JPS62145815A - Photoelectric image transferring apparatus - Google Patents

Photoelectric image transferring apparatus

Info

Publication number
JPS62145815A
JPS62145815A JP60288285A JP28828585A JPS62145815A JP S62145815 A JPS62145815 A JP S62145815A JP 60288285 A JP60288285 A JP 60288285A JP 28828585 A JP28828585 A JP 28828585A JP S62145815 A JPS62145815 A JP S62145815A
Authority
JP
Japan
Prior art keywords
substrate
temperature
semiconductor substrate
mask
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60288285A
Other languages
Japanese (ja)
Other versions
JPH0213457B2 (en
Inventor
Juichi Sakamoto
坂本 樹一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60288285A priority Critical patent/JPS62145815A/en
Publication of JPS62145815A publication Critical patent/JPS62145815A/en
Publication of JPH0213457B2 publication Critical patent/JPH0213457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve the quality of a substrate mask by heat cleaning a semiconductor substrate surface when activating the substrate mask, and measuring the temperature of the substrate from its back surface through an infrared ray transmission window by an infrared sensor at that time to control the temperature. CONSTITUTION:Three infrared sensors S1-S3 are provided, the mean value or weighted mean value of the measured temperatures is detected by a temperature control system 32, thereby controlling the heating amount of a heating light source 31. When the heating temperature of a semiconductor substrate 1 is measured from the back surface of the substrate, it has an advantage that steady and average temperature can be measured without influence of the pattern density of the surface. GaAs of several atom layers is evaporated and scattered simultaneously with an impurity in the heat cleaning step to expose a clean GaAs substrate surface. Thereafter, Cs ion beam 5 is emitted from a Cs source 4 of an ion beam unit 30 in the same subchamber 3 to cover the substrate surface with a new Cs photoelectron active film M. Thus, a substrate mask which has good photoelectron emission efficiency is formed, and when it is transferred in a main chamber 10, the pattern accuracy of a wafer 11 is further improved.

Description

【発明の詳細な説明】 [概要] 金属パターンを設けた半導体基板をマスクとして、その
基板マスクから光電子の像を転写する光電子像転写装置
において、基板マスクを活性化処理する際、半導体基板
面をヒートクリーニングし、その時、半導体基板の温度
を、裏面から赤外線透過窓を通して赤外線センサで測定
して温度制御するように構成する。そうすると、基板マ
スクの品質が向上する。
[Detailed Description of the Invention] [Summary] In a photoelectronic image transfer device that uses a semiconductor substrate provided with a metal pattern as a mask and transfers a photoelectron image from the substrate mask, when the substrate mask is activated, the semiconductor substrate surface is During heat cleaning, the temperature of the semiconductor substrate is measured by an infrared sensor from the back side through an infrared transmitting window to control the temperature. This improves the quality of the substrate mask.

[産業上の利用分野] 本発明は光電子像転写装置、即ち、リソグラフィ技術に
おける、光電子の活性な表面をもったマスクから光電子
像を転写する装置の改善に関する。
FIELD OF INDUSTRIAL APPLICATION This invention relates to improvements in optoelectronic image transfer devices, ie devices for transferring photoelectronic images from masks with photoelectronically active surfaces in lithography technology.

周知のように、rcなどの半導体装置を製造する際、リ
ソグラフィ技術は特に重要なものとなっている。
As is well known, lithography technology has become particularly important when manufacturing semiconductor devices such as RC.

従前より、リソグラフィ技術として紫外線露光法が用い
られ、その後、種々改良されてパターンの微細化に対応
させてきたが、光波長(精々4000人程度)の限界か
らサブミクロン級の微細加工には不適当と判かり、電子
ビーム露光法などが重用されるようになってきた。しか
し、電子ビーム露光法はビームスキャンニングが必要で
、処理に長時間を要して高スループツトが得られない問
題がある。そのため、電子ビーム露光法では可変矩形ビ
ームのような整形ビーム方式が開発されたが、これもパ
ターン形状に制約を受ける欠点がある。
Ultraviolet exposure has long been used as a lithography technique, and since then various improvements have been made to make it compatible with finer patterns, but due to the limitations of the light wavelength (approximately 4,000 at most), it is not suitable for submicron-level microfabrication. As it has been found to be suitable, methods such as electron beam exposure have come to be used frequently. However, the electron beam exposure method requires beam scanning and requires a long processing time, making it difficult to achieve high throughput. For this reason, shaped beam methods such as a variable rectangular beam have been developed in the electron beam exposure method, but these also have the drawback of being restricted by pattern shapes.

