JPH0314765B2 - - Google Patents

Info

Publication number
JPH0314765B2
JPH0314765B2 JP58047725A JP4772583A JPH0314765B2 JP H0314765 B2 JPH0314765 B2 JP H0314765B2 JP 58047725 A JP58047725 A JP 58047725A JP 4772583 A JP4772583 A JP 4772583A JP H0314765 B2 JPH0314765 B2 JP H0314765B2
Authority
JP
Japan
Prior art keywords
melt
production plate
silicon
release agent
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58047725A
Other languages
Japanese (ja)
Other versions
JPS59174514A (en
Inventor
Takashi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokusan Co Ltd
Original Assignee
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokusan Co Ltd filed Critical Hokusan Co Ltd
Priority to JP58047725A priority Critical patent/JPS59174514A/en
Publication of JPS59174514A publication Critical patent/JPS59174514A/en
Publication of JPH0314765B2 publication Critical patent/JPH0314765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/225Calculation of statistics, e.g. average, variance

Description

【発明の詳細な説明】 本発明は太陽電池その他の光電変換素子等に用
いられている多結晶シリコンウエハの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing polycrystalline silicon wafers used in solar cells and other photoelectric conversion elements.

従来から多結晶シリコンウエハは各種の方法に
よつて製造されており、最も一般的にはシリコン
母材により一たん所定形状のインゴツトを鋳造
し、これをスライスすることによつてウエハを得
るようにしているが、これではスライス作業に大
変な時間をかけなければならないだけでなく、イ
ンゴツトの約50%がスライス時のロスとなつてし
まうため、製品がコスト高につき大量生産も不可
能である。
Conventionally, polycrystalline silicon wafers have been manufactured by various methods, and the most common method is to cast an ingot in a predetermined shape from a silicon base material and then obtain the wafer by slicing the ingot. However, not only does the slicing process take a lot of time, but about 50% of the ingot is lost during slicing, making the product expensive and impossible to mass produce.

そこでスライスによらない方法としてリボン法
のキヤステイング法(鋳造法)が既に実施されて
いるが、リボン法は例えば回転ドラムの周面に溶
融シリコンを噴当させ、当該周面にリボン状のウ
エハを形成するものであり、同法によるときは実
際上リボン幅が数mm程度のものしか製造すること
ができず、大形の太陽電池素材等が得られない難
点がある。
Therefore, a ribbon casting method (casting method) has already been implemented as a method that does not involve slicing. When using this method, it is actually possible to manufacture ribbons with a width of only a few mm, which has the disadvantage that large-sized solar cell materials cannot be obtained.

また上記キヤステイング法と呼ばれているもの
は、シリコン母材を加熱して融液となし、これを
製品ウエハの寸法に応じた鋳型に流し込み、さら
に当該型の可動部分により融液を押圧成型して固
化させるものであるが、同法によるときは、一度
に所定形状のウエハが得られ、量産性の点で望ま
しい結果が期待できるものゝ、上記のように融液
は四方から押えつけられることになる。
In addition, in the above-mentioned casting method, the silicon base material is heated to form a melt, which is poured into a mold according to the dimensions of the product wafer, and then the melt is pressed and molded by the movable parts of the mold. However, when this method is used, wafers of a predetermined shape can be obtained at once, and desirable results can be expected in terms of mass production.As mentioned above, the melt is pressed down from all sides. It turns out.

このため同法では鋳型の上下面と側面が上記融
液の固化に際し、シリコン結晶粒(グレイン)の
成長を抑制してしまうことゝなり、固化製品の前
記各面と接する部分近傍が、非常細かい結晶粒と
なつて大きな結晶粒が得られず、太陽電池用シリ
コンウエハ等にあつて望ましいとされている大結
晶粒生成の要請を満足させることができないた
め、当該ウエハによつて得られた太陽電池の光電
変換効率も2〜3%と極度に悪くなつてしまう欠
陥をもつている。
For this reason, in this method, the upper and lower surfaces and side surfaces of the mold suppress the growth of silicon crystal grains (grains) when the above-mentioned melt solidifies, and the areas near the parts of the solidified product that contact the above-mentioned surfaces are extremely fine. Because large crystal grains cannot be obtained and the requirement for large crystal grain generation, which is considered desirable for silicon wafers for solar cells, cannot be achieved, The photoelectric conversion efficiency of the battery is also extremely poor at 2 to 3%.

