JPS60106131A - Exposing method by electron beam - Google Patents

Exposing method by electron beam

Info

Publication number
JPS60106131A
JPS60106131A JP58214715A JP21471583A JPS60106131A JP S60106131 A JPS60106131 A JP S60106131A JP 58214715 A JP58214715 A JP 58214715A JP 21471583 A JP21471583 A JP 21471583A JP S60106131 A JPS60106131 A JP S60106131A
Authority
JP
Japan
Prior art keywords
film
reticle
photoelectron generating
electron beam
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58214715A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
洋 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58214715A priority Critical patent/JPS60106131A/en
Publication of JPS60106131A publication Critical patent/JPS60106131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a change in the amount of exposure and thereby to enable the formation of a pattern of very high accuracy, by etching the surface of a photoelectron generating film with gas plasma prior to an exposure in an electron beam exposure method wherein ultraviolet rays are applied on a photoelectron generating film having a desired pattern and photoelectrons emitted from the photoelectron generating film are reduced, image-formed and projected so as to transfer the photoelectron generating film. CONSTITUTION:In a reticle 3, a platinum film 11 is connected on the whole surface of a substrate 10, and further thereon a photoelectron generating film pattern is formed of a gold film 12. This reticle 3 is put in a sub-chamber 23 provided with an opposite electrode 25 for generating gas plasma, and an argon gas, for instance, is introduced therein to attain a degree of vacuum at several Torr below zero. Then, a power of 13.56MHz and several hundreds of watts is impressed to apply plasma etching onto the surface of the reticle, and thereby impurities on the surface of the gold film are remved. Thereafter a high vacuum is formed in the sub-chamber 23, and then the reticle 3 is transferred into a main chamber 21. According to this method, UV rays are applied on a purified photoelectronic film of the reticle, and a wafer quantity of generated beams.

Description

【発明の詳細な説明】 +a) 発明の技術分野 本発明は光電子像縮小投影式の電子ビーム露光方法に係
り、特に鮮明に描画するための露光方法に関する。
DETAILED DESCRIPTION OF THE INVENTION +a) Technical Field of the Invention The present invention relates to a photoelectron image reduction projection type electron beam exposure method, and particularly to an exposure method for sharply drawing.

lbl 技術の背景 従前より、露光技術には紫外線露光法が用いられていた
が、光波長(精々4000人程度)の限界から微細加工
には不具合と判かり、電子ビーム露光法が重用されるよ
うになってきた。しかし、電子ビーム露光法はビームス
キャンニングが必要で、処理に長時間を要して量産的で
はない。そのため、電子ビーム露光法でも可変矩形ビー
ムのような整形ビーム方式が開発されたが、これもパタ
ーン形状に制約がある。他方、X線露光法が開発されて
いるが、これはレンズが作成できないために縮小。
lbl Technology background Ultraviolet ray exposure has traditionally been used as exposure technology, but it was found to be inconvenient for microfabrication due to the limitations of light wavelength (approximately 4,000 people at most), so electron beam exposure became more important. It has become. However, the electron beam exposure method requires beam scanning, takes a long time to process, and is not suitable for mass production. For this reason, shaped beam methods such as a variable rectangular beam have been developed for electron beam exposure, but these also have restrictions on pattern shape. On the other hand, an X-ray exposure method has been developed, but this method has been reduced because lenses cannot be created.

結像が不可能であり、これが障害である。Imaging is not possible and this is a hindrance.

従って、微細加工が可能な量産的な露光法が未だ未開発
と云ってよく、なお鋭意検削か続けられている。微細加
工で量産的な一つの露光方法として、光電子像投影方式
電子ビーム露光方法が古くから提案されており、第1図
にその概要断面を示す。図の様に、高真空中のコイルN
で形成した強磁界中に、マスク1とウェハー(被露光基
板)2とを対向させて載置し、両者に電界を加えておい
て、マスク裏面から照射した遠紫外光(UV光)によっ
てマスク表面の光電膜(例えば、パラジウムや沃化セシ
ウム)を励起して光電子を発生し、マスク面の等倍率パ
ターンを半導体基板に焼き付ける一括露光方式である。
Therefore, it can be said that a mass-produced exposure method capable of microfabrication has not yet been developed, and intensive machining is still being carried out. A photoelectron image projection type electron beam exposure method has long been proposed as an exposure method for microfabrication and mass production, and a schematic cross section thereof is shown in FIG. As shown in the figure, coil N in high vacuum
A mask 1 and a wafer (substrate to be exposed) 2 are placed facing each other in a strong magnetic field formed by the method, and an electric field is applied to both. This is a batch exposure method in which a photoelectric film (for example, palladium or cesium iodide) on the surface is excited to generate photoelectrons, and a pattern of equal magnification on the mask surface is printed onto a semiconductor substrate.

