JPS62144211A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS62144211A
JPS62144211A JP28611785A JP28611785A JPS62144211A JP S62144211 A JPS62144211 A JP S62144211A JP 28611785 A JP28611785 A JP 28611785A JP 28611785 A JP28611785 A JP 28611785A JP S62144211 A JPS62144211 A JP S62144211A
Authority
JP
Japan
Prior art keywords
temperature
target temperature
detected
subject
controlled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28611785A
Other languages
Japanese (ja)
Other versions
JP2516912B2 (en
Inventor
Yoshiki Nishino
西野 芳樹
Katsuyuki Fujito
藤戸 克行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60286117A priority Critical patent/JP2516912B2/en
Publication of JPS62144211A publication Critical patent/JPS62144211A/en
Application granted granted Critical
Publication of JP2516912B2 publication Critical patent/JP2516912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the difference between the temperature to be controlled and the target temperature by providing a mechanism part to secure the thermal connection between a temperature sensor which detect the temperature of a control subject and the open air. CONSTITUTION:A control subject 11 is fixed to a cooling plate 12 and a contact is secured between the plate 12 and one side of a Peltier element 13. While a radiating fin 14 has a contact with the other side of the element 13. The element 13 is energized to heat and cool the subject 11. The subject 11 is shielded from heat by a heat insulator 15. Then the temperature of the subject 11 is detected by a temperature sensor 16 through the plate 12. At the same time, a heat connection part 17 is provided to the insulator 15 to secure the thermal connection between the open air and the sensor 16. Thus the detected temperature signal is supplied to a comparator 19 together with the setting signal given from a setting circuit 18. Then a current is supplied to the element 13 via a drive circuit 20 with the signal which is proportional to the difference between said temperature signal and setting signal. As a result, the coincidence is obtained between the genuine subject temperature and the target temperature by controlling the degree of connection at the part 17.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は外気温が変化した場合でも対象の温度を高精度
で制御することができる温度制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a temperature control device that can control the temperature of an object with high precision even when the outside temperature changes.

従来の技術 従来技術を第6図に示す。従来は温度制御を施す制御対
象1を容器2と放熱フィン3で密閉し、その内部を真空
にすることで制御対象1への外気温の影響を取り除いて
いる。制御対象1は冷却板4に固定され、冷却板4に取
付けられた温度センサ5により制御対象1の温度が検出
される。温度セ/す5からの温度に対応する温度信号と
設定回路6からの設定信号は比較回路7で比較され、そ
れらの差に対応する信号を出力する。駆動回路8は比較
回路7からの信号に比例した電流□を出力し、ペルチエ
素子9は駆動回路8からの電流により、冷却板4および
制御対象1を加熱あるいは冷却して、制御対象1の温度
を設定回路6からの設定信号に対応する温度にする。ペ
ルチエ素子9は二つの面をもち、電流を流すことで一方
の面から他方の面へ熱が運ばれ、その結果、一方の面は
冷却され他方の面は加熱される。例えば、制御対象1を
冷却する場合、ペルチエ素子9の放熱フィン3側の面は
加熱されるが、放熱フィン3を取付けることで高温にな
るのを防いでいる。
Prior Art The prior art is shown in FIG. Conventionally, a controlled object 1 whose temperature is to be controlled is sealed with a container 2 and a radiation fin 3, and the inside thereof is evacuated to remove the influence of outside temperature on the controlled object 1. The controlled object 1 is fixed to a cooling plate 4, and the temperature of the controlled object 1 is detected by a temperature sensor 5 attached to the cooling plate 4. A temperature signal corresponding to the temperature from the temperature sensor 5 and a setting signal from the setting circuit 6 are compared in a comparator circuit 7, and a signal corresponding to the difference between them is output. The drive circuit 8 outputs a current □ proportional to the signal from the comparison circuit 7, and the Peltier element 9 uses the current from the drive circuit 8 to heat or cool the cooling plate 4 and the controlled object 1, thereby adjusting the temperature of the controlled object 1. is set to a temperature corresponding to the setting signal from the setting circuit 6. The Peltier element 9 has two surfaces, and heat is carried from one surface to the other surface by passing an electric current, and as a result, one surface is cooled and the other surface is heated. For example, when cooling the controlled object 1, the surface of the Peltier element 9 on the radiation fin 3 side is heated, but by attaching the radiation fin 3, it is prevented from becoming high temperature.

