JP3537354B2 - Temperature control method and device - Google Patents

Temperature control method and device

Info

Publication number
JP3537354B2
JP3537354B2 JP18795299A JP18795299A JP3537354B2 JP 3537354 B2 JP3537354 B2 JP 3537354B2 JP 18795299 A JP18795299 A JP 18795299A JP 18795299 A JP18795299 A JP 18795299A JP 3537354 B2 JP3537354 B2 JP 3537354B2
Authority
JP
Japan
Prior art keywords
temperature
peltier element
ambient temperature
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18795299A
Other languages
Japanese (ja)
Other versions
JP2001015819A (en
Inventor
一志 境
誠二郎 坂根
Original Assignee
サンクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンクス株式会社 filed Critical サンクス株式会社
Priority to JP18795299A priority Critical patent/JP3537354B2/en
Publication of JP2001015819A publication Critical patent/JP2001015819A/en
Application granted granted Critical
Publication of JP3537354B2 publication Critical patent/JP3537354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage

Landscapes

  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被制御部分をペル
チェ素子によって冷却又は加熱することにより、被制御
部分の温度を一定の基準温度に維持するように制御する
温度制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a temperature of a controlled portion to be maintained at a constant reference temperature by cooling or heating the controlled portion by a Peltier element.

【0002】[0002]

【従来の技術】ペルチェ素子には、吸熱面と放熱面とが
あり、一方の面が放熱作用によって被制御部分を加熱し
ているときは、他方の面は吸熱作用によって冷却してい
る。また逆に、一方の面が吸熱作用によって被制御部分
を冷却しているときは、他方の面は放熱作用によって加
熱している。ペルチェ素子において、被制御部分を冷却
・加熱する面が、放熱作用となるか吸熱作用となるか
は、このペルチェ素子に与える駆動電流の向きによって
決まる。
2. Description of the Related Art A Peltier element has a heat absorbing surface and a heat radiating surface. When one surface heats a controlled part by a heat radiating effect, the other surface is cooled by a heat absorbing effect. Conversely, when one surface is cooling the controlled part by the heat absorption effect, the other surface is heated by the heat radiation effect. In the Peltier element, whether the surface for cooling / heating the controlled part has a heat radiation effect or a heat absorption effect is determined by the direction of the drive current applied to the Peltier element.

【0003】このペルチェ素子を用いた従来の温度制御
装置は、温度検出手段にて検出した被制御部分の温度と
予め設定した基準温度との温度差に基づいた電流を、所
定の増幅率で増幅し、これを駆動電流としてペルチェ素
子に与えて被制御部分を加熱又は冷却することにより、
被制御部分の温度を一定に制御していた。
A conventional temperature control device using a Peltier element amplifies a current based on a temperature difference between a temperature of a controlled portion detected by a temperature detecting means and a preset reference temperature at a predetermined amplification factor. By applying this to the Peltier element as a drive current to heat or cool the controlled part,
The temperature of the controlled part was controlled to be constant.

【0004】[0004]

【発明が解決しようとする課題】ところで、被制御部分
の温度は、その周囲温度によって影響を受ける。そし
て、周囲温度が被制御部分の基準温度に対して離れるほ
どその影響も大きくなる。ところが、従来の温度制御装
置では、周囲温度の変化を考慮せずに、被制御部分の温
度と基準温度との温度差に基づく駆動電流によって、ペ
ルチェ素子を冷却動作又は加熱動作させているだけなの
で、周囲温度が例えば極めて高い場合には、冷却動作の
出力が不足し、周囲温度が極めて低い場合には、加熱動
作の出力が不足することとなり、被制御部分を基準温度
に維持することができないという問題が生じる。
Incidentally, the temperature of the controlled portion is affected by its ambient temperature. Then, as the ambient temperature becomes farther from the reference temperature of the controlled portion, the influence becomes larger. However, in the conventional temperature control device, the Peltier element is only cooled or heated by the drive current based on the temperature difference between the temperature of the controlled part and the reference temperature without considering the change in the ambient temperature. For example, when the ambient temperature is extremely high, the output of the cooling operation is insufficient, and when the ambient temperature is extremely low, the output of the heating operation is insufficient, and the controlled portion cannot be maintained at the reference temperature. The problem arises.

【0005】上記問題を解決するために、ペルチェ素子
を駆動するための電流の増幅率を予め大きく設定するこ
とが考えられる。しかしながら、従来の温度制御装置で
は、周囲温度と被制御部分の温度とのバランスがとれて
安定している場合にも、そうでない場合と同様の出力
で、ペルチェ素子を加熱又は冷却動作させているので、
増幅率を大きく設定すると、周囲温度と被制御部分の温
度とのバランスがとれている場合に、ペルチェ素子によ
って被制御部分が過剰に冷却又は加熱され、被制御部分
の温度が基準温度を通り過ぎてしまう。そして、ペルチ
ェ素子は通り過ぎた温度を戻すために、冷却動作と加熱
動作とを頻繁に繰り返し、ペルチェ素子が著しく劣化す
るという問題が生じる。
In order to solve the above problem, it is conceivable to previously set a large amplification factor of a current for driving the Peltier element. However, in the conventional temperature control device, even when the ambient temperature and the temperature of the controlled portion are balanced and stable, the Peltier element is heated or cooled with the same output as in the other case. So
When the amplification factor is set to be large, when the ambient temperature and the temperature of the controlled part are balanced, the controlled part is excessively cooled or heated by the Peltier element, and the temperature of the controlled part passes the reference temperature. I will. Then, in order to return the temperature that the Peltier device has passed, the cooling operation and the heating operation are frequently repeated, which causes a problem that the Peltier device is significantly deteriorated.