そこで、本出願人は、上記諸法の欠陥を大幅に
改善することができる多結晶シリコンウエハの製
造方法として、既に、シリコン母材を溶融し、こ
の融液を、石英又はカーボンで形成され、かつ回
転状態にある製造皿上に滴下し、遠心力を有効利
用することにより所望拡径状態の融液薄層を形成
し、同層の固化後、これを製造皿から剥離する方
法(スピン法)を提案した。
Therefore, the present applicant has already developed a method for manufacturing polycrystalline silicon wafers that can significantly improve the defects of the above methods, by melting a silicon base material and using this melt to create polycrystalline silicon wafers made of quartz or carbon. A thin layer of molten liquid with a desired expanded diameter is formed by dripping onto a rotating production plate, effectively utilizing centrifugal force, and after the layer solidifies, this is peeled off from the production plate (spin method). ) was proposed.

このスピン法は、多くの優れた特徴をもつてい
るが、上記の固化した融液薄層の剥離に際し、同
層は製造皿に癒着していることから、剥離作業の
際に破損してしまい易く、同作業が極めて煩雑で
熟練を要求されることとなり、このことが大量生
産の溢路となつていた。
This spin method has many excellent features, but when the thin layer of solidified melt is peeled off, the layer adheres to the production plate and may be damaged during the peeling process. However, the work was extremely complicated and required skill, which led to an overflow of mass production.

また、この方法によれば、溶融したシリコン母
材の融液を製造皿に直接滴下して融液薄層を形成
することから、同融液中に、製造皿の成分が拡散
し易く、特に同皿がカーボン製である場合には、
このカーボンが汚染不純物として融液中に混入
し、製品たるウエハの特性に悪影響を及ぼすとい
う問題を有していた。
In addition, according to this method, the melt of the molten silicon base material is directly dropped onto the production plate to form a thin layer of the melt, so components of the production plate are likely to diffuse into the melt, especially If the plate is made of carbon,
This carbon enters the melt as a contaminating impurity and has a problem in that it adversely affects the characteristics of the wafer product.

この問題を解決するため、従来では、製造皿の
上面に離型剤として窒化硅素を溶媒とし揮発性溶
剤を溶液として、これを塗布し数ミクロンの膜を
製造皿の上面に形成し、同膜の上面にシリコン母
材の融液を滴下して融液薄層を形成しこれを固化
させることによつて上記問題を解決しようとして
いた。
In order to solve this problem, conventionally, a solution of a volatile solvent using silicon nitride as a solvent is applied as a mold release agent to the top surface of the production plate, and a film of several microns is formed on the top surface of the production plate. Attempts have been made to solve the above problem by dropping a melt of the silicon base material onto the upper surface of the silicon base material to form a thin layer of the melt and solidifying the thin layer.

しかしながら、このような離型剤を製造皿に塗
布しておくことによりシリコンシートを製造皿か
ら分離する方法にあつては、離型剤が溶解された
溶液を単に製造皿に塗布するだけであつたため、
シリコン母材の融液を製造皿に滴下させた際の衝
撃により、該融液中に離型剤が混入してシリコン
ウエハの特性と品質が低下し易いばかりでなく、
同衝撃により離型剤が剥離飛散してしまつた個所
では、結局融液と製造皿とが直接当触してしま
い、製造皿の成分が融液中に混入して結晶欠陥を
生起させ、これによりその特性、品質を低下させ
てしまうといつた問題を有していた。
However, in this method of separating the silicone sheet from the production plate by applying a release agent to the production plate, it is necessary to simply apply a solution in which the release agent is dissolved to the production plate. Save,
Due to the impact when the melt of the silicon base material is dropped onto the production plate, the mold release agent is mixed into the melt, which not only tends to deteriorate the properties and quality of the silicon wafer.
In the areas where the mold release agent was peeled off and scattered due to the same impact, the melt and the production plate ended up coming into direct contact, and components from the production plate were mixed into the melt, causing crystal defects. This has caused problems such as deterioration of its characteristics and quality.

