JPS62145816A - Photoelectric image transferring apparatus - Google Patents

Photoelectric image transferring apparatus

Info

Publication number
JPS62145816A
JPS62145816A JP60288286A JP28828685A JPS62145816A JP S62145816 A JPS62145816 A JP S62145816A JP 60288286 A JP60288286 A JP 60288286A JP 28828685 A JP28828685 A JP 28828685A JP S62145816 A JPS62145816 A JP S62145816A
Authority
JP
Japan
Prior art keywords
substrate
gas
semiconductor substrate
subchamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60288286A
Other languages
Japanese (ja)
Inventor
Juichi Sakamoto
坂本 樹一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60288286A priority Critical patent/JPS62145816A/en
Publication of JPS62145816A publication Critical patent/JPS62145816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve the throughput (processing efficiency) of a photoelectric image transferring apparatus by heat cleaning a semiconductor substrate surface when covering with a substance film for assisting photoelectron emitting amount, and then cooling the substrate in inert gas or neutral gas. CONSTITUTION:A GaAs substrate 1 is contained in a subchamber 3, an infrared light is emitted from a heating light source 31 to the substrate to heat the substrate to 650-680 deg.C, thereby evaporating to scatter moisture, GaAs oxide film and contaminated Cs film on the surface. Since the substrate 1 is heated to 650-680 deg.C, helium gas is gradually fed to the subchamber 3 to cool it by the convection of the gas. When it is heated to approx. 200-300 deg.C, the gas is blown to the substrate by regulating the position of a gas input tube 32 to rapidly cool it. When it is cooled to approx. 100 deg.C evacuating is started to high vacuum. The vacuum degree of the subchamber 3 is controlled to several Torr even during these operations so that the gas pressure may not considerably rise.

Description

【発明の詳細な説明】 [概要コ 金属パターンを設けた半導体基板をマスクとして、その
基板マスクから光電子の像を転写する光電子像転写装置
において、光電子の放出量を助成する物質膜を被覆する
際に、半導体基板面をヒートクリーニングし、次いで、
その半導体基板を不活性ガス、あるいは中性ガスの中で
冷却するように構成する。そうして、スループット(処
理効率)の向上を図る。
[Detailed Description of the Invention] [Summary] In a photoelectronic image transfer device that uses a semiconductor substrate provided with a metal pattern as a mask and transfers a photoelectron image from the substrate mask, when coating a material film that enhances the amount of photoelectron emission. First, heat cleaning the semiconductor substrate surface, and then
The semiconductor substrate is configured to be cooled in an inert gas or neutral gas. In this way, throughput (processing efficiency) is improved.

[産業上の利用分野コ 本発明は光電子像転写装置、即ち、リソグラフィ技術に
おける、光電子の活性な表面をもったマスクから光電子
像を転写する装置の改善に関する。
FIELD OF INDUSTRIAL APPLICATION This invention relates to improvements in optoelectronic image transfer devices, ie, devices for transferring photoelectronic images from masks with photoelectronically active surfaces in lithographic technology.

周知のように、ICなどの半導体装置を製造する際、リ
ソグラフィ技術は特に重要なものとなっている。
As is well known, lithography technology has become particularly important when manufacturing semiconductor devices such as ICs.

従前より、リソグラフィ技術として紫外線露光法が用い
られ、その後、種々改良されてパターンの微細化に対応
させてきたが、光波長(精々4000人程度)の限界か
らサブミクロン級の微細加工には不適当と判かり、電子
ビーム露光法などが重用されるようになってきた。しか
し、電子ビーム露光法はビームスキャンニングが必要で
、処理に長時間を要して高スループツトが得られない問
題がある。そのため、電子ビーム露光法では可変矩形ビ
ームのような整形ビーム方式が開発されたが、これもパ
ターン形状に制約を受ける欠点がある。
Ultraviolet exposure has long been used as a lithography technique, and since then various improvements have been made to make it compatible with finer patterns, but due to the limitations of the light wavelength (approximately 4,000 at most), it is not suitable for submicron-level microfabrication. As it has been found to be suitable, methods such as electron beam exposure have come to be used frequently. However, the electron beam exposure method requires beam scanning and requires a long processing time, making it difficult to achieve high throughput. For this reason, shaped beam methods such as a variable rectangular beam have been developed in the electron beam exposure method, but these also have the drawback of being restricted by pattern shapes.