【0006】本発明は、上記事情に鑑みてなされたもの
で、ペルチェ素子の劣化を防ぎ、かつ、周囲温度が変化
しても、被制御部分の温度を安定して基準温度に維持す
ることが可能な温度制御方法及び装置の提供を目的とす
る。
The present invention has been made in view of the above circumstances, and it is possible to prevent deterioration of a Peltier element and stably maintain the temperature of a controlled portion at a reference temperature even when the ambient temperature changes. It is an object to provide a possible temperature control method and device.

【0007】[0007]

【課題を解決するための手段】請求項1の発明に係る温
度制御方法は、ペルチェ素子に加熱又は冷却のいずれか
一方の動作を行わせて、被制御部分の温度を予め設定し
た基準温度に維持するように制御すると共に、ペルチェ
素子に冷却動作を行わせている場合には、被制御部分の
周囲温度が予め設定した上限温度以上に上がったとき
に、ペルチェ素子の冷却動作の出力を上げ、ペルチェ素
子に加熱動作を行わせている場合には、周囲温度が予め
設定した下限温度以下に下がったときに、ペルチェ素子
の加熱動作の出力を上げるようにしたところに特徴を有
する。
According to a first aspect of the present invention, there is provided a temperature control method in which a Peltier element performs one of a heating operation and a cooling operation so that a temperature of a controlled portion is set to a predetermined reference temperature. In the case where the control is performed so as to maintain the temperature and the cooling operation is performed by the Peltier element, the output of the cooling operation of the Peltier element is increased when the ambient temperature of the controlled part rises to a preset upper limit temperature or higher. When the heating operation is performed by the Peltier element, the output of the heating operation of the Peltier element is increased when the ambient temperature falls below the preset lower limit temperature.

【0008】請求項2の発明に係る温度制御装置は、ペ
ルチェ素子と、被制御部分の温度を検出する制御温度検
出手段と、制御温度検出手段の検出結果と予め設定した
基準温度との温度差に応じた電流を、変更可能な増幅率
で増幅させて駆動電流としてペルチェ素子に与える増幅
手段とを備え、ペルチェ素子に加熱又は冷却のいずれか
一方の動作を行わせて、被制御部分の温度を基準温度に
維持するように制御する温度制御装置において、被制御
部の周囲温度を検出する周囲温度検出手段と、周囲温度
検出手段の検出結果を受けて、増幅手段の増幅率を決定
する増幅率決定手段とを備え、増幅率決定手段は、ペル
チェ素子が冷却動作を行いかつ周囲温度が予め設定した
上限温度より大きくなったときと、ペルチェ素子が加熱
動作を行いかつ周囲温度が予め設定した下限温度より小
さくなったときに、増幅手段の増幅率を上げるところに
特徴を有する。
According to a second aspect of the present invention, there is provided a temperature control device comprising: a Peltier element; control temperature detecting means for detecting a temperature of a controlled portion; and a temperature difference between a detection result of the control temperature detecting means and a preset reference temperature. Amplifying means for amplifying the current according to the above with a changeable amplification factor and supplying the current as a drive current to the Peltier element, and causing the Peltier element to perform one of heating and cooling operations, thereby controlling the temperature of the controlled portion. A temperature control device that controls the temperature of the controllable portion to be maintained at a reference temperature, and an amplification device that determines an amplification factor of the amplification device in response to a detection result of the ambient temperature detection device. Rate determining means, wherein the amplification factor determining means performs a cooling operation when the Peltier element performs a cooling operation and the ambient temperature becomes higher than a preset upper limit temperature, and performs a heating operation when the Peltier element performs a heating operation. When the temperature falls below the lower limit temperature set beforehand, having characterized in that increasing the amplification factor of the amplifying means.

【0009】[0009]

【発明の作用】<請求項1の発明>ペルチェ素子に冷却
動作を行わせている場合に、周囲温度が高くなると、被
制御部分の温度が上昇する方向に影響を受ける。ところ
が、本発明では周囲温度が上限温度以上となると、ペル
チェ素子の冷却動作の出力が上がるから、周囲温度によ
る影響とペルチェ素子の出力とのバランスが保たれて、
被制御部分の温度が基準温度に安定して維持される。ま
た、周囲温度が上限温度以下となると、ペルチェ素子の
冷却動作の出力が小さくなり、被制御部分の過剰な冷却
が防がれる。一方、ペルチェ素子に加熱動作を行わせて
いる場合には、周囲温度が下限温度以下となると、ペル
チェ素子の加熱動作の出力が上がるから、やはり、周囲
温度による影響とペルチェ素子の出力とのバランスが保
たれて、被制御部分の温度が基準温度に安定して維持さ
れる。また、周囲温度が下限温度以上となると、ペルチ
ェ素子の加熱動作の出力が小さくなり、被制御部分の過
剰な加熱が防がれる。
According to the first aspect of the present invention, when the ambient temperature increases while the Peltier element is performing a cooling operation, the temperature of the controlled portion is affected in a direction in which the temperature increases. However, in the present invention, when the ambient temperature is equal to or higher than the upper limit temperature, the output of the cooling operation of the Peltier device increases, so that the balance between the influence of the ambient temperature and the output of the Peltier device is maintained.
The temperature of the controlled part is stably maintained at the reference temperature. Further, when the ambient temperature is lower than the upper limit temperature, the output of the cooling operation of the Peltier element decreases, and excessive cooling of the controlled portion is prevented. On the other hand, if the Peltier element is performing a heating operation, the output of the Peltier element heating operation increases when the ambient temperature falls below the lower limit temperature. Is maintained, and the temperature of the controlled portion is stably maintained at the reference temperature. Further, when the ambient temperature is equal to or higher than the lower limit temperature, the output of the heating operation of the Peltier element decreases, and excessive heating of the controlled portion is prevented.

