JPS6047545B2 - Radiant heat measuring device - Google Patents

Radiant heat measuring device

Info

Publication number
JPS6047545B2
JPS6047545B2 JP55047779A JP4777980A JPS6047545B2 JP S6047545 B2 JPS6047545 B2 JP S6047545B2 JP 55047779 A JP55047779 A JP 55047779A JP 4777980 A JP4777980 A JP 4777980A JP S6047545 B2 JPS6047545 B2 JP S6047545B2
Authority
JP
Japan
Prior art keywords
radiant heat
recess
thermopile
container
metal container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55047779A
Other languages
Japanese (ja)
Other versions
JPS56143930A (en
Inventor
邦明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP55047779A priority Critical patent/JPS6047545B2/en
Publication of JPS56143930A publication Critical patent/JPS56143930A/en
Publication of JPS6047545B2 publication Critical patent/JPS6047545B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は物体表面から放射される輻射熱を測定する輻射
熱計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiant heat measuring device that measures radiant heat emitted from the surface of an object.

物体の表面から放射される輻射熱を測定する場合、当該
熱エネルギを一旦収束器によつて収束し、これを熱電対
等の温度センサーで感知させる−のが感度上有効である
When measuring radiant heat emitted from the surface of an object, it is effective in terms of sensitivity to first converge the heat energy with a concentrator and then sense it with a temperature sensor such as a thermocouple.

そしてこの際使用されるセンサーとしては複数の熱電対
を直列接続した熱電堆が一般に使用され、超電力の増大
が図られている。
As a sensor used at this time, a thermopile having a plurality of thermocouples connected in series is generally used to increase superpower.

第1図にはか、る輻射熱測定装置の原理図が示されてお
り、Aは熱電堆、Bは熱接点、Cは冷接点、Dは補償導
線、Eは輻射エネルギ、Fは収束レンズであり、被測定
物から放射された輻射エネルギEはレンズFによつて収
束された熱接点Bに収束し、これによつて熱電堆Aに生
じた超電力は補償導線Dから取り出される。
Figure 1 shows the principle diagram of the radiant heat measuring device, where A is the thermopile, B is the hot junction, C is the cold junction, D is the compensating conductor, E is the radiant energy, and F is the converging lens. The radiant energy E emitted from the object to be measured is focused on the thermal junction B by the lens F, and the superpower generated in the thermopile A is extracted from the compensating conductor D.

しかし、かかる従来例においては第1図の如く、冷接点
(基準温度接点)Cが大気中に晒され・ているので、該
接点の温度が絶えず変化し、従つて熱電堆Aの起電力も
これに伴つて変化する。
However, in such a conventional example, as shown in FIG. 1, the cold junction (reference temperature junction) C is exposed to the atmosphere, so the temperature of the junction constantly changes, and therefore the electromotive force of the thermopile A also increases. It will change accordingly.

従つて、冷接点Cの温度を常時測定し、熱電堆Aからの
超電力を補正する必要があり、非常に煩しい作業となつ
ていた。勿論、冷接点Cを氷等が入つた恒温槽等に収納
して一定温度に保持することも可能てあるが、冷接点c
の数が多い場合にはそれに応じて恒温槽の数もふやさな
くてはならず、恒温槽自体の温度を一定に保持するとい
う手間数の増加と相俟つて複雑になるとともに機動性に
欠けるという難点が生じていた。
Therefore, it is necessary to constantly measure the temperature of the cold junction C and correct the superpower from the thermopile A, which is a very troublesome task. Of course, it is also possible to keep the cold junction C at a constant temperature by storing it in a thermostat containing ice, etc., but the cold junction C
If the number of thermostats is large, the number of thermostats must be increased accordingly, which increases the amount of work required to maintain the temperature of the thermostats themselves, which increases complexity and lacks maneuverability. A difficulty had arisen.

本発明の目的は前述の如き難点を排除し得る輻射熱測定
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a radiant heat measuring device that can eliminate the above-mentioned difficulties.

以下図面に示す実施例を参照しながら本発明を説明する
The present invention will be described below with reference to embodiments shown in the drawings.

第3図において、1は蒸留水24が充填されるべき金属
容器であり、材質としては後述の熱電堆の冷接点が同容
器1内の温度とほゞ同一に保持されるよう熱伝導率の良
好なものが使用される。
In FIG. 3, reference numeral 1 denotes a metal container to be filled with distilled water 24, and the material is made of a material with a thermal conductivity so that the cold junction of the thermoelectric pile (described later) is maintained at almost the same temperature as the inside of the container 1. Only good quality is used.

2は金属容器1に取り付けられたベローズであり、同ベ
ローズと容器1とは容器1に穿設された連通孔3を介し
て連通状態に形成されている。
Reference numeral 2 denotes a bellows attached to the metal container 1, and the bellows and the container 1 are in communication with each other through a communication hole 3 formed in the container 1.