他方、X線露光法が開発されているが、これは縮小、結
像が不可能であり、レンズの作成も離しい。
On the other hand, an X-ray exposure method has been developed, but it is impossible to reduce or form an image, and it is also difficult to create lenses.

また、イオンビーム露光法も検討されているが、同様に
レンズの作成が難しい等の難点を有している。
Ion beam exposure methods are also being considered, but they similarly have drawbacks such as difficulty in producing lenses.

従って、量産的な微細加工の露光法は、紫外線露光性以
外は未だ未開発といってよく、現在も鋭意その研究が続
けられている。このような状況下において、発明者らは
Cs膜などを被覆したGaAs基板マスクを用いた等倍
パターン転写の光電子像転写方法を開発した(特願昭5
9−243342号他)。
Therefore, it can be said that the mass-produced microfabrication exposure method has not yet been developed except for ultraviolet exposure, and research is still being carried out. Under these circumstances, the inventors developed a photoelectronic image transfer method for 1-size pattern transfer using a GaAs substrate mask coated with a Cs film etc.
9-243342, etc.).

その方法によれば、紫外線露光法と同様に、パターンを
設けたマスクの一括転写が可能で、量産的で、高スルー
プツトが得られる。しかし、この光電子像転写装置に用
いられる転写マスクはその活性化に時間がかかつて、そ
の時間短縮が要望されている。
According to this method, like the ultraviolet exposure method, it is possible to transfer a mask with a pattern all at once, and it is possible to mass-produce and achieve a high throughput. However, the transfer mask used in this photoelectronic image transfer device takes time to activate, and there is a desire to shorten the activation time.

[従来の技術] 第2図は従来の光電子像転写装置の概要断面図を示して
おり、GaAs基板1上に膜厚500人程鹿の所望のW
パターン2を設け、このようなGaAs基板1からなる
マスクを高真空にしたサブチャンバ3(予備処理室)に
収容する。サブチャンバ3にはイオンビーム装置30が
内蔵されており、そのイオンビーム装置によってCs源
(セシウム源)4からアルカリ金属のCsイオンビーム
5を照射し、数原子層のCs光電子活性膜Mを上記のG
aAs基板1上に形成する。図中の6は引出し電極、7
は静電偏向電極である。
[Prior Art] FIG. 2 shows a schematic sectional view of a conventional photoelectronic image transfer device, in which a desired W film with a film thickness of about 500 layers is deposited on a GaAs substrate 1.
A pattern 2 is provided, and a mask made of such a GaAs substrate 1 is housed in a subchamber 3 (pretreatment chamber) which is kept in a high vacuum. An ion beam device 30 is built in the subchamber 3, and the ion beam device irradiates an alkali metal Cs ion beam 5 from a Cs source (cesium source) 4 to the Cs photoelectronically active film M of several atomic layers. G of
It is formed on an aAs substrate 1. 6 in the figure is an extraction electrode, 7
is an electrostatic deflection electrode.

このように処理したGaAs基板1マスクをメインチャ
ンバ10(主処理室)に移し、Wパターン2およびCs
光電子活性膜を形成したマスク面に対向する位置に被露
光用のウェハー11を配置する。そうして、例えばハロ
ゲンランプ光12を基板面に照射し、基板面から光電子
13を発生させて、その光電子像をウェハー11面に転
写する。本例では、光12を光源14で発生させ、ミラ
ー15で反射して基板面に照射する方式である。なお、
光電子を発生させるため、基板側に一80KV程度の電
圧を印加し、その光電子をウェハー11面に精度良く集
束させるために、基板側をN極16.ウェハー側をS極
17にした一様磁界が加えられる。
The GaAs substrate 1 mask treated in this way is transferred to the main chamber 10 (main processing chamber), and the W pattern 2 and the Cs
A wafer 11 to be exposed is placed at a position facing the mask surface on which the photoelectronically active film is formed. Then, for example, halogen lamp light 12 is irradiated onto the substrate surface, photoelectrons 13 are generated from the substrate surface, and the photoelectron image is transferred onto the wafer 11 surface. In this example, the light 12 is generated by a light source 14, reflected by a mirror 15, and irradiated onto the substrate surface. In addition,
In order to generate photoelectrons, a voltage of about -80 KV is applied to the substrate side, and in order to focus the photoelectrons on the wafer 11 surface with high precision, the substrate side is connected to the N pole 16. A uniform magnetic field is applied with the S pole 17 on the wafer side.