【0010】<請求項2の発明>ペルチェ素子に冷却動
作を行わせている場合に、周囲温度が高くなると、被制
御部分の温度が上昇する方向に影響を受ける。ところ
が、周囲温度が上限温度以上となると、増幅率決定手段
によって増幅手段の増幅率が上げられ、ペルチェ素子へ
の駆動電流が大きくなる。これにより、ペルチェ素子の
冷却動作の出力が上がり、周囲温度による影響とペルチ
ェ素子の出力とのバランスが保たれて、被制御部分の温
度が基準温度に安定して維持される。また、周囲温度が
上限温度以下となると、前記した増幅率が下げられるこ
とでペルチェ素子の冷却動作の出力が小さくなり、被制
御部分の過剰な冷却が防がれる。一方、ペルチェ素子に
加熱動作を行わせている場合に、周囲温度が下限温度以
下となると、増幅率決定手段によって増幅手段の増幅率
が上げられることで、ペルチェ素子への駆動電流が大き
くなり、ペルチェ素子の加熱動作の出力が上がる。これ
により、やはり、周囲温度による影響とペルチェ素子の
出力とのバランスが保たれて、被制御部分の温度が基準
温度に安定して維持される。また、周囲温度が下限温度
以下となると、前記した増幅率が下げられることでペル
チェ素子の加熱動作の出力が小さくなり、被制御部分の
過剰な加熱が防がれる。
<Invention of Claim 2> When the ambient temperature rises while the Peltier element is performing the cooling operation, the temperature of the controlled portion is affected in a direction in which the temperature rises. However, when the ambient temperature becomes higher than the upper limit temperature, the amplification factor of the amplification device is increased by the amplification factor determination device, and the drive current to the Peltier element increases. As a result, the output of the cooling operation of the Peltier element increases, the balance between the influence of the ambient temperature and the output of the Peltier element is maintained, and the temperature of the controlled portion is stably maintained at the reference temperature. Further, when the ambient temperature is lower than the upper limit temperature, the output of the cooling operation of the Peltier element is reduced by lowering the amplification factor, and excessive cooling of the controlled part is prevented. On the other hand, when the heating operation is performed on the Peltier element, if the ambient temperature is lower than the lower limit temperature, the amplification factor of the amplification means is increased by the amplification factor determining means, so that the drive current to the Peltier element increases, The output of the heating operation of the Peltier element increases. As a result, the balance between the influence of the ambient temperature and the output of the Peltier element is maintained, and the temperature of the controlled portion is stably maintained at the reference temperature. Further, when the ambient temperature is lower than the lower limit temperature, the output of the heating operation of the Peltier element is reduced by lowering the amplification factor, and excessive heating of the controlled portion is prevented.

【0011】[0011]

【発明の効果】請求項1及び請求項2の発明では、周囲
温度が変化しても、それを相殺するようにペルチェ素子
の出力が大小に変更されるから、被制御部分の温度を安
定して基準温度に維持できる。また、周囲温度が上限温
度と下限温度との間にあるときには、ペルチェ素子の出
力は小さくなり、過剰な冷却及び加熱が防がれ、被制御
部分の温度が基準温度を上下するような挙動が抑えられ
るから、ペルチェ素子が冷却動作と加熱動作とに頻繁に
切り換えられることが防がれ、ペルチェ素子の劣化を防
止することができる。
According to the first and second aspects of the present invention, even if the ambient temperature changes, the output of the Peltier element is changed to be large or small so as to offset the change, so that the temperature of the controlled portion can be stabilized. To maintain the reference temperature. Further, when the ambient temperature is between the upper limit temperature and the lower limit temperature, the output of the Peltier element becomes small, excessive cooling and heating are prevented, and the behavior that the temperature of the controlled portion rises and falls below the reference temperature. Therefore, the Peltier element is prevented from being frequently switched between the cooling operation and the heating operation, and deterioration of the Peltier element can be prevented.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図1及
び図2に基づいて説明する。本実施形態で例示する温度
制御装置は、図1に全体の構成が示されており、半導体
レーザ光源10を実装した回路基板11を被制御部分と
して、その温度を制御するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The overall configuration of a temperature control device exemplified in this embodiment is shown in FIG. 1, and controls a temperature of a circuit board 11 on which a semiconductor laser light source 10 is mounted as a controlled portion.

【0013】図1において、12はペルチェ素子、13
は制御温度検出手段であり、これらは共に回路基板11
に取り付けられている。具体的には、ペルチェ素子12
は、回路基板11のうち前記半導体レーザ光源10に密
着して取り付けられ、また、制御温度検出手段13は、
回路基板11に実装したサーミスタRt1と抵抗R3と
の共通接続部分から出力線を延ばした分圧回路となって
いる。
In FIG. 1, reference numeral 12 denotes a Peltier device;
Is a control temperature detecting means, which are both circuit board 11
Attached to. Specifically, the Peltier device 12
Is mounted in close contact with the semiconductor laser light source 10 of the circuit board 11, and the control temperature detecting means 13
The voltage dividing circuit has an output line extending from a common connection between the thermistor Rt1 and the resistor R3 mounted on the circuit board 11.

【0014】15は周囲温度検出手段であり、サーミス
タRt2と抵抗R4との共通接続部分から出力線を延ば
した分圧回路をなし、被制御部分である回路基板11の
近辺に配置されて、回路基板11の周りの空気の温度を
電圧信号にして出力する。
Reference numeral 15 denotes an ambient temperature detecting means, which constitutes a voltage dividing circuit extending an output line from a common connection portion of the thermistor Rt2 and the resistor R4, and is arranged near the circuit board 11 which is a controlled portion. The temperature of the air around the substrate 11 is output as a voltage signal.