この発明は、かかる現状に鑑み創案されたもの
であつて、その目的とするところは、製造が容易
であり、しかも太陽電池用ウエハ等にあつて望ま
しいとされる大結晶粒のウエハを生成すること
が、支障なくできる量産可能な多結晶シリコンウ
エハの製造方法を提供しようとするものである。
The present invention was devised in view of the current situation, and its purpose is to produce a wafer with large crystal grains that is easy to manufacture and is desirable for wafers for solar cells, etc. The present invention aims to provide a method for manufacturing polycrystalline silicon wafers that can be mass-produced without any problems.

かかる目的を達成するため、この発明にあつて
は、所望雰囲気内にあつて、回転する製造皿上に
おけるシリコン母材の融液を、当該回転による遠
心力によつて、拡径方向へ流動させることによ
り、当該融液による所望径の融液薄層を形成し、
これを固化した後、同薄層を製造皿より剥離する
多結晶シリコンウエハの製造方法において、上記
製造皿の上面には、シリコン系材料を、スパツタ
リング、真空蒸着法或いはCVD法等の被膜形成
手段により付着させて薄膜状の離型剤被薄膜層を
形成し、同被膜層上に前記融液薄層が形成される
ようにして多結晶シリコンウエハを製造しようと
するものである。
In order to achieve this object, in the present invention, in a desired atmosphere, the melt of the silicon base material on the rotating production plate is made to flow in the direction of diameter expansion due to the centrifugal force caused by the rotation. By this, a thin melt layer of a desired diameter is formed by the melt,
In a method for manufacturing a polycrystalline silicon wafer in which the thin layer is peeled off from a production plate after solidifying, a silicon-based material is applied to the upper surface of the production plate using a film forming method such as sputtering, vacuum evaporation, or CVD. In this method, a polycrystalline silicon wafer is manufactured by depositing the mold release agent by depositing the mold release agent to form a thin film-like film layer, and forming the melt thin layer on the film layer.

以下、添付図面にもとづき、この発明を詳細に
説明する。
Hereinafter, the present invention will be described in detail based on the accompanying drawings.

製造皿1は、シリコンとの反応性が少ない石英
(SiO2)やカーボン(C)等の材質で第1図に示
すように構成されており、かつ各種寸法の円形、
四角形等所望形状のウエハ形成平面1aをもつた
ものが用意され、これを任意に選択して用いられ
る。
The production tray 1 is made of a material such as quartz (SiO 2 ) or carbon (C) that has little reactivity with silicon, as shown in FIG.
A device having a wafer forming plane 1a of a desired shape, such as a rectangular shape, is prepared and can be arbitrarily selected and used.

そして次に、上記製造皿1のウエハ形成平面1
aには、第2図に示すように、薄膜状の離型剤被
膜層2が形成される。
Next, the wafer forming plane 1 of the manufacturing plate 1 is
As shown in FIG. 2, a thin film-like release agent coating layer 2 is formed on a.

この離型剤被膜層2は、酸化シリコンをスパツ
タリング、真空蒸着法又はCVD法等の被膜形成
手段により上記平面1aに付着固化させることに
よつて形成され、この際その厚さは数千オングス
トローム程度とするのがよい。
The release agent coating layer 2 is formed by adhering and solidifying silicon oxide to the flat surface 1a by a coating forming method such as sputtering, vacuum evaporation, or CVD, and the thickness thereof is approximately several thousand angstroms. It is better to

こゝで上記のスパツタリングによるときは、加
熱炉内をアルゴン雰囲気にし、300℃位に加熱す
ることによりアルゴン原子を励気させ、SiO2(酸
化シリコン)のターゲツトにアルゴン原子を衝突
させると、SiO2が大気中に飛散して製造皿1の
ウエハ形成平面1aに付着するのであり、真空蒸
着法では、真空中で酸化シリコンを蒸発させ、こ
れを同平面1aに付着させて薄膜を形成するこ
とゝなり、CVD法によれば600℃〜800℃まで加
熱された炉内でシラン系のガス(例えばSiH4
と亜酸化窒素(N2O)を反応させることにより、
酸化シリコン(SiO2)を発生させ、これにより
同平面1aに薄膜を形成することになる。
When using the above sputtering method, the inside of the heating furnace is made into an argon atmosphere, the argon atoms are excited by heating to about 300℃, and the argon atoms collide with the target of SiO 2 (silicon oxide). 2 is scattered into the atmosphere and adheres to the wafer forming plane 1a of the production plate 1. In the vacuum evaporation method, silicon oxide is evaporated in vacuum and it is attached to the same plane 1a to form a thin film. Therefore, according to the CVD method, silane-based gas (e.g. SiH 4 ) is
By reacting with nitrous oxide (N 2 O),
Silicon oxide (SiO 2 ) is generated, thereby forming a thin film on the same plane 1a.