しかし、本方式は一様な強磁界の作成が困難で、また全
面に等倍率パターンを焼き付ける方法は融通性がなくて
パターン精度に問題がある。更に、UV光をマスク裏面
から照射する方式は光電膜の材質、膜厚などの選択が大
変難しく、そのため従来は殆ど利用されていない。
However, with this method, it is difficult to create a uniform strong magnetic field, and the method of printing a pattern of equal magnification on the entire surface is inflexible and has problems with pattern accuracy. Furthermore, in the method of irradiating UV light from the back side of the mask, it is very difficult to select the material, film thickness, etc. of the photoelectric film, and for this reason, it has rarely been used in the past.

(C) 従来技術と問題点 ところが、本発明者らはこれら問題点を除去させる方式
の光電子像縮小投影方式の電子ビーム露光装置を検討し
、提案した。第2図にその実施例の概要断面図を示して
いる。本方式によれば、高真空中(真空容器は図示せず
)においてマスクの代わりに、縮小率115〜1/10
の曲面状のレチクル3を用い、レチクル3とウェハー2
との間に電極φ1.φ2.φa、φ4を設けて所望の電
界を形成し、電界で放出された光電子が電磁レンズして
結像させて半導体基板2上に縮小パターンとして焼き付
けられる。本方式は、レチクル3とウェハー2との間に
広い間隔を有するため、光電子励起用の光は複数のキセ
ノン水銀ランプ4により反射鏡5′を介して曲面状のレ
チクル3の表面を照射させるものである。
(C) Prior Art and Problems However, the present inventors have studied and proposed an electron beam exposure apparatus using a photoelectronic image reduction projection method that eliminates these problems. FIG. 2 shows a schematic sectional view of this embodiment. According to this method, in place of a mask in a high vacuum (vacuum container not shown), the reduction rate is 115 to 1/10.
Using a curved reticle 3, the reticle 3 and the wafer 2 are
An electrode φ1. φ2. φa and φ4 are provided to form a desired electric field, and photoelectrons emitted by the electric field are imaged by an electromagnetic lens and printed as a reduced pattern on the semiconductor substrate 2. In this method, since there is a wide distance between the reticle 3 and the wafer 2, light for photoelectron excitation is irradiated onto the curved surface of the reticle 3 via a reflecting mirror 5' using a plurality of xenon mercury lamps 4. It is.

このような構造にすると、旧装置の欠点は解消され、縮
小投影方式により微細パターンを精度良(一括露光する
ことができる。しかし、この新方式の露光方法にも未だ
問題点があり、それは、光電子放出膜パターンの膜表面
に光電子発生効率を左右する物質が付着して発生効率が
劣化することである。このような物質は物理的に吸着し
たままの状態が多いが、時には反応して他の物質が生成
されたりする。
With this structure, the shortcomings of the old device are resolved, and the reduced projection method allows fine patterns to be exposed with high accuracy (all at once.However, there are still problems with this new exposure method, which are: Substances that affect the photoelectron generation efficiency adhere to the film surface of the photoelectron emission film pattern, and the generation efficiency deteriorates.Such substances often remain physically adsorbed, but sometimes they react with other substances. substances are produced.

(d) 発明の目的 本発明はこのような光電子発生効率の劣化による露光感
度への悪影響を解消させ、一定した光電子が光電子発生
膜より放出される電子ビーム露光方法を提案するもので
ある。
(d) Object of the Invention The present invention proposes an electron beam exposure method that eliminates the adverse effect on exposure sensitivity due to such deterioration in photoelectron generation efficiency and in which constant photoelectrons are emitted from a photoelectron generation film.