【0015】14は第1基準電圧回路であり、抵抗R
1,R2の共通接続部分から出力線を延ばした分圧回路
をなし、本発明に係る「予め設定した基準温度」に対応
した第1基準電圧を出力する。なお、本実施形態におい
ては、基準温度は、例えば、25℃に設定されている。
Reference numeral 14 denotes a first reference voltage circuit, which includes a resistor R
A voltage dividing circuit is formed by extending an output line from a common connection portion of the first and the second R2, and outputs a first reference voltage corresponding to a "preset reference temperature" according to the present invention. In the present embodiment, the reference temperature is set to, for example, 25 ° C.

【0016】100は増幅手段であり、前記した制御温
度検出手段13と第1基準電圧回路14の出力の差を差
動増幅回路101で増幅して、半波回路102と絶対値
回路103とに取り込んでいる。
Amplifying means 100 amplifies the difference between the output of the control temperature detecting means 13 and the output of the first reference voltage circuit 14 by a differential amplifying circuit 101 and outputs the amplified signal to a half-wave circuit 102 and an absolute value circuit 103. I'm taking it.

【0017】半波回路102は、いわゆる半波整流回路
と同じ構成をなし、差動増幅回路101から受けた電圧
信号が正の電圧の場合はそのまま、負の電圧の場合は零
にして比較回路104に出力する。比較回路104は、
半波回路102から受けた電圧信号が、正の電圧である
か零であるかを判別し、その結果を2値化のデジタル信
号にしてペルチェドライバ106に出力する。なお、比
較回路104で+入力端子に印加される電圧は、半波回
路102からの電圧信号のぶれなどを考慮し、零電位に
対してある程度のオフセット幅を持たせてある。
The half-wave circuit 102 has the same configuration as a so-called half-wave rectifier circuit. When the voltage signal received from the differential amplifier circuit 101 is a positive voltage, the voltage signal is set as it is. Output to 104. The comparison circuit 104
It determines whether the voltage signal received from the half-wave circuit 102 is a positive voltage or zero, and outputs the result to the Peltier driver 106 as a binary digital signal. Note that the voltage applied to the + input terminal in the comparison circuit 104 has a certain offset width with respect to the zero potential in consideration of the fluctuation of the voltage signal from the half-wave circuit 102 and the like.

【0018】絶対値回路103は、いわゆる全波整流回
路と同じ構成をなし、差動増幅回路101から受けた電
圧信号を、その正負に拘わらず、全て正の電圧信号にし
て出力する。
The absolute value circuit 103 has the same configuration as a so-called full-wave rectifier circuit, and outputs all the voltage signals received from the differential amplifier circuit 101 as positive voltage signals regardless of whether the voltage signal is positive or negative.

【0019】105は増幅回路であり、絶対値回路10
3から電圧信号を受け、これを可変抵抗器Rxに基づい
て決定される増幅率でもって増幅してペルチェドライバ
106に出力する。
Reference numeral 105 denotes an amplifier circuit, which is an absolute value circuit 10.
3, and amplifies the voltage signal with an amplification factor determined based on the variable resistor Rx and outputs the amplified signal to the Peltier driver 106.

【0020】ペルチェドライバ106は、IC(図示せ
ず)を備えて、比較回路104から受けた2値化のデジ
タル信号に基づき、ペルチェ素子12を冷却動作と加熱
動作とに切り換える。また、ペルチェドライバ106
は、増幅回路105から受けた電圧信号に基づいた駆動
電流でもってペルチェ素子12を駆動させる。
The Peltier driver 106 includes an IC (not shown), and switches the Peltier device 12 between a cooling operation and a heating operation based on a binary digital signal received from the comparison circuit 104. Also, the Peltier driver 106
Drives the Peltier element 12 with a drive current based on the voltage signal received from the amplifier circuit 105.

【0021】さて、この温度制御装置には、増幅回路1
05の増幅率を決定する増幅率決定手段200が備えら
れている。この増幅率決定手段200において、201
は上限基準回路であり、抵抗R5,R6の共通接続部分
から出力線を延ばした分圧回路をなし、本発明に係る
「予め設定した上限温度」に対応した上限電圧を出力す
る。また、203は下限基準回路であり、抵抗R7,R
8の共通接続部分から出力線を延ばした分圧回路をな
し、本発明に係る「予め設定した下限温度」に対応した
下限電圧を出力する。なお、本実施形態においては、上
限温度は、例えば35℃に設定され、下限温度は、例え
ば10℃に設定されている。
Now, this temperature control device includes an amplification circuit 1
An amplification factor determining means 200 for determining the amplification factor of the step 05 is provided. In this amplification factor determining means 200, 201
Denotes an upper limit reference circuit, which constitutes a voltage divider circuit extending an output line from a common connection portion of the resistors R5 and R6, and outputs an upper limit voltage corresponding to a "predetermined upper limit temperature" according to the present invention. Reference numeral 203 denotes a lower limit reference circuit, which includes resistors R7 and R7.
8 forms a voltage divider circuit extending the output line from the common connection portion, and outputs a lower limit voltage corresponding to the “predetermined lower limit temperature” according to the present invention. In the present embodiment, the upper limit temperature is set to, for example, 35 ° C., and the lower limit temperature is set to, for example, 10 ° C.

【0022】202は高温側温度比較回路であり、周囲
温度検出手段15からの電圧信号と、上限基準回路20
1から出力した上限電圧とを比較して、結果を2値化信
号にして出力する。
Reference numeral 202 denotes a high-temperature-side temperature comparing circuit, which outputs a voltage signal from the ambient temperature detecting means 15 and an upper-limit reference circuit 20.
The output signal is compared with the upper limit voltage output from 1 and the result is output as a binary signal.