以上のように従来技術では制御対象1の周囲を御するこ
とで、制御対象1の温度を目標値に設定している(山ロ
他:ペルチェ素子を用いた半導体レーザの温度制御装置
1分光研究 第32巻 第6号P328 (1983)
 )。
As described above, in the conventional technology, the temperature of the controlled object 1 is set to the target value by controlling the surroundings of the controlled object 1 (Yamaro et al.: 1 Spectroscopic study of a semiconductor laser temperature control device using a Peltier element. Volume 32, Issue 6, P328 (1983)
).

発明が解決しようとする問題点 従来の技術では温度センナからの制御対象の温度に対応
する温度信号と設定回路からの設定信号の差に比例した
電流をペルチエ素子に流し、制御対象の温度を比例制御
している。比例制御であるため、制御対象の温度と設定
回路で決まる設定温度の間には必ず誤差が生じ、この誤
差は外気温と設定温度の差が大きくなれば、それだけ増
大する。
Problems to be Solved by the Invention In the conventional technology, a current proportional to the difference between the temperature signal corresponding to the temperature of the controlled object from the temperature sensor and the setting signal from the setting circuit is passed through the Peltier element, and the temperature of the controlled object is proportionally changed. It's in control. Since proportional control is used, there is always an error between the temperature of the controlled object and the set temperature determined by the setting circuit, and this error increases as the difference between the outside temperature and the set temperature increases.

従って、従来の装置では、外気温が変化した場合、制御
対象の温度が設定温度からずれてしまい一定に保つこと
ができない。ただ、比例制御の比率を大きくすれば、そ
れだけ前記の誤差を小さくすることがで創るが、同時に
制御が不安定になるため、比率を大きくして、誤差を小
さくする方法には限界がある。
Therefore, in conventional devices, when the outside temperature changes, the temperature of the controlled object deviates from the set temperature and cannot be kept constant. However, if the ratio of proportional control is increased, the above-mentioned error can be made smaller, but at the same time, the control becomes unstable, so there is a limit to the method of reducing the error by increasing the ratio.

問題点を解決するための手段 本発明は、前記のような従来技術の問題点を解決するた
めに、制御対象の温度を検出する温度センサと、目標温
度を決める設定器と、温度センサからの制御対象の温度
に対応する温度信号と設定器からの目標温度に対応する
設定信号の差に比例しだ電流を出力する制御器と、制御
器からの電流により制御対象を加熱あるいは冷却するペ
ルチエ素子と、温度セスサと外気とを熱的に結合させる
機構部とを備えている。
Means for Solving the Problems In order to solve the problems of the prior art as described above, the present invention provides a temperature sensor for detecting the temperature of a controlled object, a setting device for determining the target temperature, and a temperature sensor for determining the target temperature. A controller that outputs a current proportional to the difference between a temperature signal corresponding to the temperature of the controlled object and a set signal corresponding to the target temperature from the setting device, and a Peltier element that heats or cools the controlled object using the current from the controller. and a mechanism section that thermally couples the temperature sensor and the outside air.

作  用 従来技術では設定器で決まる温度(目標温度)と温度セ
ンサで検出される制御対象の温度(対象温度)とが比較
され、その差に比例した電流をペルチエ素子に流して、
比例制御を行なっている。
Operation In the conventional technology, the temperature determined by the setting device (target temperature) and the temperature of the controlled object detected by the temperature sensor (target temperature) are compared, and a current proportional to the difference is caused to flow through the Peltier element.
Performs proportional control.