また、20は転写処理後のウェハーを収容するザブチャ
ンバで、処理したウェハー11が種類別にチャンバ2L
 22に収納される。
Further, 20 is a subchamber for storing wafers after transfer processing, and the processed wafers 11 are separated into chambers 2L by type.
It is stored in 22.

かくして、GaAs基板1上のWパターン2をウェハー
11上のレジスト膜(図示せず)に等倍で転写させるこ
とができる。即ち、仕事函数の大きいptパターン2か
ら放出する光電子量は少なく、仕事函数の小さい量子効
率の良いGaAs基板1面から放出する光電子量は多い
から、Wパターン像をウェハーのレジスト膜面に等倍で
転写することができ、前記のCs光電子活性膜Mはその
光電子放出量を助成するためのものである。この助成膜
はCs膜に限らず、アルカリ金属やアルカリ土類金属が
用いられる。
In this way, the W pattern 2 on the GaAs substrate 1 can be transferred to the resist film (not shown) on the wafer 11 at the same magnification. That is, since the amount of photoelectrons emitted from the PT pattern 2 with a large work function is small, and the amount of photoelectrons emitted from one surface of the GaAs substrate with a small work function and high quantum efficiency is large, the W pattern image is printed on the resist film surface of the wafer at the same magnification. The Cs photoelectronically active film M is used to enhance the amount of photoelectron emission. This auxiliary film is not limited to the Cs film, but may also be made of alkali metals or alkaline earth metals.

[発明が解決しようとする問題点] ところが、Cs光電子活性膜を繰り換えし使用している
と、レジスト膜の蒸発や真空中の物質原子がそのCs光
電子活性膜に付着して、光電子の放出量が減少するよう
になる。
[Problems to be Solved by the Invention] However, when the Cs photoelectronically active film is repeatedly used, the resist film evaporates and material atoms in vacuum adhere to the Cs photoelectronically active film, causing photoelectron emission. The amount will start to decrease.

そのため、光電子放出量が減少した時には、再度メイン
チャンバ10よりサブチャンバ3に戻して、活性化処理
をおこなう。その方法は、サブチャンバ3にGaAs基
板1マスクを戻した後、それを650〜680℃の温度
に加熱(第2図は加熱部分は図示せず)して、汚れたC
s膜およびその他の基板面の酸化膜等を蒸発飛散させる
。次に、イオンビーム装置のCs源4からCsイオンビ
ーム5を照射して、表面に再び新たなCs光電子活性膜
を被着させる。
Therefore, when the amount of photoelectron emission decreases, the main chamber 10 is returned to the subchamber 3 again for activation processing. The method is to return the GaAs substrate 1 mask to the subchamber 3, heat it to a temperature of 650 to 680°C (the heated part is not shown in Figure 2), and remove the contaminated carbon.
The S film and other oxide films on the substrate surface are evaporated and scattered. Next, a Cs ion beam 5 is irradiated from the Cs source 4 of the ion beam device to deposit a new Cs photoelectronically active film on the surface again.

この活性化処理は、最初にCs光電子活性膜を被覆する
時も同様で、サブチャンバ3で基板マスクを加熱して基
板面の酸化膜を蒸発飛散させた後、その表面にCs光電
子活性膜を被着させている。
This activation process is the same when first coating the Cs photoelectronically active film. After heating the substrate mask in the subchamber 3 to evaporate and scatter the oxide film on the substrate surface, the Cs photoelectronically active film is applied to the surface. It is covered.