4はマイクロスイッチであり、ベローズ2の伸縮方向に
設けられており、同ベローズ及びスイッチ4間の距離は
後述の如くベローズ2が伸長した場合に同スイッチ4に
当接し得るように設定されている。
Reference numeral 4 denotes a microswitch, which is provided in the direction of expansion and contraction of the bellows 2, and the distance between the bellows and the switch 4 is set so that it can come into contact with the switch 4 when the bellows 2 is expanded, as will be described later. .

6は熱電素子、7a,7bは絶縁材、8は放熱フィンて
あり、熱電素子6は後述の如く金属容器1を強制冷却す
るためのもので、絶縁材7aを介して同容器1に取り付
けられており、さらに絶縁材7bを介して放熱フィン8
が熱電素子6の外周に設けられている。
6 is a thermoelectric element, 7a and 7b are insulating materials, and 8 is a radiation fin.The thermoelectric element 6 is for forced cooling of the metal container 1 as described later, and is attached to the container 1 via an insulating material 7a. radiating fins 8 via the insulating material 7b.
is provided on the outer periphery of the thermoelectric element 6.

9は熱電堆てあり、第2図に示すように複数の熱電対9
a,9b,9c・・・・・・・が熱接点9a″,9b″
,9C″・・・・・・・を中心に放射状に配置されて直
列に接続されており、両端部の冷接点10,1『は夫々
補償導線10a,10bに接続され、同導線10a,1
0bから起電力が取り出される。
9 is a thermoelectric stack, and as shown in Fig. 2, a plurality of thermocouples 9
a, 9b, 9c... are thermal contacts 9a'', 9b''
, 9C''... are arranged radially around the center and connected in series, and the cold junctions 10 and 1'' at both ends are connected to the compensating conductors 10a and 10b, respectively.
Electromotive force is extracted from 0b.

このように構成された熱電堆9が金属容器1に取り付け
られるのであり、同熱電堆9の冷接点9a″,9b″,
9C″・・ ・・・・が、同容器1の外壁に凹設された
凹部11の周囲に絶縁材12を介して止め螺子13によ
つて固定される。熱電堆9の中央部たる熱接点9a″,
9b″,9C″・・・・・・・は自由端として凹部11
内に位置し、同凹部の底面14から離間している。
The thermopile stack 9 configured in this way is attached to the metal container 1, and the cold contacts 9a'', 9b'',
9C''... is fixed by a set screw 13 through an insulating material 12 around a recess 11 formed in the outer wall of the container 1.Thermal junction is the central part of the thermoelectric stack 9. 9a″,
9b'', 9C''... are the free ends of the recess 11
It is located within the recess and is spaced apart from the bottom surface 14 of the recess.

5は収束レンズであり、被測定物(図示せず)の表面か
ら放射された輻射熱(輻射エネルギ)は同レンズによつ
て収束され、熱電堆9の中央部に収束するようになつて
いる。
5 is a converging lens, and the radiant heat (radiant energy) radiated from the surface of the object to be measured (not shown) is converged by the converging lens and converged onto the center of the thermoelectric pile 9.

輻射エネルギを収束する手段としては、レンズの他に凹
面鏡円錐鏡等が使用される。
In addition to lenses, concave mirrors, conical mirrors, etc. are used as means for converging the radiant energy.

凹部11の底面14には、輻射熱を反射せしめる反射塗
料、例えば銀メッキが塗布されており、これによつて輻
射熱による金属容器1の温度上昇が低減される。
The bottom surface 14 of the recess 11 is coated with a reflective paint that reflects radiant heat, such as silver plating, thereby reducing the temperature rise in the metal container 1 due to the radiant heat.

15は金属容器1を収納するためのケースであり、16
は冷却ファン、17は同ファンから取り入れられる空気
の流通口、18はケース15内の空気を放出させるため
の放出口である。
15 is a case for storing the metal container 1;
17 is a cooling fan, 17 is a circulation port for air taken in from the fan, and 18 is a discharge port for discharging the air inside the case 15.

金属容器1はケース15の内側に形成された支持枠19
に断熱材20を介して保持されている。
The metal container 1 has a support frame 19 formed inside the case 15.
is held through a heat insulating material 20.

尚、21は熱電素子6に直流電流を供給するための直流
電源であり、熱電素子6と同電源とは直流回路2「を構
成しており、上記マイクロスイッチ4は同回路を0N−
OFFするように接続されている。22は熱電堆9の冷
接点10,1『に接続された記録計であり、これによつ
て熱電堆9に生じた記電力が記録される。
Note that 21 is a DC power supply for supplying DC current to the thermoelectric element 6, and the thermoelectric element 6 and the power supply constitute a DC circuit 2, and the microswitch 4 connects the circuit to 0N-
It is connected to turn off. A recorder 22 is connected to the cold junctions 10, 1' of the thermopile 9, and records the electric power generated in the thermopile 9.