【0023】204は低温側温度比較回路であり、周囲
温度検出手段15からの電圧信号と、下限基準回路20
3から出力した下限電圧とを比較して、結果を2値化信
号にして出力する。
Reference numeral 204 denotes a low-temperature-side temperature comparison circuit, which outputs a voltage signal from the ambient temperature detection means 15 and a lower-limit reference circuit 20.
The output signal is compared with the lower limit voltage output from No. 3 and the result is output as a binary signal.

【0024】205は増幅率決定回路であり、上記した
両比較回路202,204から受けた2値化信号に基づ
いて、増幅回路105内の可変抵器Rxの抵抗値を変更
することにより、増幅回路105の増幅率を低倍率と高
倍率とに切り換える。なお、本実施形態においては、低
倍率は、例えば、1.8倍に設定され、高倍率は、2.
2倍に設定されている。
Reference numeral 205 denotes an amplification factor determination circuit which changes the resistance value of the variable resistor Rx in the amplification circuit 105 based on the binary signal received from the comparison circuits 202 and 204 to amplify the signal. The amplification factor of the circuit 105 is switched between a low magnification and a high magnification. In the present embodiment, the low magnification is set to, for example, 1.8 times, and the high magnification is set to 2.times.
It is set to double.

【0025】本実施形態では、上記した上限温度、下限
温度、増幅率の倍率(低倍率、高倍率)の具体的な数値
を、以下のように実験的に求めて設定した。即ち、ま
ず、増幅回路105の増幅率を、従来の温度制御装置に
おける固定の増幅率と同じ低倍率に固定し、この固定倍
率でもって被制御部分の温度を基準温度に維持するよう
に制御する。この際に、周囲温度を徐々に上げつつ被制
御部分の温度のデータを取り、ペルチェ素子12の冷却
動作の出力では被制御部分を基準温度に維持できなくな
る周囲温度を上記上限温度とし、ペルチェ素子の加熱動
作の出力では被制御部分を基準温度に維持できなくなる
周囲温度を上記下限温度として設定する。
In the present embodiment, specific numerical values of the upper limit temperature, the lower limit temperature, and the amplification factor (low magnification, high magnification) are experimentally obtained and set as follows. That is, first, the amplification factor of the amplification circuit 105 is fixed to the same low magnification as the fixed amplification factor in the conventional temperature control device, and control is performed with this fixed magnification so as to maintain the temperature of the controlled portion at the reference temperature. . At this time, data of the temperature of the controlled part is acquired while gradually increasing the ambient temperature, and the ambient temperature at which the controlled part cannot be maintained at the reference temperature with the output of the cooling operation of the Peltier element 12 is set as the upper limit temperature. The ambient temperature at which the controlled part cannot be maintained at the reference temperature with the output of the heating operation of (1) is set as the lower limit temperature.

【0026】次いで、周囲温度を上限温度又は下限温度
としたときに、増幅回路105の増幅率の倍率を変えて
いき、被制御部分の温度のデータを取る。そして、周囲
温度が上限温度または下限温度を越え、さらには、被制
御部分の仕様である周囲温度の最高温度又は最低温度と
なっても、ペルチェ素子12の加熱又は冷却のいずれか
一方の動作で、被制御部分の温度を基準温度に維持でき
るように増幅回路105の高倍率の設定値を定める。
Next, when the ambient temperature is set to the upper limit temperature or the lower limit temperature, the amplification factor of the amplification circuit 105 is changed to obtain data of the temperature of the controlled portion. Then, even if the ambient temperature exceeds the upper limit temperature or the lower limit temperature, and further reaches the maximum temperature or the minimum temperature of the ambient temperature that is the specification of the controlled part, the heating or cooling operation of the Peltier element 12 is performed. The setting value of the high magnification of the amplifier circuit 105 is determined so that the temperature of the controlled portion can be maintained at the reference temperature.

【0027】なお、本実施形態の増幅回路105の増幅
率は、低倍率と高倍率の2段階に切り換わる構成である
が、周囲温度が基準温度に対して極めて高いとき又は低
いときに対応させるために、増幅率を更に多段階に設け
ることで、より広い周囲温度に対して適応させることも
できる。
The amplification factor of the amplification circuit 105 of the present embodiment is configured to be switched between two stages of low magnification and high magnification, and is adapted when the ambient temperature is extremely high or low with respect to the reference temperature. Therefore, by providing the amplification factor in more stages, it is possible to adapt to a wider ambient temperature.

【0028】次に、上記構成からなる本実施形態の動作
を図2に基づいて説明する。半導体レーザ光源10を駆
動すると、その発熱によって本実施形態の被制御部分で
ある回路基板11の温度が上昇し、やがて図2に示すよ
うに予め設定した基準温度Θ1より高くなる。この回路
基板11の温度は、制御温度検出手段13によって検出
され、この検出信号と基準温度Θ1に対応した第1基準
電圧(図1の14から出力される電圧)とが、差動増幅
回路101に取り込まれる。ここでは、回路基板11の
温度は基準温度Θ1より高いので、制御温度検出手段1
3の検出信号が第1基準電圧より大きくなり、回路基板
11の温度と基準温度Θ1との温度差が、差動増幅回路
101から正の電圧信号として出力される。すると、こ
れが半波回路102と比較回路104を通って、ペルチ
ェ素子12に冷却動作させる旨の信号にとなり、ペルチ
ェドライバ106に与えられる。
Next, the operation of this embodiment having the above configuration will be described with reference to FIG. When the semiconductor laser light source 10 is driven, the heat generated by the semiconductor laser light source 10 causes the temperature of the circuit board 11, which is the controlled portion of the present embodiment, to rise, and eventually becomes higher than the preset reference temperature Θ1 as shown in FIG. The temperature of the circuit board 11 is detected by the control temperature detecting means 13, and the detected signal and a first reference voltage (a voltage output from 14 in FIG. 1) corresponding to the reference temperature Θ1 are converted to a differential amplifier circuit 101. It is taken in. Here, since the temperature of the circuit board 11 is higher than the reference temperature Θ1, the control temperature detecting means 1
The detection signal of No. 3 becomes larger than the first reference voltage, and the temperature difference between the temperature of the circuit board 11 and the reference temperature # 1 is output from the differential amplifier circuit 101 as a positive voltage signal. Then, the signal passes through the half-wave circuit 102 and the comparison circuit 104 to become a signal for causing the Peltier element 12 to perform a cooling operation, and is given to the Peltier driver 106.