(e) 発明の構成 その目的は、所望のパターンを有する光電子発生膜に紫
外光を照射し、該光電子発生膜から放出する光電子を縮
小結像投影して、該光電子発生膜の転写を行なう電子ビ
ーム露光方法において、前記光電子発生膜の表面をガス
プラズマによってエツチングする工程が含まれる電子ビ
ーム露光方法によって達成される。
(e) Structure of the Invention The object of the invention is to irradiate a photoelectron generating film having a desired pattern with ultraviolet light, and project the photoelectrons emitted from the photoelectron generating film into a reduced image, thereby generating electrons for transferring the photoelectron generating film. This is achieved by an electron beam exposure method that includes a step of etching the surface of the photoelectron generating film with gas plasma.

(f) 発明の実施例 以下1図面を参照して実施例によって詳細に説明する。(f) Examples of the invention An embodiment will be described in detail below with reference to one drawing.

第3図(alは本発明にかかる露光装置に用いられるレ
チクル3の平面図、同図(b)はそのAA断面図□であ
る。レチクル3は図示の様に、基板lO上に白金l11
1を全面被着し、その上に金(Au)膜12からなる光
電子発生膜パターンが形成されている。基板10はガラ
ス、セラミック、金属など何れでもよいが、白金膜11
は水銀灯からのUV光エネルギーを受けて光電子を放出
しない高しきい値のエネルギー、換言すればUV光エネ
ルギー(4,9eV)以上の仕事関数(6,4eV)を
もった材料であり、金膜12は受光して光電子が放出さ
れるようにUV光エネルギー以下の仕事関数(4,7e
ν)をもった材料で、金膜12の表面に水銀灯を照射す
ると、金膜パターンから光電子が放射される。光電膜(
光電子発生膜)としては、金薄膜の他に銀(Ag) 、
シリコン(Si)なども用いられる。
FIG. 3 (Al is a plan view of the reticle 3 used in the exposure apparatus according to the present invention, and FIG.
1 is deposited on the entire surface, and a photoelectron generation film pattern made of a gold (Au) film 12 is formed thereon. The substrate 10 may be made of glass, ceramic, metal, etc., but the platinum film 11
is a material with a high threshold energy that does not emit photoelectrons when receiving UV light energy from a mercury lamp, in other words, it has a work function (6.4 eV) that is higher than the UV light energy (4.9 eV). 12 is a work function (4,7e
When the surface of the gold film 12 is irradiated with a mercury lamp, photoelectrons are emitted from the gold film pattern. Photoelectric film (
In addition to the gold thin film, silver (Ag),
Silicon (Si) is also used.

しかし、このような光電膜も表面に不純物が存在すれば
、仕事関数が変化して大きな仕事関数値になり、光電子
発生効率が低下する。かような不純物は僅かの単原子層
でも影響を及ぼし、これが本露光装置を操作する場合の
重要な問題点となっている。不純物には真空ポンプ油な
どの有機物が多くて、C(炭素)やCH基が表面に付着
するものである。他に酸素、水も吸着し、化学的に極め
て安定な金膜からなる光電膜でも、その表面にはこれら
の単原子層が形成されることになる。
However, if impurities exist on the surface of such a photoelectronic film, the work function changes and becomes a large work function value, resulting in a decrease in photoelectron generation efficiency. Even a small monoatomic layer of such impurities has an effect, and this is an important problem when operating the present exposure apparatus. Many of the impurities are organic substances such as vacuum pump oil, and C (carbon) and CH groups adhere to the surface. Even in the case of a photoelectric film made of a chemically extremely stable gold film that also adsorbs oxygen and water, a monoatomic layer of these substances is formed on its surface.

本発明はこれらの不純物を除去し、清浄な表面にUV光
を受けて露光する方法であり、一実施例の電子ビーム露
光装置概要図を第4図を示している。21は露光処理す
るためのメインチャンバ(主処理室)であり、内部にレ
フクル3と、これに対向してステージ22上に載置され
たウェハー2と、その間に電極φ、電磁コイルLが設け
られている。このメインチャンバ21の側方にサブチャ
ンバ23があり、両者はゲートバルブ24で区分されて
おり、またゲートバルブを開けてレチクル3を移動させ
ることができる。このようなサブチャンバ23は、工程
毎にレチクル3を取り替えなければならないから、レチ
クル3を交換するための予備室として従来より付設され
ることが多いものである。かようにすれば、高真空のメ
インチャンバ21を度々大気に曝すことがなくなり、メ
インチャンバ21内を清浄に保てるからである。
The present invention is a method of removing these impurities and exposing a clean surface to UV light, and FIG. 4 shows a schematic diagram of an electron beam exposure apparatus of one embodiment. Reference numeral 21 denotes a main chamber (main processing chamber) for performing exposure processing, and inside thereof there is a reflector 3, a wafer 2 placed on a stage 22 facing it, and an electrode φ and an electromagnetic coil L provided therebetween. It is being There is a subchamber 23 on the side of this main chamber 21, and both are separated by a gate valve 24, and the reticle 3 can be moved by opening the gate valve. Since the reticle 3 must be replaced for each process, such a subchamber 23 is often provided as a preliminary chamber for replacing the reticle 3. This is because the high-vacuum main chamber 21 is not frequently exposed to the atmosphere, and the inside of the main chamber 21 can be kept clean.