比例制御であるため、対象温度と目標温度とは一致せず
、対象温度は目標温度から外気温側にずれる。本発明で
は、温度センナと外気とを熱的に結合させているため、
温度センサで検出される温度(検出温度)と制御対象の
温度(真の対象温度)との間に差が生じ、検出温度は真
の対象温度から外気温側にずれる。そして、検出温度と
目標温度が比較され、前記従来技術と同様に比例制御が
行なわれるが、検出温度は目標温度から外気温側にずれ
る。
Since it is proportional control, the target temperature does not match the target temperature, and the target temperature deviates from the target temperature toward the outside temperature. In the present invention, since the temperature sensor and the outside air are thermally coupled,
A difference occurs between the temperature detected by the temperature sensor (detected temperature) and the temperature of the controlled object (true target temperature), and the detected temperature deviates from the true target temperature toward the outside temperature. Then, the detected temperature and the target temperature are compared, and proportional control is performed as in the prior art, but the detected temperature deviates from the target temperature toward the outside temperature.

真の対象温度と検出温度の差は温度センサと外気との熱
的な結合の程度(熱結合度)で変化し、また目標温度と
検出温度の差は比例制御の比率で変化するので、熱結合
度と比例制御の比率を適当に調整すれば、真の対象温度
を目標温度に一致させることができる。
The difference between the true target temperature and the detected temperature changes depending on the degree of thermal coupling between the temperature sensor and the outside air (degree of thermal coupling), and the difference between the target temperature and the detected temperature changes depending on the ratio of proportional control. By appropriately adjusting the degree of coupling and the ratio of proportional control, the true target temperature can be made to match the target temperature.

実施例 従来技術のように制御対象の温度(対象温度)を比例制
御により目標温度に設定しようとした場合、対象温度と
目標温度の間には誤差が生じ、外気温と目標温度との差
が大きくなれば、それだけ誤差も大きくなる(第5図)
。この誤差を小さくするには比例制御の比率を大きくす
ればよいが、大きくしすぎると制御が不安定になるため
、誤差を小さくすることには限界がある。
Example When trying to set the temperature of a controlled object (target temperature) to the target temperature by proportional control as in the conventional technology, an error occurs between the target temperature and the target temperature, and the difference between the outside temperature and the target temperature The larger the value, the larger the error (Figure 5)
. This error can be reduced by increasing the proportional control ratio, but if it is too large, the control becomes unstable, so there is a limit to how much the error can be reduced.

このような比例制御で生じる誤差を取り除くには、比例
・積分制御や比例・積分・微分制御を用いればよいが、
本発明では、比例制御を用いながら、誤差を小さくする
ことが可能である。
To remove errors caused by such proportional control, proportional/integral control or proportional/integral/derivative control can be used.
In the present invention, it is possible to reduce errors while using proportional control.

本発明の一実施例を第1図に示す。制御対象11は、冷
却板12に固定され、冷却板12はペルチエ素子13の
一方の面に接触し、ペルチエ素子13の他方の面には放
熱フィン14が接触している。
An embodiment of the present invention is shown in FIG. The controlled object 11 is fixed to a cooling plate 12 , the cooling plate 12 is in contact with one surface of a Peltier element 13 , and the radiation fin 14 is in contact with the other surface of the Peltier element 13 .

こうしてペルチエ素子13に電流を流すことで、冷却板
12を通して制御対象11を加熱あるいは冷却すること
ができる。断熱材16は制御対象11等へ、外部から熱
が流入したり、外部へ熱が流出したりするのを防止して
、ペルチエ素子13による加熱あるいは冷却の効率を上
げるだめのものである。制御対象11の温度は冷却板1
2を通して、温度センサ16で検出される。断熱材15
には熱結合部17を設け、外気と温度センサ16を熱的
に結合している。温度センサ16で検出された温度(検
出温度)に対応する温度信号は、制御対象11の設定し
だい温度(目標温度)を決めるだめの設定回路18から
の設定信号とともに、比較回路19に入力され、温度信
号と設定信号の差に比例した信号を出力する。駆動回路
20は、比例回路19からの信号に比例しだ電流をペル
チェ素子13に供給する。
By passing current through the Peltier element 13 in this manner, the controlled object 11 can be heated or cooled through the cooling plate 12. The heat insulating material 16 is used to prevent heat from flowing into or out of the controlled object 11 and the like, thereby increasing the efficiency of heating or cooling by the Peltier element 13. The temperature of the controlled object 11 is determined by the cooling plate 1.
2 and is detected by the temperature sensor 16. Insulation material 15
A thermal coupling portion 17 is provided to thermally couple the outside air and the temperature sensor 16. A temperature signal corresponding to the temperature detected by the temperature sensor 16 (detected temperature) is input to the comparison circuit 19 together with a setting signal from the setting circuit 18 which determines the temperature (target temperature) as soon as the temperature of the controlled object 11 is set. Outputs a signal proportional to the difference between the temperature signal and the setting signal. The drive circuit 20 supplies a current proportional to the signal from the proportional circuit 19 to the Peltier element 13 .