23は冷却ファン用交流電源である。23 is an AC power source for the cooling fan.

以上の構成に基づき以下にその作用を説明する。The operation will be explained below based on the above configuration.

使用に際し、金属容器1内は蒸留水24の状態であり、
か)る状態ではベローズ2はマイクロスイッチ4から離
間しており、熱電素子6と直流電源21とから構成され
る直流回路2「は0Nとなつており、同容器1は熱電素
子6によつて冷却され、これとともに冷却ファン16も
作動し、流通口17から取り入れられた空気は放熱フィ
ン8から熱を奪つて放出口18から外部に流出する。
When used, the inside of the metal container 1 is in a state of distilled water 24,
In this state, the bellows 2 is separated from the microswitch 4, the DC circuit 2 consisting of the thermoelectric element 6 and the DC power supply 21 is at 0N, and the container 1 is powered by the thermoelectric element 6. The air is cooled, and the cooling fan 16 also operates, and the air taken in through the flow opening 17 removes heat from the radiation fins 8 and flows out through the discharge opening 18.

こうして金属容器1内の蒸留水24の温度が下降し、次
第に同容器1の内壁に氷結25し始める。かくて氷結に
よる体積膨張によりベローズ2内の水圧が高まり、同ベ
ローズはマイクロスイッチ4方向へ伸長し、同容器1内
が氷と水の平衡共存状態となつたところでマイクロスイ
ッチ4に当接し、上記直列回路2「は0FFとなり、同
時にファン16の作動も停止する。
In this way, the temperature of the distilled water 24 inside the metal container 1 decreases, and gradually begins to freeze 25 on the inner wall of the metal container 1. The water pressure inside the bellows 2 increases due to volumetric expansion due to freezing, and the bellows extends in the direction of the microswitch 4, and when the inside of the container 1 reaches an equilibrium coexistence state of ice and water, it comes into contact with the microswitch 4, and the above-mentioned The series circuit 2' becomes 0FF, and at the same time, the operation of the fan 16 also stops.

か)る状態が暫くの間維持され、或る時間経過゛すると
同容器1内の氷が溶解し始め、ベローズ2はマイクロス
イッチ4から離間し、上記直列回路2「は0Nとなり、
熱電素子6による冷却が始まるとともに冷却ファン16
も作動する。
This state is maintained for a while, and after a certain period of time, the ice in the container 1 begins to melt, the bellows 2 separates from the microswitch 4, and the series circuit 2 becomes 0N.
As cooling by the thermoelectric element 6 begins, the cooling fan 16
also works.

このような動作が使用中常時繰り返され、同容器1内は
常にO℃に保持される。
Such an operation is constantly repeated during use, and the inside of the container 1 is always maintained at 0°C.

同容器1は金属製であるから、熱伝導性が良好であり、
従つて熱電堆9の冷接点9a″,9b″″,9C″・・
・ ・・・は、常時零位に保持される。
Since the container 1 is made of metal, it has good thermal conductivity,
Therefore, the cold junctions 9a'', 9b'''', 9C'' of the thermoelectric pile 9...
. . . are always held at zero.

以上のように本発明は、蒸留水が充填された金・属容器
と、同容器を冷却して同容器内を水と氷の平衡共存状態
に保持する手段とを備え、熱電堆の冷接点が金属容器に
絶縁材を介して取り付けられているから、冷接点は大気
温度に影響されることなく、常に零位に保持され、従つ
て熱電堆からの超電力に何等の補正を加えることなく測
定値として読み取れるようになる。また冷接点の数に応
じて恒温槽の数を変える必要がないはかりか、か)る恒
温槽は自動的に一定温度に保持されるのて手間が省け、
″機動性、随意性が大になる。
As described above, the present invention includes a metal container filled with distilled water, a means for cooling the container and maintaining the container in an equilibrium coexistence state of water and ice, and a cold junction of a thermoelectric pile. is attached to the metal container via an insulating material, the cold junction is always held at zero without being affected by atmospheric temperature, and therefore the superpower from the thermopile is not compensated for in any way. It becomes possible to read it as a measurement value. In addition, there is no need to change the number of thermostatic chambers depending on the number of cold junctions.
``Mobility and discretion become greater.

【図面の簡単な説明】 第1図は、従来の測定装置の原理を示す縦断側面図、第
2図は本発明に係る装置に使用される熱電堆の平面図、
第3図は本発明に係る装置の縦断面図である。 1・・・・・・金属容器、5・・・・・・収束レンズ、
9・・・・・・熱電堆、9a″,9b″,9C″・・・
・・・冷接点、20・・絶縁材。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a longitudinal cross-sectional side view showing the principle of a conventional measuring device, FIG. 2 is a plan view of a thermopile used in the device according to the present invention,
FIG. 3 is a longitudinal sectional view of the device according to the invention. 1... Metal container, 5... Converging lens,
9...Thermoelectric stack, 9a'', 9b'', 9C''...
...Cold junction, 20...Insulating material.