しかし、上記の温度650〜680℃に加熱して、不純
物を蒸発飛散させる、所謂、ヒートクリーニング方法は
極めて処理時間が長くかかつて、スループットを低下さ
せる欠点がある。それは、加熱温度650〜680℃に
昇温すると、チャンバの中は1O−6Torr以上の高
真空であるから熱の逸散が難しく、常温に冷却するまで
に相当の時間、例えば約2時間を要している。一方、マ
スクとするGaAs基板1は常温まで冷却させなければ
、その基板の熱膨張の影響によって、寸法エラーのある
微細パターンが転写されることになる。例えば、GaA
s基板は1℃の温度変化で0.06μm/10mmの誤
差が生じる。従って、常温まで冷却する必要があり、そ
うすれば、高スループツトが得られないと云うことにな
る。
However, the so-called heat cleaning method, in which impurities are evaporated and scattered by heating to a temperature of 650 to 680 DEG C., has the drawback that the processing time is extremely long and the throughput is reduced. This is because when the heating temperature is raised to 650-680°C, the inside of the chamber is in a high vacuum of 10-6 Torr or more, so it is difficult to dissipate the heat, and it takes a considerable amount of time, for example, about 2 hours, to cool down to room temperature. are doing. On the other hand, if the GaAs substrate 1 used as a mask is not cooled to room temperature, a fine pattern with dimensional errors will be transferred due to the influence of thermal expansion of the substrate. For example, GaA
For the s-substrate, a temperature change of 1° C. causes an error of 0.06 μm/10 mm. Therefore, it is necessary to cool it to room temperature, which means that high throughput cannot be obtained.

本発明は、このようなスルーブツトを低下させる問題点
を解消させた光電子像転写装置を提案するものである。
The present invention proposes a photoelectronic image transfer device that solves the problem of lowering throughput.

[問題点を解決するための手段] その目的は、活性化処理において、半導体基板を加熱し
て、表面の不純物を蒸発飛散させ、次いで、該半導体基
板を不活性ガス中あるいは中性ガス中で冷却するために
、該不活性ガスあるいは中性ガスの導入構造を設けた光
電子像転写装置によって達成される。
[Means for solving the problem] The purpose is to heat the semiconductor substrate in the activation process to evaporate and scatter impurities on the surface, and then heat the semiconductor substrate in an inert gas or neutral gas. This is achieved by a photoelectronic image transfer device provided with an inert gas or neutral gas introduction structure for cooling.

[作用] 即ち、本発明は、サブチャンバにおいて、半導体基板面
をヒートクリーニングし、次いで、その半導体基板を不
活性ガス、あるいは中性ガスの中で冷却するように構成
する。
[Function] That is, the present invention is configured to heat-clean the surface of a semiconductor substrate in a subchamber, and then cool the semiconductor substrate in an inert gas or neutral gas.

そうすれば、活性化処理後の冷却時間が短縮されて、ス
ループットを向上させることができる。
By doing so, the cooling time after the activation process can be shortened, and throughput can be improved.

[実施例コ 以下、図面を参照して実施例によって詳細に説明する。[Example code] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかる光電子像転写装置の概要断面図
を示しており、第2図の光電子像転写装置と同一の部材
には同一記号が付けである。
FIG. 1 shows a schematic sectional view of a photoelectronic image transfer device according to the present invention, and the same members as those in the photoelectronic image transfer device of FIG. 2 are given the same symbols.

サブチャンバ3内における記号31は加熱光源(例えば
赤外線ヒータ)、32はガス導入管を示している。即ち
、本発明にかかる装置では、位置制御の可能なガス導入
管32を付設して(加熱光源31は従来より設けられて
いる)、そのガス導入管32よリヘリウム、ネオン、ア
ルゴンなどの不活性ガス、または、窒素のような中性ガ
スを導入するように構成する。
In the subchamber 3, a symbol 31 indicates a heating light source (for example, an infrared heater), and a symbol 32 indicates a gas introduction pipe. That is, in the apparatus according to the present invention, a gas introduction pipe 32 whose position can be controlled is attached (the heating light source 31 is conventionally provided), and an inert gas such as lithium, neon, argon, etc. is attached to the gas introduction pipe 32. or a neutral gas such as nitrogen.

その操作例を説明すると、GaAs基板1上に最初にC
s11Mを被覆する時、あるいは、GaAs基板1から
光電子放出量が減少した時には、サブチャンバ3にGa
As基板1を収容し、加熱光源31より赤外光を基板に
照射して、基板を650〜680℃の温度に加熱し、表
面の水分やGaAs酸化膜および汚れたCs膜等を蒸発
飛散させる。
To explain an example of the operation, first C is placed on the GaAs substrate 1.
When coating s11M or when the amount of photoelectron emission from the GaAs substrate 1 decreases, Ga is added to the subchamber 3.
An As substrate 1 is housed, and the heating light source 31 irradiates the substrate with infrared light to heat the substrate to a temperature of 650 to 680° C., and evaporates and scatters moisture, GaAs oxide film, dirty Cs film, etc. on the surface. .