こうして、温度センサ16で検出される検出温度が、設
定回路18で決まる目標温度と一致するように制御され
る。
In this way, the temperature detected by the temperature sensor 16 is controlled to match the target temperature determined by the setting circuit 18.

ところが比例制御を行なっているため、従来技術と同様
に、検出温度と目標温度とは一致せず、検出温度は目標
温度から外気温側にずれる。
However, since proportional control is performed, the detected temperature and the target temperature do not match, and the detected temperature deviates from the target temperature toward the outside temperature side, as in the prior art.

ところで、本発明では温度センサ16と外気とを熱結合
部17を通して熱的に結合させているため、温度センサ
16による検出温度と制御対象11の温度(真の対象温
度)とは異なり、真の対象温度は、検出温度から外気温
とは逆の温度にずれム熱結合部17の熱結合度(外部か
ら温度センサに流入される熱量、あるいは温度センサか
ら外部へ流出させる熱量の程度)が非常に小さい場合、
従来技術に相当して、温度センサ16による検出温度と
真の対象温度は等しいため、真の対象温度を目標温度と
一致させようとして、比例制御の比率を大きくすれば、
動作が不安定になる。
By the way, in the present invention, since the temperature sensor 16 and the outside air are thermally coupled through the thermal coupling part 17, the temperature detected by the temperature sensor 16 and the temperature of the controlled object 11 (true object temperature) are different from each other. The target temperature deviates from the detected temperature to a temperature opposite to the outside air temperature, and the degree of thermal coupling of the thermal coupling part 17 (the amount of heat flowing into the temperature sensor from the outside or the amount of heat flowing out from the temperature sensor to the outside) is extremely high. If it is small,
Corresponding to the prior art, since the temperature detected by the temperature sensor 16 and the true target temperature are equal, if the proportional control ratio is increased in an attempt to match the true target temperature with the target temperature,
Operation becomes unstable.

熱結合度を大きくしていけば、前記のように真の対象温
度が検出温度から外気温とは逆の温度にずれる。このず
れは熱結合度で決まる。ところで比例制御は検出温度に
対して行なわれるので、検出温度の目標温度からのずれ
は、外気温や比例制御の比率に関係し、熱結合度には依
存しない。従って、比例制御の比率を調整して、検出温
度を目標温度に近づけると同時に、熱結合度を調整すれ
ば、真の対象温度と目標温度を一致させることができる
As the degree of thermal coupling increases, the true target temperature shifts from the detected temperature to a temperature opposite to the outside air temperature, as described above. This deviation is determined by the degree of thermal coupling. Incidentally, since the proportional control is performed on the detected temperature, the deviation of the detected temperature from the target temperature is related to the outside temperature and the ratio of the proportional control, and does not depend on the degree of thermal coupling. Therefore, by adjusting the proportional control ratio to bring the detected temperature closer to the target temperature and at the same time adjusting the degree of thermal coupling, it is possible to make the true target temperature match the target temperature.

以下第2図を用いて詳しく説明する。熱結合度が小さい
場合(第2図(a) ) 、真の対象温度の検出温度か
らのずれは、小さい。外気温が目標温度から離れていく
と、検出温度は図のように目標温度から離れる。また真
の対象温度の検出温度からのずれは小さいだめ、外気温
が目標温度から離れても真の対象温度を目標温度に設定
するためには、図の点A−4B→Cのように比例制御の
比率を次第に大きくする必要がある。
This will be explained in detail below using FIG. When the degree of thermal coupling is small (FIG. 2(a)), the deviation of the true target temperature from the detected temperature is small. As the outside temperature moves away from the target temperature, the detected temperature moves away from the target temperature as shown in the figure. In addition, the deviation of the true target temperature from the detected temperature must be small, so in order to set the true target temperature to the target temperature even if the outside temperature deviates from the target temperature, it is necessary to set the true target temperature to the target temperature using the proportional It is necessary to gradually increase the ratio of control.