他方、X線露光法が開発されているが、これは縮小、結
像が不可能であり、レンズの作成も難しい。
On the other hand, an X-ray exposure method has been developed, but it is impossible to reduce or form an image, and it is also difficult to create lenses.

また、イオンビーム露光法も検討されているが、同様に
レンズの作成が難しい等の難点を有している。
Ion beam exposure methods are also being considered, but they similarly have drawbacks such as difficulty in producing lenses.

従って、量産的な微細加工の露光法は、紫外線露光性以
外は未だ未開発といってよく、現在も鋭意その研究が続
けられている。このような状況下において、発明者らは
Cs膜などを被覆したGaAs基板マスクを用いた等倍
パターン転写の光電子像転写方法を開発した(特願昭5
9−243342号他)。
Therefore, it can be said that the mass-produced microfabrication exposure method has not yet been developed except for ultraviolet exposure, and research is still being carried out. Under these circumstances, the inventors developed a photoelectronic image transfer method for 1-size pattern transfer using a GaAs substrate mask coated with a Cs film etc.
No. 9-243342, etc.).

その方法によれば、紫外線露光法と同様に、パターンを
設けたマスクの一括転写が可能で、量産的で、高スルー
プツトが得られる。しかし、この光電子像転写装置に用
いられる基板マスクは、その光電子の放出量の多い活性
化処理の改善が要望されている。
According to this method, like the ultraviolet exposure method, it is possible to transfer a mask with a pattern all at once, and it is possible to mass-produce and achieve a high throughput. However, there is a demand for improvement in the activation process of the substrate mask used in this photoelectronic image transfer device, which emits a large amount of photoelectrons.

[従来の技術] 第2図は従来の光電子像転写装置の概要断面図を示して
おり、G、iAs基板1上に膜厚500人程度の所望の
Wパターン2を設け、このようなGaAs基板1からな
るマスクを高真空にしたサブチャンバ3(予備処理室)
に収容する。サブチャンバ3にはイオンビーム装置30
が内蔵されており、そのイオンビーム装置によってCs
源(セシウム源)4からアルカリ金属のCsイオンビー
ム5を照射し、数原子層のCs光電子活性膜Mを上記の
GaAs基板1上に形成する。図中の6は引出し電極、
7は静電偏向電極である。
[Prior Art] FIG. 2 shows a schematic cross-sectional view of a conventional photoelectronic image transfer device. Sub-chamber 3 (pre-processing chamber) where the mask consisting of 1 is placed under high vacuum
to be accommodated. An ion beam device 30 is installed in the subchamber 3.
is built-in, and its ion beam device allows Cs
A Cs ion beam 5 of an alkali metal is irradiated from a source (cesium source) 4 to form a Cs photoelectronically active film M of several atomic layers on the GaAs substrate 1 described above. 6 in the figure is an extraction electrode,
7 is an electrostatic deflection electrode.

このように処理したGaAs基板1マスクをメインチャ
ンバ10(主処理室)に移し、Wパターン2およびCs
光電子活性膜を形成したマスク面に対向する位置に被露
光用のウェハー11を配置する。そうして、例えばハロ
ゲンランプ光12を基板面に照射し、基板面から光電子
13を発生させて、その光電子像をウェハー11面に転
写する。本例では、光12を光源14で発生させ、ミラ
ーエ5で反射して基板面に照射する方式である。なお、
光電子を発生させるため、基板側に一80KV程度の電
圧を印加し、その光電子をウェハー11面に精度良く集
束させるために、基板側をN極16.ウェハー側をS極
エフにした一様磁界が加えられる。
The GaAs substrate 1 mask treated in this way is transferred to the main chamber 10 (main processing chamber), and the W pattern 2 and the Cs
A wafer 11 to be exposed is placed at a position facing the mask surface on which the photoelectronically active film is formed. Then, for example, halogen lamp light 12 is irradiated onto the substrate surface, photoelectrons 13 are generated from the substrate surface, and the photoelectron image is transferred onto the wafer 11 surface. In this example, the light 12 is generated by a light source 14, reflected by a mirror 5, and irradiated onto the substrate surface. In addition,
In order to generate photoelectrons, a voltage of about -80 KV is applied to the substrate side, and in order to focus the photoelectrons on the wafer 11 surface with high precision, the substrate side is connected to the N pole 16. A uniform magnetic field is applied with the wafer side as the south pole F.