このような方法を選択することにより得られた
酸化シリコン薄膜は、製造皿1との被着強度も大
きく、それ自体の硬さも可成り大となり、また離
型剤として酸化シリコンを用いるのは、シリコン
母材と同系材であるので、シリコンシートとの反
応性が少ないことと、加熱して固化し易いためで
あり、この発明では他のシリコン系材料として窒
化シリコンを用いることができる。
The silicon oxide thin film obtained by selecting such a method has a high adhesion strength to the production plate 1, and its own hardness is also considerably large.Furthermore, using silicon oxide as a mold release agent is This is because silicon nitride is a similar material to the silicon base material, so it has low reactivity with the silicon sheet and is easily solidified by heating. In this invention, silicon nitride can be used as another silicon-based material.

このようにして、製造皿1に離型材被膜層2が
形成された後、同被膜層2の上面に所望拡径状態
とした融液薄層3を形成することとなるが、同薄
層3の形成工程を第3図によつて以下説示する。
After the mold release material coating layer 2 is formed on the manufacturing pan 1 in this way, a thin melt layer 3 with a desired expanded diameter is formed on the upper surface of the coating layer 2. The formation process will be explained below with reference to FIG.

同図の坩堝4にシリコン母材を投入して、これ
を溶融用熱源5により加熱融解し、当該融液を坩
堝4の転動によつて漏斗7へ放流し、こゝで一た
ん漏斗7に受承されて、さらにその流出口7′か
ら、図中点線で示すように当該融液をウエハ形成
平面1aの略中心部に滴下する。
A silicon base material is put into the crucible 4 shown in the figure, heated and melted by the melting heat source 5, and the melt is discharged into the funnel 7 by the rolling movement of the crucible 4. The molten liquid is received by the wafer forming surface 1a, and is then dropped from the outlet 7' onto the approximate center of the wafer forming plane 1a, as shown by the dotted line in the figure.

そしてこの際ターンテーブル機構8は予め回転
させておくのがよいが、同時回転でも、滴下完了
後融液が固化しないうちに回転を開始させてもよ
く、当該回転による遠心力によつて融液は拡径方
向へ流動する。
At this time, it is preferable to rotate the turntable mechanism 8 in advance, but the rotation may be started simultaneously or after the dropping is completed before the melt solidifies, and the centrifugal force caused by the rotation causes the melt to flows in the direction of diameter expansion.

そして、この拡径流動する融液はウエハ形成平
面1aの全面にわたり、この外周縁まで拡径さ
れ、余剰供給の融液は当該外周縁から遠心力によ
り放出され、この結果ウエハ形成平面1aの形状
に見合つた融液薄層3が形成され、これを自然放
冷か適宜の冷却手段によつて固化し、第4図に示
すように、多結晶シリコンウエハが製造皿1のウ
エハ形成平面1aに形成される。
This diameter-expanding flowing melt is expanded over the entire surface of the wafer forming plane 1a to the outer periphery, and the excess supply of melt is discharged from the outer periphery by centrifugal force, resulting in the shape of the wafer forming plane 1a. A thin layer 3 of melt is formed, which is solidified by natural cooling or by an appropriate cooling means, and as shown in FIG. It is formed.