【0029】また、前記差動増幅回路101が出力した
温度差に係る電圧信号は、絶対値回路103を通して温
度差の絶対値として求められる。そして、絶対値回路1
03の出力が増幅回路105で所定の増幅率で増幅され
て所定の電圧信号となり、ペルチェドライバ106に取
り込まれる。
The voltage signal relating to the temperature difference output from the differential amplifier circuit 101 is obtained through the absolute value circuit 103 as the absolute value of the temperature difference. And the absolute value circuit 1
03 is amplified by the amplifier circuit 105 at a predetermined amplification rate to become a predetermined voltage signal, which is taken into the Peltier driver 106.

【0030】ここで、図2(A)の左側に示すように、
周囲温度が上限温度Θ2以下でかつ下限温度Θ3以上で
ある場合は、周囲温度検出手段15の検出信号が、上限
基準回路201の出力電圧より小さく、かつ、下限基準
回路203の出力電圧より大きくなる。そして、この結
果が、両比較回路202,204を通して2値信号化さ
れ、増幅率決定回路205に与えられる。すると、同回
路205が、増幅回路105の増幅率を低倍率に保持し
て、この結果、増幅回路105からは、比較的小さな電
圧信号が出力される。
Here, as shown on the left side of FIG.
When the ambient temperature is equal to or lower than the upper limit temperature Θ2 and equal to or higher than the lower limit temperature Θ3, the detection signal of the ambient temperature detecting unit 15 is lower than the output voltage of the upper limit reference circuit 201 and higher than the output voltage of the lower limit reference circuit 203. . Then, the result is converted into a binary signal through both the comparison circuits 202 and 204, and is supplied to the amplification factor determination circuit 205. Then, the circuit 205 holds the amplification factor of the amplification circuit 105 at a low magnification, and as a result, a relatively small voltage signal is output from the amplification circuit 105.

【0031】そして、この電圧信号を受けたペルチェド
ライバ106が、その電圧信号に応じた駆動電流(図2
(B)の左側参照)をペルチェ素子12の入力部分に所
定方向に流し、ペルチェ素子12を小さな出力で冷却動
作させる。これにより、ペルチェ素子12が被制御部分
を過剰に冷却することが防がれ、図2(A)の左側に示
すように、回路基板11の温度が基準温度Θ1を下回る
ことなく、安定して基準温度Θ1に維持される。ここ
で、本実施形態では、基準温度、上限温度、増幅率を上
記したように具体的な温度に設定することにより、被制
御部分(回路基板11)の温度は、例えば約26℃で維
持されるが、本実施形態の半導体レーザ光源10は、2
5±1℃の範囲では特性にほとんど変化は見られないの
で、回路基板11の温度が26℃であれば、回路基板1
1の温度は基準温度Θ1に維持されたと判断できる。
Then, the Peltier driver 106 receiving this voltage signal drives the driving current (FIG. 2) corresponding to the voltage signal.
(Refer to the left side of (B)) flows into the input portion of the Peltier element 12 in a predetermined direction, and the Peltier element 12 is cooled with a small output. This prevents the Peltier device 12 from excessively cooling the controlled part, and as shown on the left side of FIG. 2A, the temperature of the circuit board 11 does not fall below the reference temperature Θ1 and stably. Maintained at reference temperature # 1. Here, in the present embodiment, by setting the reference temperature, the upper limit temperature, and the amplification factor to specific temperatures as described above, the temperature of the controlled portion (the circuit board 11) is maintained at, for example, about 26 ° C. However, the semiconductor laser light source 10 of the present embodiment
In the range of 5 ± 1 ° C., there is almost no change in the characteristics, so if the temperature of the circuit board 11 is 26 ° C.,
It can be determined that the temperature of No. 1 was maintained at the reference temperature # 1.

【0032】一方、図2(A)の右側に示すように、周
囲温度が上限温度Θ2以上となった場合は、周囲温度検
出手段15の検出信号が、上限基準回路201の出力電
圧より大きくなる。そして、この結果が、高温側温度比
較回路202を通して増幅率決定回路205に与えら
れ、同回路205が、増幅回路105の増幅率を高倍率
に切り換える。この結果、増幅回路105からは、比較
的大きな電圧信号が出力される。そして、この電圧信号
を受けたペルチェドライバ106が、その電圧信号に応
じた駆動電流(図2(B)の右側参照)をペルチェ素子
12の入力部分に所定方向に流し、ペルチェ素子12を
大きな出力で冷却動作させる。これにより、周囲温度に
よる影響とペルチェ素子12の出力とのバランスが保た
れて、図2(A)の右側に示すように、被制御部分の温
度が基準温度Θ1に維持される。
On the other hand, as shown on the right side of FIG. 2A, when the ambient temperature becomes higher than the upper limit temperature Θ2, the detection signal of the ambient temperature detecting means 15 becomes larger than the output voltage of the upper limit reference circuit 201. . Then, the result is given to the amplification factor determination circuit 205 through the high temperature side temperature comparison circuit 202, and the circuit 205 switches the amplification factor of the amplification circuit 105 to a high magnification. As a result, a relatively large voltage signal is output from the amplifier circuit 105. Then, the Peltier driver 106 receiving the voltage signal causes a drive current (see the right side of FIG. 2B) corresponding to the voltage signal to flow in a predetermined direction to an input portion of the Peltier element 12 and output a large output. To perform cooling operation. Thereby, the balance between the influence of the ambient temperature and the output of the Peltier element 12 is maintained, and the temperature of the controlled portion is maintained at the reference temperature Θ1, as shown on the right side of FIG.

