JP2516912B2 - Temperature control device - Google Patents

Temperature control device

Info

Publication number
JP2516912B2
JP2516912B2 JP60286117A JP28611785A JP2516912B2 JP 2516912 B2 JP2516912 B2 JP 2516912B2 JP 60286117 A JP60286117 A JP 60286117A JP 28611785 A JP28611785 A JP 28611785A JP 2516912 B2 JP2516912 B2 JP 2516912B2
Authority
JP
Japan
Prior art keywords
temperature
target
target temperature
outside air
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60286117A
Other languages
Japanese (ja)
Other versions
JPS62144211A (en
Inventor
芳樹 西野
克行 藤戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60286117A priority Critical patent/JP2516912B2/en
Publication of JPS62144211A publication Critical patent/JPS62144211A/en
Application granted granted Critical
Publication of JP2516912B2 publication Critical patent/JP2516912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は外気温が変化した場合でも対象の温度を高精
度で制御することができる温度制御装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control device capable of controlling the temperature of a target with high accuracy even when the outside air temperature changes.

従来の技術 従来技術を第6図に示す。従来は温度制御を施す制御
対象1を容器2と放熱フィン3で密閉し、その内部を真
空にすることで制御対象1への外気温の影響を取り除い
ている。制御対象1は冷却板4に固定され、冷却板4に
取付けられた温度センサ5により制御対象1の温度が検
出される。温度センサ5からの温度に対応する温度信号
と設定回路6からの設定信号は比較回路7で比較され、
それらの差に対応する信号を出力する。駆動回路8は比
較回路7からの信号に比例した電流を出力し、ペルチエ
素子9は駆動回路8からの電流により、冷却板4および
制御対象1を加熱あるいは冷却して、制御対象1の温度
を設定回路6からの設定信号に対応する温度にする。ペ
ルチエ素子9は二つの面をもち、電流を流すことで一方
の面から他方の面へ熱が運ばれ、その結果、一方の面は
冷却され他方の面は加熱される。例えば、制御対象1を
冷却する場合、ペルチエ素子9の放熱フィン3側の面は
加熱されるが、放熱フィン3を取付けることで高温にな
るのを防いでいる。
Conventional Technology The conventional technology is shown in FIG. Conventionally, the controlled object 1 to be temperature-controlled is hermetically sealed with the container 2 and the radiation fins 3, and the inside is evacuated to remove the influence of the outside temperature on the controlled object 1. The controlled object 1 is fixed to the cooling plate 4, and the temperature of the controlled object 1 is detected by the temperature sensor 5 attached to the cooling plate 4. The temperature signal corresponding to the temperature from the temperature sensor 5 and the setting signal from the setting circuit 6 are compared by the comparison circuit 7,
A signal corresponding to the difference between them is output. The drive circuit 8 outputs a current proportional to the signal from the comparison circuit 7, and the Peltier element 9 heats or cools the cooling plate 4 and the control target 1 by the current from the drive circuit 8 to control the temperature of the control target 1. The temperature is set to a temperature corresponding to the setting signal from the setting circuit 6. The Peltier element 9 has two surfaces, and heat is carried from one surface to the other surface by passing an electric current, and as a result, one surface is cooled and the other surface is heated. For example, when the controlled object 1 is cooled, the surface of the Peltier element 9 on the side of the radiation fin 3 is heated, but the radiation fin 3 is attached to prevent the temperature from becoming high.

以上のように従来技術では制御対象1の周囲を真空に
して空気による熱伝導等の効果を除いて、外気温の影響
を防ぎ、ペルチエ素子9への電流を制御することで、制
御対象1の温度を目標値に設定している(山口他:ペル
チエ素子を用いた半導体レーザの温度制御装置,分光研
究 第32巻 第5号 P328(1983))。
As described above, in the conventional technique, the surroundings of the controlled object 1 are evacuated to remove the effect of heat conduction by the air, the effect of the outside temperature is prevented, and the current to the Peltier element 9 is controlled. The temperature is set to the target value (Yamaguchi et al .: Temperature control device for semiconductor laser using Peltier element, Spectroscopic Research Vol. 32, No. 5, P328 (1983)).