尚、上記シリコン母材の選定にあたり、望まし
くは半導体級高純度シリコンなどを用いるように
し、同母材は、坩堝4の外周側に配置された電気
ヒータ等による溶融用熱源5によつて、当該シリ
コンの溶融温度1420℃を考慮して加熱することに
より、これを溶融し得るようになつており、当該
熱源5としては図示例のように電熱線であると
か、高周波加熱装置によることができ、もちろん
適時当該加熱を停止したり、加熱条件を制御可能
にしておくことが望ましい。
In selecting the above-mentioned silicon base material, it is preferable to use semiconductor-grade high-purity silicon, etc., and the base material is melted by a heat source 5 for melting such as an electric heater placed on the outer periphery of the crucible 4. It is possible to melt silicon by heating it in consideration of the melting temperature of 1420°C, and the heat source 5 can be an electric heating wire as shown in the illustrated example, or a high-frequency heating device. Of course, it is desirable to be able to stop the heating at appropriate times and to be able to control the heating conditions.

また、上記ターンテーブル機構8は、その回転
軸9に固設した回収受皿10に製造皿1を載置
し、同軸9を回転中心として回収受皿10と製造
皿1は同期して回動される。
In addition, the turntable mechanism 8 has the production tray 1 placed on a recovery tray 10 fixed to its rotating shaft 9, and the recovery tray 10 and the production tray 1 are rotated synchronously about the same shaft 9 as the rotation center. .

このようにして製造皿1のウエハ形成平面1a
に所望拡径のシリコンシート3′が形成された後
第5図に示すように外製造皿1よりシリコンシー
ト3′を剥離する。
In this way, the wafer forming plane 1a of the production plate 1
After forming a silicone sheet 3' having a desired enlarged diameter, the silicone sheet 3' is peeled off from the outside production plate 1 as shown in FIG.

この場合、シリコンシート3′の下面には、離
型剤被膜層2の残滓が第5図に示されるように付
着するが同残滓は、弗化水素で除去すればよく、
その後は所要の製品仕上げ加工を施こすことによ
り、第6図に示すごとき多結晶シリコンウエハが
得られる。
In this case, the residue of the release agent coating layer 2 adheres to the lower surface of the silicone sheet 3' as shown in FIG. 5, but the residue can be removed with hydrogen fluoride.
Thereafter, by performing necessary product finishing processes, a polycrystalline silicon wafer as shown in FIG. 6 is obtained.

上記の通り本発明によれば、従来のインゴツト
スライス法やリボン法の難点が解消されるのはも
ちろん、既応キヤステイング法のように鋳型の各
面による制限を受けることなく、製造皿上で固化
され、しかもこの発明によれば、シリコンシート
と製造皿との間に、気化状態としたシリコン系材
料を付着固化した離型剤被膜層が介在することゝ
なるから、シリコン母材融液の滴下によつて離型
剤が飛散して同融液と製造皿とが直接々触する如
き支障を生せず、その結果同融液中に製造皿の成
分が混入することもないので、高品質、高特性の
多結晶シリコンウエハを得ることができ、更には
離型剤被膜層による同ウエハへの悪影響もない。
As described above, according to the present invention, not only the difficulties of the conventional ingot slicing method and the ribbon method can be solved, but also the problems of the conventional ingot slicing method and ribbon method can be solved. Furthermore, according to the present invention, a release agent coating layer in which a vaporized silicone material is adhered and solidified is interposed between the silicone sheet and the production tray. The dropping of the mold release agent will not cause problems such as the mold release agent scattering and direct contact between the melt and the production plate, and as a result, the components of the production plate will not be mixed into the melt. A polycrystalline silicon wafer of high quality and high properties can be obtained, and furthermore, the wafer is not adversely affected by the release agent coating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明に係る製造方法の実施例を示
すものであつて、第1図は製造皿の構成を示す正
面説明図、第2図は同皿のウエハ形成平面に離型
剤被膜層を形成した状態を示す正面説明図、第3
図は多結晶シリコンウエハを製造する設備例を示
す正面斜視図、第4図は同設備によりウエハを製
造皿上に形成した状態を示す正面説明図、第5図
は同ウエハを製造皿から剥離した状態を示す正面
説明図、第6図は、同ウエハの正面説明図であ
る。 1……製造皿、1a……ウエハ形成平面、2…
…離型剤被膜層、3……シリコン母材融液。
The drawings show an embodiment of the manufacturing method according to the present invention, in which FIG. 1 is a front explanatory view showing the structure of a manufacturing pan, and FIG. Front explanatory view showing the formed state, 3rd
The figure is a front perspective view showing an example of equipment for manufacturing polycrystalline silicon wafers, Figure 4 is a front explanatory view showing a state in which a wafer is formed on a manufacturing plate by the same equipment, and Figure 5 is a peeling of the same wafer from the manufacturing plate. FIG. 6 is an explanatory front view of the same wafer. 1... Production plate, 1a... Wafer forming plane, 2...
...Mold release agent coating layer, 3...Silicon base material melt.