今、このようなサブチャンバ23にガスプラズマ発生用
の対向電極25を設けて、例えばアルゴン(Ar)ガス
を導入してコンマ数Torr以下の真空度にし、ザブチ
ャンバに収容したレチクル3との間ニ13.56MII
Z、数100−の電力を印加して、レチクル表面をプラ
ズマエツチングする。そうすれば、金膜表面の不純物は
除かれて、その後にサブチャンバ23を高真空にし、次
いでメインチャンバ2Iにレチクル3を移動させる。こ
のようにずれば、レチクルの清浄化された光電膜にUV
光を照射し、一定のビーム発生量でウェハーを露光す″
ることができる。尚、プラズマエツチングするためのガ
スとして、アルゴンの他、酸素(02)やCCl4 、
 BBr3などの塩素系ガスを用いても、同じく清浄化
できて、また、不純物の種類によって 。
Now, a counter electrode 25 for gas plasma generation is provided in such a subchamber 23, and for example, argon (Ar) gas is introduced to create a vacuum of less than a tenth of Torr, and a gap between the subchamber 23 and the reticle 3 housed in the subchamber is created. 13.56 MII
The reticle surface is plasma etched by applying a power of several 100-Z. By doing so, impurities on the surface of the gold film are removed, and then the subchamber 23 is made into a high vacuum, and then the reticle 3 is moved to the main chamber 2I. If this shift occurs, UV rays will be exposed to the cleaned photoelectric film of the reticle.
Irradiates the wafer with light and exposes the wafer with a constant amount of beam generation.
can be done. In addition to argon, oxygen (02), CCl4,
Even if a chlorine-based gas such as BBr3 is used, cleaning can be achieved in the same way, depending on the type of impurity.

は、他のガスも用いてもよい。Other gases may also be used.

上記例は本発明にかかる電子ビーム露光方法の一例であ
るが、必ずしもサブチャンバで行なう必要はない。例え
ば、大気に触れさせることなしにメインチャンバに収容
できる様に他の部屋でプラズマエツチングを行なっても
よい。また、メインチャンバに対向電極25を併設し、
メインチャンバで行なうことも可能である。更に、プラ
ズマ化したガスをサブチャンバ23、もしくはメインチ
ャンバ21に引き込んでエツチングする方法を採っても
よい。
Although the above example is an example of the electron beam exposure method according to the present invention, it is not necessarily necessary to perform it in a subchamber. For example, plasma etching may be performed in another room so that it can be accommodated in the main chamber without exposure to the atmosphere. In addition, a counter electrode 25 is installed in the main chamber,
It is also possible to perform this in the main chamber. Furthermore, a method may be adopted in which plasma gas is drawn into the subchamber 23 or the main chamber 21 for etching.

且つ、このようなレチクルのプラズマエツチング処理は
、通常には定期的に行うものであるが、露光量を検知器
でチェックしながら不定期に行なう方法も考えられる。
In addition, although such plasma etching processing for a reticle is normally performed periodically, it is also conceivable to perform the plasma etching process irregularly while checking the exposure amount with a detector.

要するに、本発明の趣旨とするところは露光処理と組み
合わして自在に光電膜をエツチング処理することにある
In short, the purpose of the present invention is to freely perform etching treatment on a photoelectric film in combination with exposure treatment.