しかし、この様な真空装置は大変大がかりであり、し
かも重く、かつ高価でもあります。この様な真空装置を
用いて熱を完全に遮断することが出来なければ、外部か
ら制御対象に向けての熱の流入が生じることになる。
However, such a vacuum device is very large, heavy, and expensive. If heat cannot be completely cut off using such a vacuum device, heat will flow from the outside toward the controlled object.

従来の技術では温度センサからの制御対象の温度に対
応する温度信号と設定回路からの設定信号の差に比例し
た電流をペルチエ素子に流し、制御対象の温度を比例制
御している。比例制御であるため、制御対象の温度と設
定回路で決まる設定温度の間には必ず誤差が生じ、この
誤差は外気温と設定温度の差が大きくなれば、それだけ
増大する。
In the conventional technique, a current proportional to the difference between the temperature signal corresponding to the temperature of the controlled object from the temperature sensor and the setting signal from the setting circuit is passed through the Peltier element to proportionally control the temperature of the controlled object. Since it is proportional control, an error always occurs between the temperature of the controlled object and the set temperature determined by the setting circuit, and this error increases as the difference between the outside air temperature and the set temperature increases.

発明が解決しようとする問題点 従って、従来の装置では、外気温が変化した場合、制
御対象の温度が設定温度からずれてしまい一定に保つこ
とができない。ただ、比例制御の比率を大きくすれば、
それだけ前記の誤差を小さくすることができるが、同時
に制御が不安定になるため、比率を大きくして、誤差を
小さくする方法には限界がある。
Therefore, in the conventional device, when the outside air temperature changes, the temperature of the controlled object deviates from the set temperature and cannot be kept constant. However, if the ratio of proportional control is increased,
Although the error can be reduced by that much, the control becomes unstable at the same time, and therefore there is a limit to the method of increasing the ratio to reduce the error.

問題点を解決するための手段 本発明は、前記のような従来技術の問題点を解決する
ために、制御対象の温度を検出する温度センサと、目標
温度を決める設定器と、温度センサからの制御対象の温
度に対応する温度信号と設定器からの目標温度に対応す
る設定信号の差に比例した電流を出力する制御器と、制
御器からの電流により制御対象を加熱あるいは冷却する
ペルチエ素子と、温度センサと外気とを熱的に結合させ
る機構部とを備えている。
Means for Solving Problems In order to solve the above-mentioned problems of the prior art, the present invention provides a temperature sensor for detecting the temperature of a controlled object, a setter for determining a target temperature, and a temperature sensor. A controller that outputs a current proportional to the difference between the temperature signal corresponding to the temperature of the control target and the setting signal corresponding to the target temperature from the setter; and a Peltier element that heats or cools the control target by the current from the controller. , And a mechanism section for thermally coupling the temperature sensor and the outside air.

作用 従来技術では設定器で決まる温度(目標温度)と温度
センサで検出される制御対象の温度(対象温度)とが比
較され、その差に比例した電流をペルチエ素子に流し
て、比例制御を行なっている。比例制御であるため、対
象温度と目標温度とは一致せず、対象温度は目標温度か
ら外気温側にずれる。本発明では、温度センサと外気と
を熱的に結合させているため、温度センサで検出される
温度(検出温度)と制御対象の温度(真の対象温度)と
の間に差が生じ、検出温度は真の対象温度から外気温側
にずれる。そして、検出温度と目標温度が比較され、前
記従来技術と同様に比例制御が行なわれるが、検出温度
は目標温度から外気温側にずれる。
Action In the prior art, the temperature determined by the setter (target temperature) is compared with the temperature of the control target detected by the temperature sensor (target temperature), and a current proportional to the difference is passed through the Peltier element to perform proportional control. ing. Since the control is proportional, the target temperature does not match the target temperature, and the target temperature deviates from the target temperature to the outside air temperature side. In the present invention, since the temperature sensor and the outside air are thermally coupled, a difference occurs between the temperature detected by the temperature sensor (detection temperature) and the temperature of the control target (true target temperature), and the detection is performed. The temperature deviates from the true target temperature to the outside temperature side. Then, the detected temperature and the target temperature are compared, and proportional control is performed as in the above-described conventional technique, but the detected temperature deviates from the target temperature to the outside air temperature side.