そうすると、GaAs基板1は650〜680℃に加熱
されているから、サブチャンバ3にヘリウムガスを徐々
に流入させて、ガスの対流を利用して冷却させる。徐々
にガスを流入させるのは、急に冷却させて基板に歪を与
えないようにするためである。
Then, since the GaAs substrate 1 is heated to 650 to 680[deg.] C., helium gas is gradually introduced into the subchamber 3 to cool it using gas convection. The reason why the gas is gradually introduced is to prevent sudden cooling and distortion of the substrate.

かくして、200〜300℃程度に冷却すると、ガス導
入管32の位置を調整して、基板面にガスが吹きかかよ
うにして、速く冷却させる。そして、約100℃になっ
たならば、高真空に吸引を開始する。
When the substrate is cooled to about 200 to 300° C., the position of the gas introduction pipe 32 is adjusted so that gas is blown onto the substrate surface, thereby cooling the substrate quickly. Then, when the temperature reaches about 100°C, suction to a high vacuum is started.

これらの操作中でも、サブチャンバ3の真空度は数To
rr程度に制御して、ガス圧を余り高くしないように図
る。導入ガスによる熱対流(放熱)は約0.2〜0.3
 Torrで起こるから、その限度近傍の真空度で冷却
させるわけである。
Even during these operations, the degree of vacuum in the subchamber 3 remains at several To
The gas pressure is controlled to about rr so that the gas pressure does not become too high. Thermal convection (heat radiation) due to the introduced gas is approximately 0.2 to 0.3
Since this occurs at Torr, cooling is performed at a degree of vacuum close to that limit.

上記は、冷却操作の一例であるが、このようにガスを導
入すると、30分程度で冷却させることができる。なお
、上記したように、ガス導入管32は可動し、且つ、位
置制御できる構成にすることが望ましい。
The above is an example of a cooling operation, and when gas is introduced in this way, cooling can be achieved in about 30 minutes. Note that, as described above, it is desirable that the gas introduction pipe 32 be configured to be movable and whose position can be controlled.

そうした後、イオンビーム装置30のCs源4からCs
イオンビーム5を照射して、表面に新たなCs光電子活
性膜Mを被着させる。かくすれば、基板の活性化処理を
速くすることができて、スループットが向上する。
After that, Cs is supplied from the Cs source 4 of the ion beam device 30.
Ion beam 5 is irradiated to deposit a new Cs photoelectronically active film M on the surface. This makes it possible to speed up the substrate activation process and improve throughput.

なお、第1図に示すサブチャンバ3の部分は、イオンビ
ーム装置30を側方に設けであるが、これは説明の都合
上からのもので、実際はメインチャンバ10の垂直方向
に加熱光源31とイオンビーム装置30を並列に配置す
るのが好ましい。
Note that in the subchamber 3 shown in FIG. 1, the ion beam device 30 is provided on the side, but this is for convenience of explanation; in reality, the heating light source 31 and the heating light source 31 are provided in the vertical direction of the main chamber 10. Preferably, the ion beam devices 30 are arranged in parallel.

[発明の効果コ 以上の説明から明らかなように、本発明によれば基板マ
スクの活性化処理を短縮することができて、高スルーブ
ツトが得られるものである。
[Effects of the Invention] As is clear from the above description, according to the present invention, the activation process of the substrate mask can be shortened and a high throughput can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる光電子像転写装置の概要断面図
、 第2図は従来の光電子像転写装置の概要断面図である。 図において、 1はGaAs基板、     2はptパターン、Mは
Cs光電子活性膜、  ・ 3はサブチャンバ(予備処理室)、 10はメインチャンバ、 1工はウェハー、12はハロ
ゲンランプ光、13は光電子、14は光源、     
  15はミラー、16、17は磁極、 20は転写処理後のサブチャンバ、 30はイオンビーム装置、
FIG. 1 is a schematic sectional view of a photoelectronic image transfer device according to the present invention, and FIG. 2 is a schematic sectional view of a conventional photoelectronic image transfer device. In the figure, 1 is a GaAs substrate, 2 is a PT pattern, M is a Cs photoelectronic active film, 3 is a subchamber (pretreatment chamber), 10 is a main chamber, 1 is a wafer, 12 is a halogen lamp light, 13 is a photoelectronic , 14 is a light source,
15 is a mirror, 16 and 17 are magnetic poles, 20 is a subchamber after transfer processing, 30 is an ion beam device,