(g) 発明の効果 以上の説明から明白なように、本発明によれば、電子ビ
ームによる一括式露光法において、露光量の変動を解消
させ、極めて高精度なパターンの形成に大きく寄与する
ことができる。
(g) Effects of the Invention As is clear from the above explanation, the present invention eliminates fluctuations in the exposure amount in the batch exposure method using an electron beam, and greatly contributes to the formation of extremely high-precision patterns. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は旧型の光電子像投影方式電子ビーム露光方法の
概要図、第2図は本発明に関係ある光電子像縮小投影方
式電子ビーム露光方法の概要図、第3図(a)および(
blはレチクルの平面図および断面図、第4図は本発明
にかかる一実施例の電子ビーム露光装置概要図である。 図中、1はマスク、2はウェハー、3はレチクル、4は
キセノン水銀灯、5は反射&1.10はレチクル基板、
11は白金膜、12は金膜、21はメインチャンバ、2
2はステージ、23はサブチャンバ、24はゲートバル
ブ、25はプラズマエツチングの対向電極を示している
。 第lff1 M 第21関 第3図 第4図 フー
FIG. 1 is a schematic diagram of an old photoelectronic image projection type electron beam exposure method, FIG. 2 is a schematic diagram of a photoelectronic image reduction projection type electron beam exposure method related to the present invention, and FIGS. 3(a) and (
bl is a plan view and a sectional view of a reticle, and FIG. 4 is a schematic diagram of an electron beam exposure apparatus according to an embodiment of the present invention. In the figure, 1 is a mask, 2 is a wafer, 3 is a reticle, 4 is a xenon mercury lamp, 5 is a reflection & 1.10 is a reticle substrate,
11 is a platinum film, 12 is a gold film, 21 is a main chamber, 2
2 is a stage, 23 is a subchamber, 24 is a gate valve, and 25 is a counter electrode for plasma etching. lff1 M 21st Section Figure 3 Figure 4 Fu

Claims (1)

【特許請求の範囲】[Claims] 所望のパターンを有する光電子発生膜に紫外光を照射し
、該光電子発生膜から放出する光電子を縮小結像投影し
て、該光電子発生膜の転写を行なう電子ビーム露光方法
において、前記光電子発生膜の表面をガスプラズマによ
ってエツチングする工程が含まれてなることを特徴とす
る電子ビーム露光方法。
In an electron beam exposure method in which a photoelectron generating film having a desired pattern is irradiated with ultraviolet light and photoelectrons emitted from the photoelectron generating film are reduced and projected, the photoelectron generating film is transferred. An electron beam exposure method comprising a step of etching a surface with gas plasma.
JP58214715A 1983-11-14 1983-11-14 Exposing method by electron beam Pending JPS60106131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214715A JPS60106131A (en) 1983-11-14 1983-11-14 Exposing method by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214715A JPS60106131A (en) 1983-11-14 1983-11-14 Exposing method by electron beam

Publications (1)

Publication Number Publication Date
JPS60106131A true JPS60106131A (en) 1985-06-11

Family

ID=16660416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214715A Pending JPS60106131A (en) 1983-11-14 1983-11-14 Exposing method by electron beam

Country Status (1)

Country Link
JP (1) JPS60106131A (en)

Similar Documents

Publication Publication Date Title
JP4065200B2 (en) In situ lithography mask cleaning
JPS596506B2 (en) Electrophotographic engraving method
KR920005634B1 (en) Photo electron mask and photo cathode image projection method using the same
JPH065664B2 (en) Method and apparatus for manufacturing electronic lithography mask
JP4319642B2 (en) Device manufacturing method
US4789786A (en) Method of projecting photoelectron image
KR910003579B1 (en) Patterned photocathode for optoelectronic transfer and method for manufacturing same
JPS60106131A (en) Exposing method by electron beam
JPH05267125A (en) Improvement in uniformity of x-ray lithographic beam line
US5548625A (en) Method for parallel multiple field processing in X-ray lithography
GB1597595A (en) Manufacture of semiconductor elements
JPS6066429A (en) Photoelectron image reduced projection type electron beam exposure method
JPS6292436A (en) Transferring method for photoelectron image
EP0470784A2 (en) Method for selectively depositing a thin film
JPS63100729A (en) Mask for photoelectron transfer and manufacture thereof
JPH01168024A (en) Photoelectron transfer mask and manufacture thereof
JPH05136038A (en) Electron beam lithographic device
JPS635561A (en) Photoelectron beam transfer
TW202409716A (en) Pellicle for euv lithography
JPH01150139A (en) Mask correction process for device and mask
JPS63156319A (en) Photoelectron transferring mask and manufacture thereof
JPS63155726A (en) Photoelectron transferring and manufacture thereof
JPS61154032A (en) X-ray exposuring method
JPS61216323A (en) Electron image transfer process
JPS62145815A (en) Photoelectric image transferring apparatus