真の対象温度と検出温度の差は温度センサと外気との
熱的な結合の程度(熱結合度)で変化し、また目標温度
と検出温度の差は比例制御の比率で変化するので、熱結
合度と比例制御の比率を適当に調整すれば、真の対象温
度を目標温度に一致させることができる。
The difference between the true target temperature and the detected temperature changes depending on the degree of thermal coupling between the temperature sensor and the outside air (thermal coupling degree), and the difference between the target temperature and the detected temperature changes according to the ratio of proportional control. The true target temperature can be matched with the target temperature by appropriately adjusting the coupling ratio and the ratio of the proportional control.

実 施 例 従来技術のように制御対象の温度(対象温度)を比例
制御により目標温度に設定しようとした場合、対象温度
と目標温度の間には誤差が生じ、外気温と目標温度との
差が大きくなれば、それだけ誤差も大きくなる(第5
図)。この誤差を小さくするには比例制御の比率を大き
くすればよいが、大きくしすぎると制御が不安定になる
ため、誤差を小さくすることには限界がある。
Practical example When trying to set the temperature of the controlled object (target temperature) to the target temperature by proportional control as in the prior art, an error occurs between the target temperature and the target temperature, and the difference between the outside air temperature and the target temperature is generated. The larger is, the larger the error is (the fifth
Figure). In order to reduce this error, it is sufficient to increase the ratio of the proportional control, but if it is set too high, the control becomes unstable, so there is a limit to reducing the error.

このような比例制御で生じる誤差を取り除くには、比
例・積分制御や比例・積分・微分制御を用いればよい
が、本発明では、比例制御を用いながら、誤差を小さく
することが可能である。
In order to remove the error caused by such proportional control, proportional / integral control or proportional / integral / derivative control may be used, but in the present invention, it is possible to reduce the error while using proportional control.

本発明の一実施例を第1図に示す。制御対象11は、冷
却板12に固定され、冷却板12はペルチエ素子13の一方の
面に接触し、ペルチエ素子13の他方の面には放熱フィン
14が接触している。こうしてペルチエ素子13に電流を流
すことで、冷却板12を通して制御対象11を加熱あるいは
冷却することができる。断熱材15は制御対象11等へ、外
部から熱が流入したり、外部へ熱が流出したりするのを
防止して、ペルチエ素子13による加熱あるいは冷却の効
率を上げるためのものである。制御対象11の温度は冷却
板12を通して、温度センサ16で検出される。断熱材15に
は熱結合部17を設け、外気と温度センサ16を熱的に結合
している。温度センサ16で検出された温度(検出温度)
に対応する温度信号は、制御対象11の設定したい温度
(目標温度)を決めるための設定回路18からの設定信号
とともに、比較回路19に入力され、温度信号と設定信号
の差に比例した信号を出力する。駆動回路20は、比例回
路19からの信号に比例した電流をペルチエ素子13に供給
する。
One embodiment of the present invention is shown in FIG. The controlled object 11 is fixed to the cooling plate 12, the cooling plate 12 contacts one surface of the Peltier element 13, and the other surface of the Peltier element 13 has a radiation fin.
14 are in contact. By passing a current through the Peltier element 13 in this way, the controlled object 11 can be heated or cooled through the cooling plate 12. The heat insulating material 15 prevents heat from flowing into or out of the controlled object 11 or the like from the outside, and improves the efficiency of heating or cooling by the Peltier element 13. The temperature of the controlled object 11 is detected by the temperature sensor 16 through the cooling plate 12. The heat insulating material 15 is provided with a heat coupling portion 17 to thermally couple the outside air and the temperature sensor 16. Temperature detected by temperature sensor 16 (detected temperature)
The temperature signal corresponding to is input to the comparison circuit 19 together with the setting signal from the setting circuit 18 for determining the temperature (target temperature) to be set for the controlled object 11, and a signal proportional to the difference between the temperature signal and the setting signal is output. Output. The drive circuit 20 supplies a current proportional to the signal from the proportional circuit 19 to the Peltier element 13.