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に金属膜パターンを設け、該金属膜パター
ンを含む半導体基板上に、仕事函数を低下させる物質膜
を被覆し、該半導体基板をマスクにして、該半導体基板
面に光を照射し電界および磁界をかけて、該半導体基板
面から放出する光電子を投影し、該光電子の像を転写す
る光電子像転写装置であつて、該半導体基板の活性化処
理において、前記半導体基板面を加熱して、表面の不純
物を蒸発飛散させ、次いで、該半導体基板を不活性ガス
中あるいは中性ガス中で冷却するために、該不活性ガス
あるいは中性ガスの導入構造を具備せしめたことを特徴
とする光電子像転写装置。
A metal film pattern is provided on a semiconductor substrate, the semiconductor substrate including the metal film pattern is coated with a material film that lowers the work function, and using the semiconductor substrate as a mask, light is irradiated onto the semiconductor substrate surface to create an electric field. and a photoelectronic image transfer device that projects photoelectrons emitted from the semiconductor substrate surface by applying a magnetic field and transfers an image of the photoelectrons, the semiconductor substrate surface being heated in the activation process of the semiconductor substrate. In order to evaporate impurities on the surface and then cool the semiconductor substrate in an inert gas or a neutral gas, an inert gas or neutral gas introduction structure is provided. Photoelectronic image transfer device.
JP60288286A 1985-12-20 1985-12-20 Photoelectric image transferring apparatus Pending JPS62145816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60288286A JPS62145816A (en) 1985-12-20 1985-12-20 Photoelectric image transferring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60288286A JPS62145816A (en) 1985-12-20 1985-12-20 Photoelectric image transferring apparatus

Publications (1)

Publication Number Publication Date
JPS62145816A true JPS62145816A (en) 1987-06-29

Family

ID=17728192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60288286A Pending JPS62145816A (en) 1985-12-20 1985-12-20 Photoelectric image transferring apparatus

Country Status (1)

Country Link
JP (1) JPS62145816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246718A (en) * 1988-08-09 1990-02-16 Toshiba Corp Cleaning device for charged particle beam device
US8850715B2 (en) * 2006-09-07 2014-10-07 Eisenmann Ag Process and installation for drying articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246718A (en) * 1988-08-09 1990-02-16 Toshiba Corp Cleaning device for charged particle beam device
US8850715B2 (en) * 2006-09-07 2014-10-07 Eisenmann Ag Process and installation for drying articles

Similar Documents

Publication Publication Date Title
US7144680B2 (en) Electron beam lithography method using new material
US8221595B2 (en) Lift-off patterning processes employing energetically-stimulated local removal of solid-condensed-gas layers
JPH065664B2 (en) Method and apparatus for manufacturing electronic lithography mask
JPS62145816A (en) Photoelectric image transferring apparatus
US7867403B2 (en) Temperature control method for photolithographic substrate
JPH07254539A (en) Electron beam exposure device
CS209199B1 (en) Apparatus for manufacture of semiconductor structures
WO1989007285A1 (en) Integrated circuit micro-fabrication using dry lithographic processes
JPS61123135A (en) Photo electron picture transfer method
JP3412780B2 (en) Circuit pattern manufacturing equipment
JP2681118B2 (en) Method for forming fine pattern of semiconductor
JP2890946B2 (en) Processing method using in-situ formed mask
US6004726A (en) Method of forming a lithographic pattern utilizing charged beam particles between 0.1 and 5.0 ev
RU2183040C1 (en) Electron-beam projection lithographer
Watts Advanced lithography
JP2985321B2 (en) Mask pattern forming method
JPS5884429A (en) Pattern formation
JPH02177430A (en) Method of processing compound semiconductor
JPS63155726A (en) Photoelectron transferring and manufacture thereof
JPH06232041A (en) Formation of pattern
JPS6292436A (en) Transferring method for photoelectron image
JPS61123134A (en) Photo electron image transfer method
JP2002170511A (en) Manufacturing method of electron beam device, electron beam exposure device and semiconductor device
JPS62145815A (en) Photoelectric image transferring apparatus
JPS6292444A (en) Transferring method for photoelectron image