また、20は転写処理後のウェハーを収容するサブチャ
ンバで、処理したウェハー11が種類別にチャンバ21
.22に収納される。
Further, 20 is a sub-chamber that accommodates wafers after the transfer process, and the processed wafers 11 are stored in the chamber 21 by type.
.. It is stored in 22.

かくして、GaAs基板1上のptパターン2をウェハ
ー11上のレジスト膜(図示せず)に等倍で転写させる
ことができる。即ち、仕事函数の大きいWパターン2か
ら放出する光電子量は少なく、仕事函数の小さい量子効
率の良いGaAs基板1面から放出する光電子量は多い
から、Wパターン像をウェハーのレジスト膜面に等倍で
転写することができ、前記のCs光電子活性膜Mはその
光電子放出量を助成するためのものである。この助成膜
はCs膜に限らず、アルカリ金属やアルカリ土類金属が
用いられる。
In this way, the PT pattern 2 on the GaAs substrate 1 can be transferred to the resist film (not shown) on the wafer 11 at the same size. That is, since the amount of photoelectrons emitted from the W pattern 2 with a large work function is small, and the amount of photoelectrons emitted from one surface of the GaAs substrate with a small work function and high quantum efficiency is large, the W pattern image is printed on the resist film surface of the wafer at the same magnification. The Cs photoelectronically active film M is used to enhance the amount of photoelectron emission. This auxiliary film is not limited to the Cs film, but may also be made of alkali metals or alkaline earth metals.

[発明が解決しようとする問題点] ところが、Cs光電子活性膜を繰り換えし使用している
と、レジスト膜の蒸発や真空中の物質原子がそのCs光
電子活性膜に付着して、光電子の放出量が減少するよう
になる。
[Problems to be Solved by the Invention] However, when the Cs photoelectronically active film is repeatedly used, the resist film evaporates and material atoms in vacuum adhere to the Cs photoelectronically active film, causing photoelectron emission. The amount will start to decrease.

そのため、光電子放出量が減少した時には、再度メイン
チャンバ10よりサブチャンバ3に戻して、活性化処理
をおこなう。その方法は、サブチャンバ3にGaAs基
板1マスクを戻した後、それを650〜680℃の温度
に加熱(第2図は加熱部分は図示せず)して、汚れたC
s膜およびその他の基板面の酸化膜等を蒸発飛散させる
。次に、イオンビーム装置のCs源4からCsイオンビ
ーム5を照射して、表面に再び新たなCs光電子活性膜
を被着させる。
Therefore, when the amount of photoelectron emission decreases, the main chamber 10 is returned to the subchamber 3 again for activation processing. The method is to return the GaAs substrate 1 mask to the subchamber 3, heat it to a temperature of 650 to 680°C (the heated part is not shown in Figure 2), and remove the contaminated carbon.
The S film and other oxide films on the substrate surface are evaporated and scattered. Next, a Cs ion beam 5 is irradiated from the Cs source 4 of the ion beam device to deposit a new Cs photoelectronically active film on the surface again.

この活性化処理は、最初にCs光電子活性膜を被覆する
時も同様で、サブチャンバ3で基板マスクを加熱して基
板面の酸化膜を蒸発飛散させた後、その表面にCs光電
子活性膜を被着させている。
This activation process is the same when first coating the Cs photoelectronically active film. After heating the substrate mask in the subchamber 3 to evaporate and scatter the oxide film on the substrate surface, the Cs photoelectronically active film is applied to the surface. It is covered.

