible having a crystallized glass layer (12) formed on the outer surface of (11).
【請求項2】 結晶化ガラス層(12)がルツボ本体(11)の
外面全体に形成された請求項1記載の高強度石英ガラス
ルツボ。
2. The high-strength quartz glass crucible according to claim 1, wherein the crystallized glass layer (12) is formed on the entire outer surface of the crucible body (11).
【請求項3】 結晶化ガラス層(12)がルツボ本体(11)の
周壁外面に上下方向に間隔をあけて複数形成された請求
項1記載の高強度石英ガラスルツボ。
3. A high-strength quartz glass crucible according to claim 1, wherein a plurality of crystallized glass layers (12) are formed on the outer peripheral surface of the crucible body (11) at intervals in the vertical direction.
【請求項4】 非晶質の石英ガラスからなるルツボ本体
(11)の外面に酸素雰囲気中で酸水素炎(21)を吹付けて前
記外面に結晶化ガラス層を形成する高強度石英ガラスル
ツボの製造方法。
4. A crucible body made of amorphous quartz glass
(11) A method for producing a high-strength quartz glass crucible in which an oxyhydrogen flame (21) is sprayed on the outer surface in an oxygen atmosphere to form a crystallized glass layer on the outer surface.
【請求項5】 非晶質の石英ガラスからなるルツボ本体
(11)をその内面及び外面にカーボン製の補強材(26,27)
を当てて補強し、前記補強したルツボ本体(11)を酸素雰
囲気中で1500〜1600℃の温度で熱処理して前記
ルツボ本体(11)の外面に結晶化ガラス層を形成する高強
度石英ガラスルツボの製造方法。
5. A crucible body made of amorphous quartz glass
(11) A carbon reinforcing material (26, 27) on its inner and outer surfaces
A high-strength quartz glass crucible for forming a crystallized glass layer on the outer surface of the crucible body (11) by heat-treating the reinforced crucible body (11) at a temperature of 1500 to 1600 ° C. in an oxygen atmosphere. Manufacturing method.
JP747597A 1997-01-20 1997-01-20 Highly strong quartz glass crucible and its production Pending JPH10203893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP747597A JPH10203893A (en) 1997-01-20 1997-01-20 Highly strong quartz glass crucible and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP747597A JPH10203893A (en) 1997-01-20 1997-01-20 Highly strong quartz glass crucible and its production

Publications (1)

Publication Number Publication Date
JPH10203893A true JPH10203893A (en) 1998-08-04

Family

ID=11666814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP747597A Pending JPH10203893A (en) 1997-01-20 1997-01-20 Highly strong quartz glass crucible and its production

Country Status (1)

Country Link
JP (1) JPH10203893A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070476A (en) * 2002-02-25 2003-08-30 네오세미테크 주식회사 Method and apparatus of surface treatment for PBN crucible in fabrication of GaAs single crystal
EP1462421A2 (en) * 2003-03-28 2004-09-29 Japan Super Quartz Corporation Silica glass crucible
JP2005255488A (en) * 2004-03-12 2005-09-22 Komatsu Electronic Metals Co Ltd Quartz crucible and method of manufacturing semiconductor single crystal using the same
JP2008214189A (en) * 2008-06-16 2008-09-18 Mitsubishi Materials Corp Crucible for melting silicon and silicon single crystal pulling-up device
US7497907B2 (en) * 2004-07-23 2009-03-03 Memc Electronic Materials, Inc. Partially devitrified crucible
WO2011030657A1 (en) 2009-09-10 2011-03-17 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystal and method for producing same
WO2014192163A1 (en) 2013-05-31 2014-12-04 株式会社Sumco Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same
WO2020031481A1 (en) * 2018-08-09 2020-02-13 信越石英株式会社 Quartz glass crucible

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070476A (en) * 2002-02-25 2003-08-30 네오세미테크 주식회사 Method and apparatus of surface treatment for PBN crucible in fabrication of GaAs single crystal
US7955511B2 (en) 2003-03-28 2011-06-07 Japan Super Quartz Corporation Silica glass crucible
EP1462421A2 (en) * 2003-03-28 2004-09-29 Japan Super Quartz Corporation Silica glass crucible
EP1462421A3 (en) * 2003-03-28 2006-01-04 Japan Super Quartz Corporation Silica glass crucible
US7695787B2 (en) 2003-03-28 2010-04-13 Japan Super Quartz Corporation Silica glass crucible
JP2005255488A (en) * 2004-03-12 2005-09-22 Komatsu Electronic Metals Co Ltd Quartz crucible and method of manufacturing semiconductor single crystal using the same
US7497907B2 (en) * 2004-07-23 2009-03-03 Memc Electronic Materials, Inc. Partially devitrified crucible
JP2008214189A (en) * 2008-06-16 2008-09-18 Mitsubishi Materials Corp Crucible for melting silicon and silicon single crystal pulling-up device
WO2011030657A1 (en) 2009-09-10 2011-03-17 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystal and method for producing same
US8936685B2 (en) 2009-09-10 2015-01-20 Japan Super Quartz Corporation Vitreous silica crucible for pulling silicon single crystal and method of manufacturing the same
WO2014192163A1 (en) 2013-05-31 2014-12-04 株式会社Sumco Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same
KR20160015318A (en) 2013-05-31 2016-02-12 가부시키가이샤 섬코 Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same
US9758901B2 (en) 2013-05-31 2017-09-12 Sumco Corporation Vitreous silica crucible for pulling of silicon single crystal and method for manufacturing the same
WO2020031481A1 (en) * 2018-08-09 2020-02-13 信越石英株式会社 Quartz glass crucible
JP2020026362A (en) * 2018-08-09 2020-02-20 信越石英株式会社 Quartz glass crucible
CN112533878A (en) * 2018-08-09 2021-03-19 信越石英株式会社 Quartz glass crucible
US11821103B2 (en) 2018-08-09 2023-11-21 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible

Similar Documents

Publication Publication Date Title
JP5330349B2 (en) Method for producing single crystal thin film
CN101565185B (en) Method of manufacturing polycrystalline silicon rod
WO2004106247A1 (en) Quartz glass crucible for pulling up silicon single crystal
KR100942185B1 (en) Growing method for silicon ingot
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPH10203893A (en) Highly strong quartz glass crucible and its production
JPH076972A (en) Growth method and device of silicon single crystal
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
CN211471638U (en) Heating crucible and straight-pull purification device for high-purity germanium
JPH09208364A (en) Production of silicon single crystal
JP2022159501A (en) Polycrystalline silicon bar, polycrystalline silicon rod and production method of the same
JPH04104988A (en) Growth of single crystal
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JPH04139092A (en) Production of silicon single crystal and seed crystal
JP3986108B2 (en) Quartz glass crucible and manufacturing method thereof
JP4735594B2 (en) Oxide single crystal growth method
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JPH1112091A (en) Production of spherical single crystal silicon
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
KR100799144B1 (en) Process for producing monocrystal thin film and monocrystal thin film device
EP0882818B1 (en) Method for manufacturing silicon crystals
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JPH09208379A (en) Pulling up of single crystal
JPH09309791A (en) Method for producing semiconducting single crystal
JPH01160894A (en) Apparatus for pulling up single crystal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A711 Notification of change in applicant

Effective date: 20061016

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A02