こうして、温度センサ16で検出される検出温度が、設
定回路18で決まる目標温度と一致するように制御され
る。
In this way, the temperature detected by the temperature sensor 16 is controlled so as to match the target temperature determined by the setting circuit 18.

ところが比例制御を行なっているため、従来技術と同
様に、検出温度と目標温度とは一致せず、検出温度は目
標温度から外気温側にずれる。
However, since proportional control is performed, the detected temperature and the target temperature do not match, and the detected temperature deviates from the target temperature to the outside air temperature side, as in the conventional technique.

ところで、本発明では温度センサ16と外気とを熱結合
部17を通して熱的に結合させているため、温度センサ16
による検出温度と制御対象11の温度(真の対象温度)と
は異なり、真の対象温度は、検出温度から外気温とは逆
の温度にずれる。
By the way, in the present invention, since the temperature sensor 16 and the outside air are thermally coupled through the thermal coupling portion 17, the temperature sensor 16
Unlike the temperature detected by and the temperature of the control target 11 (true target temperature), the true target temperature deviates from the detected temperature to a temperature opposite to the outside air temperature.

熱結合部17の熱結合度(外部から温度センサに流入さ
れる熱量、あるいは温度センサから外部へ流出させる熱
量の程度)が非常に小さい場合、従来技術に相当して、
温度センサ16による検出温度と真の対象温度は等しいた
め、真の対象温度を目標温度と一致させようとして、比
例制御の比率を大きくすれば、動作が不安定になる。
When the degree of thermal coupling of the thermal coupling portion 17 (the amount of heat that flows into the temperature sensor from the outside or the amount of heat that flows out from the temperature sensor to the outside) is very small, corresponding to the related art,
Since the temperature detected by the temperature sensor 16 and the true target temperature are equal, if the proportion of the proportional control is increased in order to match the true target temperature with the target temperature, the operation becomes unstable.

熱結合度を大きくしていけば、前記のように真の対象
温度が検出温度から外気温とは逆の温度にずれる。この
ずれは熱結合度で決まる。ところで比例制御は検出温度
に対して行なわれるので、検出温度の目標温度からのず
れは、外気温や比例制御の比率に関係し、熱結合度には
依存しない。従って、比例制御の比率を調整して、検出
温度を目標温度に近づけると同時に、熱結合度を調整す
れば、真の対象温度と目標温度を一致させることができ
る。
If the degree of thermal coupling is increased, the true target temperature shifts from the detected temperature to a temperature opposite to the outside air temperature as described above. This deviation is determined by the degree of thermal coupling. By the way, since the proportional control is performed on the detected temperature, the deviation of the detected temperature from the target temperature is related to the outside air temperature and the ratio of the proportional control, and does not depend on the thermal coupling degree. Therefore, if the ratio of proportional control is adjusted to bring the detected temperature close to the target temperature and the degree of thermal coupling is adjusted, the true target temperature and the target temperature can be matched.

以下第2図を用いて詳しく説明する。熱結合度が小さ
い場合(第2図(a))、真の対象温度の検出温度から
のずれは、小さい。外気温が目標温度から離れていく
と、検出温度は図のように目標温度から離れる。また真
の対象温度の検出温度からのずれは小さいため、外気温
が目標温度から離れても真の対象温度を目標温度に設定
するためには、図の点A→B→Cのように比例制御の比
率を次第に大きくする必要がある。
This will be described in detail below with reference to FIG. When the degree of thermal coupling is small (Fig. 2 (a)), the deviation of the true target temperature from the detected temperature is small. When the outside air temperature departs from the target temperature, the detected temperature departs from the target temperature as shown in the figure. Further, since the deviation of the true target temperature from the detected temperature is small, in order to set the true target temperature to the target temperature even if the outside air temperature is far from the target temperature, the proportions are proportional as shown by points A → B → C in the figure. It is necessary to gradually increase the control ratio.