しかし、この基板マスクを加熱して、水や酸化物や汚れ
たCs膜などの不純物を蒸発飛散させる、所謂、ヒート
クリーニング工程においては、温度650〜680℃で
の温度制御が極めて重要になる。
However, in a so-called heat cleaning process in which the substrate mask is heated to evaporate and scatter impurities such as water, oxides, and a dirty Cs film, temperature control at a temperature of 650 to 680° C. is extremely important.

それは、基板加熱が650℃より低い温度ではGaAs
の酸化膜を蒸発飛散させることができず、また、680
℃より高い温度になると^Sが蒸発し始めるため、量子
効率の良い清浄なGaAs基板を表出させるためには、
GaAs基板がGaAs化合物状態で蒸発する温度、即
ち、上記の650〜680℃に基板温度を正しく制御す
ることが必要で、その温度でクリーニングすると、最良
の光電子放出量が得られる。
That is, when the substrate heating temperature is lower than 650℃, GaAs
It is not possible to evaporate and scatter the oxide film of 680
When the temperature is higher than ℃, ^S starts to evaporate, so in order to expose a clean GaAs substrate with good quantum efficiency,
It is necessary to properly control the substrate temperature to the temperature at which the GaAs substrate evaporates in the GaAs compound state, that is, the above-mentioned 650 to 680° C., and cleaning at that temperature provides the best amount of photoelectron emission.

本発明は、このような活性化処理のヒートクリーニング
工程において、基板マスクの加熱温度を上記の温度に正
確に制御できるようにした光電子像転写装置を提案する
ものである。
The present invention proposes a photoelectronic image transfer apparatus in which the heating temperature of the substrate mask can be accurately controlled to the above-mentioned temperature in the heat cleaning step of such activation treatment.

[問題点を解決するための手段] その目的は、半導体基板の活性化処理時に、該半導体基
板の温度を、該半導体基板の裏面から赤外線透過窓を通
して赤外線センサで測定して温度制御できるように構成
した光電子像転写装置によって達成される。
[Means for solving the problem] The purpose is to control the temperature of the semiconductor substrate by measuring it with an infrared sensor from the back side of the semiconductor substrate through an infrared transmission window during activation processing of the semiconductor substrate. This is accomplished by a photoelectronic image transfer device configured.

[作用] 即ち、本発明は、例えば、サブチャンバにおいて、半導
体基板面をヒートクリーニングし、その際、半導体基板
の温度を、基板裏面から赤外線透過窓を通して赤外線セ
ンサで測定して制御する。
[Operation] That is, in the present invention, for example, in a subchamber, a semiconductor substrate surface is heat-cleaned, and at that time, the temperature of the semiconductor substrate is measured and controlled by an infrared sensor from the back surface of the substrate through an infrared transmission window.

そうすれば、最良の光電子放出量を有する半導体基板(
マスク)が得られる。
Then, the semiconductor substrate with the best photoelectron emission amount (
mask) is obtained.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかる光電子像転写装置の概要断面図
を示しており、第2図の光電子像転写装置と同一の部材
には同一記号が付けである。
FIG. 1 shows a schematic sectional view of a photoelectronic image transfer device according to the present invention, and the same members as those in the photoelectronic image transfer device of FIG. 2 are given the same symbols.

サブチャンバ3内およびその近傍における記号31は加
熱光m<例えば赤外線ヒータ)、32は加熱温度制御系
、訃は赤外線透過窓、 Sl、 52. S3はそれぞ
れ赤外線センサを示している。即ち、サブチャンバ3内
において、ヒートクリーニングをおこなうために、その
チャンバに赤外線センサによる測定制御器を付設する。
In the subchamber 3 and its vicinity, symbol 31 is heating light m<for example, an infrared heater), 32 is a heating temperature control system, and symbol 3 is an infrared transmission window, Sl, 52. S3 each indicates an infrared sensor. That is, in order to perform heat cleaning within the subchamber 3, a measurement controller using an infrared sensor is attached to the chamber.