Claims (1)

【特許請求の範囲】 1 被測定物の表面から放射される輻射熱を収束せしめ
る収束器と、直列に接続された複数の熱電対からなる熱
電堆とを備え、該熱電堆の熱接点が輻射熱の収束点に配
置された輻射熱計測装置において、蒸留水が充填された
金属容器と、該容器を冷却して同容器内を水と氷の平衡
共存状態に保持する冷却手段とを備え、前記熱電堆の冷
接点が前記金属容器に絶縁材を介して取り付けられてい
ることを特徴とする輻射熱計測装置。 2 金属容器の外壁には凹部が形成されており、熱電堆
の冷接点は該凹部の周囲外壁に取り付けられているとと
もに熱接点は同凹部内に位置しかつその底面から離間し
ていることを特徴とする特許請求の範囲第1項記載の輻
射熱計測装置。 3 熱電堆の熱接点は収束器と凹部底面との間に位置し
、同底面には輻射熱を反射せしめる反射塗料が塗布され
ていることを特徴とする特許請求の範囲第2項記載の輻
射熱計測装置。
[Scope of Claims] 1. A device comprising a concentrator that converges radiant heat emitted from the surface of an object to be measured, and a thermopile composed of a plurality of thermocouples connected in series, and a thermal junction of the thermopile condenses the radiant heat. A radiant heat measurement device placed at a convergence point includes a metal container filled with distilled water and a cooling means for cooling the container to maintain an equilibrium coexistence state of water and ice inside the container. A radiant heat measuring device characterized in that a cold junction is attached to the metal container via an insulating material. 2. A recess is formed in the outer wall of the metal container, and the cold junction of the thermopile is attached to the outer wall surrounding the recess, and the hot contact is located within the recess and spaced from the bottom surface of the recess. A radiant heat measuring device according to claim 1. 3. Radiant heat measurement according to claim 2, characterized in that the thermal junction of the thermopile is located between the concentrator and the bottom of the recess, and the bottom is coated with a reflective paint that reflects radiant heat. Device.
JP55047779A 1980-04-11 1980-04-11 Radiant heat measuring device Expired JPS6047545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55047779A JPS6047545B2 (en) 1980-04-11 1980-04-11 Radiant heat measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55047779A JPS6047545B2 (en) 1980-04-11 1980-04-11 Radiant heat measuring device

Publications (2)

Publication Number Publication Date
JPS56143930A JPS56143930A (en) 1981-11-10
JPS6047545B2 true JPS6047545B2 (en) 1985-10-22

Family

ID=12784852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55047779A Expired JPS6047545B2 (en) 1980-04-11 1980-04-11 Radiant heat measuring device

Country Status (1)

Country Link
JP (1) JPS6047545B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133329A (en) * 1983-12-22 1985-07-16 Fuji Xerox Co Ltd Non-contact temperature detection control apparatus
JPH03256699A (en) * 1990-03-08 1991-11-15 Amada Co Ltd Method and device for separating product and punch press
JPH0415025U (en) * 1990-05-25 1992-02-06

Also Published As

Publication number Publication date
JPS56143930A (en) 1981-11-10

Similar Documents

Publication Publication Date Title
US5588300A (en) Thermoelectric refrigeration system with flexible heatconducting element
JP4579993B2 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
AU717357B2 (en) Method and device for effecting temperature compensation in load cell type load detector
KR100628283B1 (en) Infrared sensor stabilisable in temperature, and infrared thermometer with a sensor of this type
JPS6129648B2 (en)
KR100539205B1 (en) Measuring tip for a radiation thermometer
US4150552A (en) Infrared cooler for restricted regions
JP2004296959A (en) Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
JPS6047545B2 (en) Radiant heat measuring device
US4147040A (en) Radiation cooling devices and processes
US3354720A (en) Temperature sensing probe
US3994277A (en) Radiation cooling devices and processes
JPH0345778B2 (en)
US3192727A (en) Isothermal reference apparatus
JPH075047A (en) Radiation heat sensor
US3142986A (en) Thermoelectric dew point hygrometer
US4160896A (en) Heat developing device for locally heat developing a dry photosensitive film
JPH0217374A (en) Cold storage chamber
JP4490580B2 (en) Infrared sensor
SU1283553A2 (en) Differential microcalorimeter
US2472759A (en) Thermopile for measuring air temperatures
JPH0476618B2 (en)
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat
SU1643956A1 (en) Temperature-sensitive element
SU798760A1 (en) Constant-temperature cabinet