逆に、結合度が大きい場合、真の対象温度の検出温度
からのずれは大きい。従って、前記の場合とは逆に外気
温が目標温度から離れても、真の対象温度を目標温度に
設定するためには、比例制御の比率を次第に小さくする
必要がある。
On the contrary, when the degree of coupling is large, the deviation of the true target temperature from the detected temperature is large. Therefore, contrary to the above case, even if the outside air temperature deviates from the target temperature, it is necessary to gradually reduce the ratio of the proportional control in order to set the true target temperature to the target temperature.

それ故、熱結合度を適当な値に選べば、第2図(b)
のように、比例制御の比率を一定にした状態(点D)
で、外気温が変化しても、真の対象温度を目標温度に設
定することができる。
Therefore, if the thermal coupling degree is chosen to be an appropriate value, it is shown in Fig. 2 (b).
, Where the proportional control ratio is constant (point D)
Thus, even if the outside air temperature changes, the true target temperature can be set as the target temperature.

以上は外気温が目標温度よりも高い場合である。外気
温が目標温度から同じ温度だけ高い場合と低い場合を考
えると、それぞれの検出温度及び真の対象温度の目標温
度からのずれは等しい(第2図(c))。従って、外気
温が目標温度よりも低い場合でも、熱結合度と比例制御
の比率を前記の高い場合での最適値にすれば、外気温が
変化しても、真の対象温度を目標温度に設定することが
できる。
The above is the case where the outside air temperature is higher than the target temperature. Considering a case where the outside air temperature is higher than the target temperature by the same temperature and a case where the outside air temperature is lower than the target temperature, the deviations of the detected temperature and the true target temperature from the target temperature are equal (FIG. 2 (c)). Therefore, even if the outside air temperature is lower than the target temperature, if the ratio of the thermal coupling and proportional control is set to the optimum value in the above case, the true target temperature will be the target temperature even if the outside air temperature changes. Can be set.

第3図及び第4図に熱結合部17の実施例を示す。熱結
合部16は円筒形で、第3図のように伝熱部21及び断熱部
22からなり、断熱材15の中に組み込まれ、図のように回
転させることができる。伝熱部21は冷却板12に密着して
おり、冷却板12を通して、温度センサ16が外気と熱的に
結合できるようになっている。断熱部22は不要な熱の出
入を防ぐためのものである。伝熱部21は第4図(第3図
A−A′面の温度センサ側の断面図)のように回転させ
ることで冷却板12との接触面積を変えることができるの
で、温度センサ16と外気との熱結合度が調整できる。
3 and 4 show an embodiment of the thermal coupling portion 17. The heat coupling part 16 has a cylindrical shape, and as shown in FIG.
It consists of 22 and is incorporated into the insulation 15 and can be rotated as shown. The heat transfer section 21 is in close contact with the cooling plate 12, and the temperature sensor 16 can be thermally coupled to the outside air through the cooling plate 12. The heat insulating section 22 is for preventing the input and output of unnecessary heat. The heat transfer portion 21 can change the contact area with the cooling plate 12 by rotating as shown in FIG. 4 (a cross-sectional view of the AA ′ surface in FIG. 3 on the temperature sensor side). The degree of thermal coupling with the outside air can be adjusted.