本例は3個の赤外線センサを設けているから、その測定
温度の平均値または加重平均値を温度制御系32で検出
し、それによって加熱光源31の加熱量を制御する。こ
のような温度制御系32は公知の電子回路を用いる。ま
た、赤外線センサSl、 S2゜S3は、例えば、Hg
CdTe赤外線検出素子を用い、赤外線透過窓舖に近接
させる。赤外線透過窓3−は、例えば、ゲルマニウム結
晶板を用い、ゲルマニウム結晶板は赤外線の透過性は良
く、且つ、気密封止して、サブチャンバ3内を高真空に
保持することができる。
Since three infrared sensors are provided in this example, the average value or weighted average value of the measured temperatures is detected by the temperature control system 32, and the heating amount of the heating light source 31 is controlled accordingly. Such a temperature control system 32 uses a known electronic circuit. In addition, the infrared sensors Sl, S2゜S3, for example,
A CdTe infrared detection element is used and placed close to an infrared transmission window. The infrared transmitting window 3- is made of, for example, a germanium crystal plate. The germanium crystal plate has good infrared transmittance, and can be hermetically sealed to maintain a high vacuum inside the subchamber 3.

このように構成して、半導体基板Iの加熱温度を基板裏
面から測定すると、表面のパターン密度に影響されるこ
となく、定常的、且つ、平均的な温度が測定できる利点
がある。かくして、ヒートクリーニング工程によって、
不純物と同時に数原子層のGaAsを蒸発飛散させ、清
浄なGaAs基板面が表出される。
With this configuration, when the heating temperature of the semiconductor substrate I is measured from the back surface of the substrate, there is an advantage that a steady and average temperature can be measured without being influenced by the pattern density on the front surface. Thus, by the heat cleaning process,
Several atomic layers of GaAs are evaporated and scattered at the same time as the impurities, and a clean GaAs substrate surface is exposed.

そうした後、同じサブチャンバ3で、イオンビーム装置
30のCs源4からCsイオンビーム5を照射して、基
板表面に新たなCs光電子活性膜Mを被着する。そうす
れば、光電子放出効率の良い基板マスクが作成され、そ
れによってメインチャンバ10で転写処理すると、ウェ
ハー11のパターン精度は一層良くなる。
After that, in the same subchamber 3, a Cs ion beam 5 is irradiated from the Cs source 4 of the ion beam device 30 to deposit a new Cs photoelectronically active film M on the substrate surface. In this way, a substrate mask with high photoelectron emission efficiency is created, and when the transfer process is performed using the mask in the main chamber 10, the pattern accuracy of the wafer 11 is further improved.

なお、第1図に示すサブチャンバ3の部分は、イオンビ
ーム装W30を側方に設けているが、これは説明の都合
上からで、実際はメインチャンバ10の垂直方向に加熱
光源31とイオンビーム装置30を並列に配置するのが
好ましい。
Note that in the subchamber 3 shown in FIG. Preferably, the devices 30 are arranged in parallel.

[発明の効果] 以上の説明から明らかなように、本発明によれば最良の
光電子放出量をもった基板マスクが作成できて、露光コ
ントラストを向上することができ、その転写パターンが
更に高品質化されるものである。
[Effects of the Invention] As is clear from the above description, according to the present invention, a substrate mask with the best photoelectron emission amount can be created, the exposure contrast can be improved, and the transferred pattern can be of even higher quality. It is something that can be converted into