Claims (1)

【特許請求の範囲】[Claims] 1 所望雰囲気内にあつて、回転する製造皿上に
おけるシリコン母材の融液を、当該回転による遠
心力によつて、拡径方向へ流動させることによ
り、当該融液による所望径の融液薄層を形成し、
これを固化した後、同薄層を製造皿より剥離する
多結晶シリコンウエハの製造方法において、上記
製造皿の上面には、シリコン系材料を、スパツタ
リング、真空蒸着法或いはCVD法等の被膜形成
手段により付着させて薄膜状の離型剤被膜層を形
成し、同被膜層上に前記融液薄層が形成されるよ
うにしたことを特徴とする多結晶シリコンウエハ
の製造方法。
1. In a desired atmosphere, the melt of the silicon base material on the rotating production plate is made to flow in the diameter-expanding direction by the centrifugal force caused by the rotation, so that the melt has a desired diameter. form a layer,
In a method for manufacturing a polycrystalline silicon wafer in which the thin layer is peeled off from a production plate after solidifying, a silicon-based material is applied to the upper surface of the production plate using a film forming method such as sputtering, vacuum evaporation, or CVD. 1. A method for manufacturing a polycrystalline silicon wafer, characterized in that a thin film-like release agent coating layer is formed by adhering the mold release agent coating layer, and the melt thin layer is formed on the coating layer.
JP58047725A 1983-03-22 1983-03-22 Manufacture of polycrystalline silicon wafer Granted JPS59174514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047725A JPS59174514A (en) 1983-03-22 1983-03-22 Manufacture of polycrystalline silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047725A JPS59174514A (en) 1983-03-22 1983-03-22 Manufacture of polycrystalline silicon wafer

Publications (2)

Publication Number Publication Date
JPS59174514A JPS59174514A (en) 1984-10-03
JPH0314765B2 true JPH0314765B2 (en) 1991-02-27

Family

ID=12783302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047725A Granted JPS59174514A (en) 1983-03-22 1983-03-22 Manufacture of polycrystalline silicon wafer

Country Status (1)

Country Link
JP (1) JPS59174514A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590623A (en) * 1991-09-28 1993-04-09 Nissha Printing Co Ltd Transfer material for solar battery
US5424224A (en) * 1993-01-19 1995-06-13 Texas Instruments Incorporated Method of surface protection of a semiconductor wafer during polishing

Also Published As

Publication number Publication date
JPS59174514A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
JP3656821B2 (en) Polycrystalline silicon sheet manufacturing apparatus and manufacturing method
US4561486A (en) Method for fabricating polycrystalline silicon wafer
JP2001516324A (en) Columnar crystalline granular polycrystalline solar cell substrate and improved manufacturing method
JPH0314765B2 (en)
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPH0142339Y2 (en)
JPH0314767B2 (en)
JPH0314768B2 (en)
TW546848B (en) Method of manufacturing thin sheet and solar battery
JPH038578B2 (en)
JPS58162035A (en) Preparation of polycrystalline silicon wafer
JPS58162029A (en) Preparation of polycrystalline silicon wafer
JPH1112091A (en) Production of spherical single crystal silicon
JPS5899115A (en) Casting method for polycrystalline silicon ingot
JPH0313167B2 (en)
US6497762B1 (en) Method of fabricating crystal thin plate under micro-gravity environment
JPH0314766B2 (en)
JPS58162028A (en) Preparation of polycrystallne silicon wafer
JPH049370B2 (en)
JPH0476926B2 (en)
JP2003267716A (en) Manufacturing device and manufacturing method using the same for polycrystalline semiconductor substrate
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPS5886781A (en) Manufacture of polycrystalline silicon wafer
JPH0118575B2 (en)
JPS6234662A (en) Production of thin metallic si film