逆に、結合度が大きい場合、真の対象温度の検出温度か
らのずれは太きい。従って、前記の場合とは逆に外気温
が目標温度から離れても、真の対象温度を目標温度に設
定するためには、比例制御の比率を次第に小さくする必
要がある。
Conversely, when the degree of coupling is large, the deviation of the true target temperature from the detected temperature is large. Therefore, contrary to the above case, even if the outside temperature deviates from the target temperature, in order to set the true target temperature to the target temperature, it is necessary to gradually reduce the proportional control ratio.

それ故、熱結合度を適当な値に選べば、第2図中)のよ
うに、比例制御の比率を一定にした状態(点D)で、外
気温が変化しても、真の対象温度を目標温度に設定する
ことができる。
Therefore, if the degree of thermal coupling is selected to an appropriate value, the true target temperature will be maintained even if the outside temperature changes when the ratio of proportional control is kept constant (point D), as shown in Figure 2. can be set as the target temperature.

以上は外気温が目標温度よりも高い場合である。The above is a case where the outside temperature is higher than the target temperature.

外気温が目標温度から同じ温度だけ高い場合と低い場合
を考えると、それぞれの検出温度及び真の対象温度の目
標温度からのずれは等しい(第2図(C))。従って、
外気温が目標温度よりも低い場合でも、熱結合度と比例
制御の比率を前記の高い場合での最適値にすれば、外気
温が変化しても、真の対象温度を目標温度に設定するこ
とができる。
Considering cases where the outside air temperature is higher or lower than the target temperature by the same amount, the deviations of the detected temperature and the true target temperature from the target temperature are equal (FIG. 2(C)). Therefore,
Even if the outside temperature is lower than the target temperature, if the ratio of thermal coupling degree and proportional control is set to the optimal value for the above-mentioned high case, the true target temperature will be set to the target temperature even if the outside temperature changes. be able to.

第3図及び第4図に熱結合部17の一実施例を示す。熱
結合部16は円筒形で、第3図のように伝熱部21及び
断熱部22からなり、断熱材15の中に組み込まれ、図
のように回転させることができる。伝熱部21は冷却板
12に密着しており、冷却板12を通して、温度センサ
16が外気と熱的に結合できるようになっている。断熱
部22は不要な熱の出入を防ぐだめのものである。伝熱
部21は第4図(第3図A −A’面の温度センサ側の
断面図)のように回転させることで冷却板12との接触
面積を変えることができるので、温度センサ16と外気
との熱結合度が調整できる。
An embodiment of the thermal coupling portion 17 is shown in FIGS. 3 and 4. The thermal coupling part 16 has a cylindrical shape and consists of a heat transfer part 21 and a heat insulating part 22 as shown in FIG. 3, and is incorporated into the heat insulating material 15 and can be rotated as shown in the figure. The heat transfer part 21 is in close contact with the cooling plate 12, so that the temperature sensor 16 can be thermally coupled to the outside air through the cooling plate 12. The heat insulating section 22 serves to prevent unnecessary heat from entering and exiting. The contact area of the heat transfer part 21 with the cooling plate 12 can be changed by rotating it as shown in FIG. The degree of thermal coupling with outside air can be adjusted.