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる光電子像転写装置の概要断面図
、 第2図は従来の光電子像転写装置の概要断面図である。 図において、 1はGaAs基板、     2はptパターン、Mは
Cs光電子活性膜、 3はサブチャンバ(予備処理室)、 10はメインチャンバ、11はウェハー、12はハロゲ
ンランプ光、13は光電子、14は光源、      
 15はミラー、16、17は磁極、 20は転写処理後のサブチャンバ、 30はイオンビーム装置、 31は加熱光源、    32は加熱温度制御系、鵠は
赤外線透過窓、 31、 S2. S3は赤外線センサ を示している。
FIG. 1 is a schematic sectional view of a photoelectronic image transfer device according to the present invention, and FIG. 2 is a schematic sectional view of a conventional photoelectronic image transfer device. In the figure, 1 is a GaAs substrate, 2 is a PT pattern, M is a Cs photoelectronic active film, 3 is a subchamber (pretreatment chamber), 10 is a main chamber, 11 is a wafer, 12 is a halogen lamp light, 13 is a photoelectronic film, 14 is a light source,
15 is a mirror, 16 and 17 are magnetic poles, 20 is a subchamber after transfer processing, 30 is an ion beam device, 31 is a heating light source, 32 is a heating temperature control system, Mouse is an infrared transmission window, 31, S2. S3 indicates an infrared sensor.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に金属膜パターンを設け、該金属膜パター
ンを含む半導体基板上に、仕事函数を低下させる物質膜
を被覆し、該半導体基板をマスクにして、該半導体基板
面に光を照射し電界および磁界をかけて、該半導体基板
面から放出する光電子を投影し、該光電子の像を転写す
る光電子像転写装置であつて、前記半導体基板の活性化
処理時に、該半導体基板の温度を、該半導体基板の裏面
から赤外線透過窓を通して赤外線センサで測定して温度
制御できるように構成したことを特徴とする光電子像転
写装置。
A metal film pattern is provided on a semiconductor substrate, the semiconductor substrate including the metal film pattern is coated with a material film that lowers the work function, and using the semiconductor substrate as a mask, light is irradiated onto the semiconductor substrate surface to create an electric field. and a photoelectronic image transfer device that projects photoelectrons emitted from the surface of the semiconductor substrate by applying a magnetic field and transfers an image of the photoelectrons, the temperature of the semiconductor substrate being controlled by the temperature during activation processing of the semiconductor substrate. A photoelectronic image transfer device characterized in that the temperature can be controlled by measuring with an infrared sensor through an infrared transmitting window from the back side of a semiconductor substrate.
JP60288285A 1985-12-20 1985-12-20 Photoelectric image transferring apparatus Granted JPS62145815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60288285A JPS62145815A (en) 1985-12-20 1985-12-20 Photoelectric image transferring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60288285A JPS62145815A (en) 1985-12-20 1985-12-20 Photoelectric image transferring apparatus

Publications (2)

Publication Number Publication Date
JPS62145815A true JPS62145815A (en) 1987-06-29
JPH0213457B2 JPH0213457B2 (en) 1990-04-04

Family

ID=17728180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60288285A Granted JPS62145815A (en) 1985-12-20 1985-12-20 Photoelectric image transferring apparatus

Country Status (1)

Country Link
JP (1) JPS62145815A (en)

Also Published As

Publication number Publication date
JPH0213457B2 (en) 1990-04-04

Similar Documents

Publication Publication Date Title
EP0054315A2 (en) Pattern generator
US3873341A (en) Rapid conversion of an iron oxide film
GB1602386A (en) Method of manufacturing semiconductor devices
EP0182665B1 (en) Method of projecting a photoelectron image
JPS62145815A (en) Photoelectric image transferring apparatus
KR910003579B1 (en) Patterned photocathode for optoelectronic transfer and method for manufacturing same
JP3866435B2 (en) Photomask creation method, exposure method, and exposure apparatus
CS209199B1 (en) Apparatus for manufacture of semiconductor structures
US7463336B2 (en) Device manufacturing method and apparatus with applied electric field
JPS62145816A (en) Photoelectric image transferring apparatus
JP2890431B2 (en) Superconducting circuit manufacturing method
US6004726A (en) Method of forming a lithographic pattern utilizing charged beam particles between 0.1 and 5.0 ev
US5778042A (en) Method of soft x-ray imaging
JPH01168024A (en) Photoelectron transfer mask and manufacture thereof
JPS61123135A (en) Photo electron picture transfer method
JPS63155726A (en) Photoelectron transferring and manufacture thereof
JPS60106131A (en) Exposing method by electron beam
JP2900490B2 (en) Method for manufacturing MES field effect transistor
JPS61123134A (en) Photo electron image transfer method
JPS635561A (en) Photoelectron beam transfer
JPS6376332A (en) Manufacture of semiconductor device
JPH04272640A (en) Focused ion beam etching device
JPS6292436A (en) Transferring method for photoelectron image
JPS6151414B2 (en)
JP2001297971A (en) Aligner