発明の効果 前記のように本発明では構成が簡単な比例制御方式を
用いているにもかかわらず、外気温が変化した場合で
も、制御対象の温度の目標温度からのずれを小さくする
ことができる。
EFFECTS OF THE INVENTION As described above, in the present invention, even if the outside air temperature changes, the deviation of the temperature of the controlled object from the target temperature can be reduced, although the proportional control method having a simple configuration is used. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の温度制御装置の構成図、第
2図は同装置の動作説明図、第3図および第4図は同装
置における熱結合部の実施例を示す図、第5図は従来例
の温度制御装置の動作説明図、第6図は同装置の構成図
である。 13……ペルチエ素子、16……温度センサ、17……熱結合
部、18……設定回路、19……比較回路、20……駆動回
路。
FIG. 1 is a configuration diagram of a temperature control device according to an embodiment of the present invention, FIG. 2 is an operation explanatory diagram of the device, and FIGS. 3 and 4 are diagrams showing an embodiment of a thermal coupling portion in the device, FIG. 5 is an operation explanatory view of a conventional temperature control device, and FIG. 6 is a configuration diagram of the device. 13 …… Peltier element, 16 …… Temperature sensor, 17 …… Thermal coupling section, 18 …… Setting circuit, 19 …… Comparison circuit, 20 …… Drive circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】制御対象の温度を検出する温度センサと、
目標温度を決める設定器と、前記温度センサと前記設定
器とからの信号の差に比例した電流を出力する制御器
と、前記制御器からの電流により前記制御対象を加熱あ
るいは冷却するペルチエ素子と、前記温度センサと外気
とを熱的に結合させ、その熱結合度を可変とする機構部
とを備えた温度制御装置。
1. A temperature sensor for detecting the temperature of a controlled object,
A setter that determines the target temperature, a controller that outputs a current proportional to the difference between the signals from the temperature sensor and the setter, and a Peltier element that heats or cools the control target by the current from the controller. A temperature control device comprising: a temperature sensor and a mechanism part that thermally couples the temperature sensor with the outside air and makes the degree of thermal coupling variable.
JP60286117A 1985-12-19 1985-12-19 Temperature control device Expired - Lifetime JP2516912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286117A JP2516912B2 (en) 1985-12-19 1985-12-19 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286117A JP2516912B2 (en) 1985-12-19 1985-12-19 Temperature control device

Publications (2)

Publication Number Publication Date
JPS62144211A JPS62144211A (en) 1987-06-27
JP2516912B2 true JP2516912B2 (en) 1996-07-24

Family

ID=17700151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286117A Expired - Lifetime JP2516912B2 (en) 1985-12-19 1985-12-19 Temperature control device

Country Status (1)

Country Link
JP (1) JP2516912B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2737123B2 (en) * 1987-09-03 1998-04-08 セイコーエプソン株式会社 Computer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433287A (en) * 1977-08-19 1979-03-10 Toyo Ink Mfg Co Ltd Oxygen absorbing structure

Also Published As

Publication number Publication date
JPS62144211A (en) 1987-06-27

Similar Documents

Publication Publication Date Title
US4571728A (en) Temperature control device for a semiconductor laser
US6530686B1 (en) Differential scanning calorimeter having low drift and high response characteristics
JP2516912B2 (en) Temperature control device
KR101994570B1 (en) Heat treatment apparatus and heat treatment method
US3203290A (en) Microtomes
US5884235A (en) Non-contact, zero-flux temperature sensor
JPH0792037A (en) Thermometer calibrating device
JPH0345778B2 (en)
JPH09179078A (en) Optical delay device
JPH0476618B2 (en)
JP3199500B2 (en) Temperature control method and temperature control device using indirect temperature controller
JP2719332B2 (en) Plasma processing method
JP2003195952A (en) Device and method for adjusting temperature of object by using heating medium fluid
JPH10117041A (en) Measuring apparatus of current versus optical output characteristic of semiconductor laser element
JPH0812568B2 (en) Temperature control device
JP2001092501A (en) Automatic control method
JP3537354B2 (en) Temperature control method and device
JP2004119630A (en) Wafer temperature adjustment apparatus
JPH09257584A (en) Thermal type infrared ray detecting device
JPH0688746A (en) Infrared-ray detecting apparatus
JPS6047545B2 (en) Radiant heat measuring device
US3549864A (en) Methods of an apparatus for temperature control
JPH09275107A (en) Transfer method and device for forming electrode
JPH05212314A (en) Temperature measuring device for centrifugal separator
JP2558268Y2 (en) Isothermal control calorimeter