【0033】このように本実施形態の温度制御装置によ
れば、周囲温度が変化しても、それを相殺するようにペ
ルチェ素子12の出力が大小に切り換えられるから、被
制御部分(回路基板11)の温度を基準温度Θ1に安定
して維持できる。また、周囲温度が上限温度と下限温度
との間にあるときには、ペルチェ素子12の出力は小さ
くなり、過剰な冷却又は加熱を防いで、被制御部分の温
度が基準温度を上下するような挙動が抑えられるから、
ペルチェ素子12が冷却動作と加熱動作とに頻繁に切り
換えられることが防がれ、ペルチェ素子12の劣化を防
止することができる。
As described above, according to the temperature control device of the present embodiment, even if the ambient temperature changes, the output of the Peltier element 12 is switched between large and small so as to cancel the change. ) Can be stably maintained at the reference temperature # 1. Further, when the ambient temperature is between the upper limit temperature and the lower limit temperature, the output of the Peltier element 12 decreases, preventing excessive cooling or heating, and causing a behavior in which the temperature of the controlled portion rises and falls below the reference temperature. Because it can be suppressed,
Frequent switching of the Peltier device 12 between the cooling operation and the heating operation is prevented, and deterioration of the Peltier device 12 can be prevented.

【0034】なお、上述した具体例では、ペルチェ素子
12に冷却動作のみを行わせて被制御部分の温度を基準
温度に維持したものを説明したが、それとは逆に、ペル
チェ素子12に加熱動作のみを行わせて被制御部分の温
度を基準温度に維持し、周囲温度が下限温度を下回った
ときに、増幅回路105の増幅率を上げて、ペルチェ素
子12の加熱動作の出力が上げるような場合もある。
In the specific example described above, the Peltier element 12 is operated only to perform the cooling operation, and the temperature of the controlled part is maintained at the reference temperature. Only when the temperature of the controlled part is maintained at the reference temperature, and when the ambient temperature falls below the lower limit temperature, the amplification factor of the amplifier circuit 105 is increased to increase the output of the heating operation of the Peltier element 12. In some cases.

【0035】<他の実施形態>本発明は、前記実施形態
に限定されるものではなく、例えば、以下に説明するよ
うな実施形態も本発明の技術的範囲に含まれ、さらに、
下記以外にも要旨を逸脱しない範囲内で種々変更して実
施することができる。 (1)前記実施形態では、回路基板11を被制御部分と
したものを例示したが、被制御部分は必ずしも回路基板
等の電気製品でなくてもよく、また、発熱するものでな
くてもよい。
<Other Embodiments> The present invention is not limited to the above embodiments. For example, the following embodiments are also included in the technical scope of the present invention.
In addition to the following, various changes can be made without departing from the scope of the invention. (1) In the above embodiment, the circuit board 11 is used as a controlled part. However, the controlled part is not necessarily an electric product such as a circuit board, and may not generate heat. .

【0036】(2)前記実施形態では、上限温度と下限
温度とを1つずつ設けただけだが、例えば、これら上限
温度と下限温度を複数にして、周囲温度が変動するに従
い、複数回に亘って増幅率を変更する構成としてもよ
い。このような構成とすれば、より一層幅広い周囲温度
に対して、被制御部分の温度を基準温度に維持すること
ができる。
(2) In the above embodiment, only one upper limit temperature and one lower limit temperature are provided. For example, when the upper limit temperature and the lower limit temperature are set to a plurality, and the ambient temperature fluctuates, a plurality of times are set. It is also possible to adopt a configuration in which the amplification factor is changed by changing the gain. With such a configuration, the temperature of the controlled portion can be maintained at the reference temperature for an even wider ambient temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る温度制御装置のブロ
ック図
FIG. 1 is a block diagram of a temperature control device according to an embodiment of the present invention.

【図2】(A)被制御部分の温度変化を示すグラフ (B)ペルチェ素子に与えられる駆動電流の変化を示す
グラフ
FIG. 2A is a graph showing a change in temperature of a controlled part; FIG. 2B is a graph showing a change in a driving current applied to a Peltier element;

【符号の説明】[Explanation of symbols]

11…回路基板(被制御部分) 12…ペルチェ素子 13…制御温度検出手段 15…周囲温度検出手段 100…増幅手段 200…増幅率決定手段 Θ1…基準温度 Θ2…上限温度 Θ3…下限温度 11 Circuit board (controlled part) 12… Peltier element 13 ... Control temperature detecting means 15. Ambient temperature detection means 100 ... amplification means 200: amplification factor determining means Θ1… Reference temperature Θ2: Maximum temperature Θ3: Lower limit temperature