発明の効果 前記のように本発明では構成が簡単な比例制御方式を用
いているにもかかわらず、外気温が変化した場合でも、
制御対象の温度の目標温度からのずれを小さくすること
ができる。
Effects of the Invention As mentioned above, even though the present invention uses a proportional control system with a simple configuration, even when the outside temperature changes,
It is possible to reduce the deviation of the temperature of the controlled object from the target temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の温度制御装置の構成図、第
2図は同装置の動作説明図、第3図および第4図は同装
置における熱結合部の実施例を示す図、第5図は従来例
の温度制御装置の動作説明図、第6図は同装置の構成図
である。 13・・・・・・ペルチェ素子、16・・団・温度セン
サ、17・・・・・・熱結合部、18・旧・・設定回路
、1e・・団・比較回路、20・・・・・・駆動回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名I!
? 憾                憾n″)を杯  
1 区 U) 城
FIG. 1 is a configuration diagram of a temperature control device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the same device, and FIGS. 3 and 4 are diagrams showing an embodiment of a thermal coupling part in the same device. FIG. 5 is an explanatory diagram of the operation of a conventional temperature control device, and FIG. 6 is a configuration diagram of the same device. 13... Peltier element, 16... group temperature sensor, 17... thermal coupling section, 18... old setting circuit, 1e... group comparison circuit, 20... ...Drive circuit. Name of agent: Patent attorney Toshio Nakao and one other person I!
? Cup of regret
1 Ward U) Castle

Claims (1)

【特許請求の範囲】[Claims] 制御対象の温度を検出する温度センサと、目標温度を決
める設定器と、前記温度センサと前記設定器とからの信
号の差に比例した電流を出力する制御器と、前記制御器
からの電流により前記制御対象を加熱あるいは冷却する
ペルチエ素子と、前記温度センサと外気とを熱的に結合
させる機構部からなる温度制御装置。
a temperature sensor that detects the temperature of a controlled object; a setting device that determines a target temperature; a controller that outputs a current proportional to the difference between signals from the temperature sensor and the setting device; A temperature control device comprising a Peltier element that heats or cools the controlled object, and a mechanism that thermally couples the temperature sensor to outside air.
JP60286117A 1985-12-19 1985-12-19 Temperature control device Expired - Lifetime JP2516912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286117A JP2516912B2 (en) 1985-12-19 1985-12-19 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286117A JP2516912B2 (en) 1985-12-19 1985-12-19 Temperature control device

Publications (2)

Publication Number Publication Date
JPS62144211A true JPS62144211A (en) 1987-06-27
JP2516912B2 JP2516912B2 (en) 1996-07-24

Family

ID=17700151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286117A Expired - Lifetime JP2516912B2 (en) 1985-12-19 1985-12-19 Temperature control device

Country Status (1)

Country Link
JP (1) JP2516912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464270A (en) * 1987-09-03 1989-03-10 Seiko Epson Corp Computer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433287A (en) * 1977-08-19 1979-03-10 Toyo Ink Mfg Co Ltd Oxygen absorbing structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433287A (en) * 1977-08-19 1979-03-10 Toyo Ink Mfg Co Ltd Oxygen absorbing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464270A (en) * 1987-09-03 1989-03-10 Seiko Epson Corp Computer

Also Published As

Publication number Publication date
JP2516912B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
KR940010643B1 (en) Mehtod of and apparatus for controlling temperature in the processing of a substrate
US5927077A (en) Processing system hot plate construction substrate
US6173619B1 (en) Method and device for effecting temperature compensation in load cell type load detector
US6901317B2 (en) Inertial temperature control system and method
EP0962763A1 (en) Differential scanning calorimeter
JPH10206246A (en) Non-contact measuring device and method for object temperature
Parsey Jr et al. A new apparatus for the controlled growth of single crystals by horizontal Bridgman techniques
JPS62144211A (en) Temperature controller
JP3931357B2 (en) Manufacturing method of semiconductor device
JP2001153518A (en) Temperature control system
JP2002108411A (en) Temperature controller and heat treatment device
JPH09179078A (en) Optical delay device
JPS63138220A (en) Blackbody furnace
JP3199500B2 (en) Temperature control method and temperature control device using indirect temperature controller
JP2000305632A (en) Temperature control system for peltier element
JP3386512B2 (en) Semiconductor manufacturing equipment
JPS5914182B2 (en) thermal testing equipment
JPS6222494A (en) Stabilizing device for semiconductor laser
JP3454885B2 (en) Semiconductor wafer cooling method and apparatus
JP2000081918A (en) Heater
JPH02147223A (en) Method for temperature control of mold clamping apparatus and device thereof
JPH09275107A (en) Transfer method and device for forming electrode
JPH0688746A (en) Infrared-ray detecting apparatus
JP2578744B2 (en) Electronic beam measuring device
JP3083642U (en) Active radiant cooling wall