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 35/28 F25B 21/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 35/28 F25B 21/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ペルチェ素子に加熱又は冷却のいずれか
一方の動作を行わせて、被制御部分の温度を予め設定し
た基準温度に維持するように制御すると共に、 前記ペルチェ素子に冷却動作を行わせている場合には、
前記被制御部分の周囲温度が予め設定した上限温度以上
に上がったときに、前記ペルチェ素子の冷却動作の出力
を上げ、 前記ペルチェ素子に加熱動作を行わせている場合には、
前記周囲温度が予め設定した下限温度以下に下がったと
きに、前記ペルチェ素子の加熱動作の出力を上げるよう
にしたことを特徴とする温度制御方法。
1. A Peltier device performs either one of heating and cooling operations to control a temperature of a controlled portion to be maintained at a preset reference temperature, and performs a cooling operation to the Peltier device. If so,
When the ambient temperature of the controlled portion is higher than or equal to a preset upper limit temperature, the output of the cooling operation of the Peltier element is increased, and when the Peltier element is performing a heating operation,
A temperature control method, wherein the output of the heating operation of the Peltier element is increased when the ambient temperature falls below a preset lower limit temperature.
【請求項2】 ペルチェ素子と、 被制御部分の温度を検出する制御温度検出手段と、 前記制御温度検出手段の検出結果と予め設定した基準温
度との温度差に応じた電流を、変更可能な増幅率で増幅
させて駆動電流として前記ペルチェ素子に与える増幅手
段とを備え、前記ペルチェ素子に加熱又は冷却のいずれ
か一方の動作を行わせて、前記被制御部分の温度を前記
基準温度に維持するように制御する温度制御装置におい
て、 前記被制御部の周囲温度を検出する周囲温度検出手段
と、 前記周囲温度検出手段の検出結果を受けて、前記増幅手
段の増幅率を決定する増幅率決定手段とを備え、 前記増幅率決定手段は、前記ペルチェ素子が冷却動作を
行いかつ前記周囲温度が予め設定した上限温度より大き
くなったときと、前記ペルチェ素子が加熱動作を行いか
つ前記周囲温度が予め設定した下限温度より小さくなっ
たときに、前記増幅手段の増幅率を上げることを特徴と
する温度制御装置。
2. A Peltier element, a control temperature detecting means for detecting a temperature of a controlled part, and a current corresponding to a temperature difference between a detection result of the control temperature detecting means and a preset reference temperature can be changed. Amplifying means for amplifying at a gain and applying the driving current to the Peltier device as the drive current, and causing the Peltier device to perform one of heating and cooling operations to maintain the temperature of the controlled portion at the reference temperature. An ambient temperature detecting means for detecting an ambient temperature of the controlled part, and an amplification factor determining means for determining an amplification factor of the amplifying means in response to a detection result of the ambient temperature detecting means. Means, the amplification factor determining means, when the Peltier element performs a cooling operation and when the ambient temperature becomes higher than a preset upper limit temperature, the Peltier element is heated When subjected to work and the ambient temperature is smaller than the lower limit temperature set beforehand, the temperature control apparatus characterized by increasing the amplification factor of said amplifying means.
JP18795299A 1999-07-01 1999-07-01 Temperature control method and device Expired - Fee Related JP3537354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18795299A JP3537354B2 (en) 1999-07-01 1999-07-01 Temperature control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18795299A JP3537354B2 (en) 1999-07-01 1999-07-01 Temperature control method and device

Publications (2)

Publication Number Publication Date
JP2001015819A JP2001015819A (en) 2001-01-19
JP3537354B2 true JP3537354B2 (en) 2004-06-14

Family

ID=16215048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18795299A Expired - Fee Related JP3537354B2 (en) 1999-07-01 1999-07-01 Temperature control method and device

Country Status (1)

Country Link
JP (1) JP3537354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144431A (en) * 2015-02-09 2016-08-12 ソニー株式会社 Thermal cycler for nucleic acid amplification, nucleic acid analysis device, system for controlling temperature change rate in nucleic acid amplification reaction, method for controlling temperature change rate in nucleic acid amplification reaction, nucleic acid analysis method, and program for controlling temperature in nucleic acid amplification reaction
WO2017077649A1 (en) * 2015-11-06 2017-05-11 三菱電機株式会社 Outdoor unit of air-conditioner

Also Published As

Publication number Publication date
JP2001015819A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
US6205790B1 (en) Efficient thermoelectric controller
US6094918A (en) Thermoelectric cooler control circuit
US6011371A (en) Proportional integral fan controller for electronic device
US4571728A (en) Temperature control device for a semiconductor laser
EP0737411B1 (en) Light source intensity control device
US4158180A (en) Temperature control circuit
US6336592B1 (en) Thermal control for a test and measurement instrument
US5181420A (en) Hot wire air flow meter
FR2504293A1 (en) METHOD AND MODULE FOR TEMPERATURE REGULATION FOR AN ELECTRONIC CIRCUIT
JP3537354B2 (en) Temperature control method and device
JPH05206771A (en) Automatic output power control circuit
JP2000353830A (en) Method and device for driving peltier element
KR20090012078A (en) A circuit arrangement for the temperature-dependent regulation of a load current
JPS60198907A (en) Transformerless push-pull output circuit
JP3403195B2 (en) In particular, a MESFET power amplifier mounted on a satellite for microwave signal amplification and its power supply unit
US7205838B2 (en) Circuit structure capable of adjusting gradient of output to temperature variation
JP2010258432A (en) Device and method for driving peltier element
JP3075205B2 (en) High frequency detector, transmission power controller, and method of installing high frequency detector
JP2001257386A (en) Peltier controller and peltier element control method
JP2001015818A (en) Temperature control and its device
JPH04278705A (en) High frequency power amplifier
JP2003068955A (en) Temperature distribution control electronic cooling unit
JP2002048830A (en) Method and device for measuring output characteristics of power amplifier
JPS5814616Y2 (en) Cooling temperature control circuit for small cooler
JPH04252606A (en) Transmission power amplifier circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees