JPS62143351A - Automatic optical axis adjuster - Google Patents

Automatic optical axis adjuster

Info

Publication number
JPS62143351A
JPS62143351A JP28348385A JP28348385A JPS62143351A JP S62143351 A JPS62143351 A JP S62143351A JP 28348385 A JP28348385 A JP 28348385A JP 28348385 A JP28348385 A JP 28348385A JP S62143351 A JPS62143351 A JP S62143351A
Authority
JP
Japan
Prior art keywords
focusing lens
electron source
optical axis
diaphragm
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28348385A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwai
岩井 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28348385A priority Critical patent/JPS62143351A/en
Publication of JPS62143351A publication Critical patent/JPS62143351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To aim at improvements in controllability of an electron microscope and maintenance efficiency, by shifting an electron source, a focusing lens and a diaphragm automatically to a position where an irradiation current quantity comes to the maximum. CONSTITUTION:An analog signal out of an irradiation current detector 15 is converted into a digital signal at an irradiation amperometric block 16 in a control circuit 14, and whether this signal is the maximum value or not is judged by a maximum value judging block 17. And, if it is not the maximum value, such an electric signal that is necessary for shifting an electron source 1, a focusing lens 4 and further a diaphragm 6 as far as a proper distance is generated by a driving current generating block 18, and it is transmitted to an electron source driving device 11, a focusing lens driving device 12 and a diaphragm transfer device 13, respectively. Driving devices 11-13 shift the focusing lens 4 and the diaphragm 6 as far as a proper distance in a direction vertical to an optical axis. With this movement, a charge quantity to be irradiated to a sample 10 or a manipulator 9 is varied. This charge quantity is detected again by the irradiation current detector 15, and fed back to the control circuit 14. After repeating suchlike feedback, the electron source 1, the focusing lens 4 and the diaphragm 6 are shifted to a position where the irradiation current quantity comes to the maximum, stopping, them.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子顕微鏡等で初期設定の際におこなわれる光
軸の調整に適用される自動光軸調整装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an automatic optical axis adjustment device that is applied to adjusting the optical axis during initial setting of an electron microscope or the like.

従来の技術 近年、電子顕微鏡は光学顕微鏡より優れた分解能と深い
焦点深度をもつ状態観察装置として研究所・工場等に普
及しており、そのL作および初回設定を簡単かつ迅速に
するため、マイクロコンピュータ(以下マイコン)を備
え、自動化された装置の要求が高まっている。
Conventional technology In recent years, electron microscopes have become popular in laboratories, factories, etc. as condition observation devices with better resolution and deeper depth of focus than optical microscopes. Demand for automated devices equipped with computers (hereinafter referred to as microcomputers) is increasing.

以下、従来の電子顕微鏡について構成および動作につい
て説明する。
The configuration and operation of a conventional electron microscope will be described below.

第3図は従来の電子顕微鏡の構成を示すものである。第
3図において、■は電子源、2は電子源lを手動で光軸
に垂直方向に移動させるための調整ネジ、3は電子源l
から放出された電子を加速するために電圧を印加する陽
極である。4は加速された電子を集束するための電磁レ
ンズ(以下集束レンズ)、5は集束レンズ4を手動で光
軸に垂直方向に移動させるための調整ネジ、6は加速か
つ集束された電子の通過量を変えるための絞りである。
FIG. 3 shows the configuration of a conventional electron microscope. In Figure 3, ■ is an electron source, 2 is an adjustment screw for manually moving the electron source l in a direction perpendicular to the optical axis, and 3 is an electron source l.
This is an anode that applies voltage to accelerate the electrons emitted from the 4 is an electromagnetic lens (hereinafter referred to as a focusing lens) for focusing the accelerated electrons, 5 is an adjustment screw for manually moving the focusing lens 4 in a direction perpendicular to the optical axis, and 6 is a passage through which the accelerated and focused electrons pass. This is an aperture to change the amount.

7は絞り6を手動で光軸に垂直方向に移動させるための
装置である。8は絞り6を通過した電子をさらに集束あ
るいは偏向するための電磁レンズ(以下対物レンズ)、
9は試料10を装置内で固定あるいは移動させるための
マニピュレータである。このように細く絞られた電子線
を試料に照射し、これにより試料から発生する反射電子
、透過電子、二次電子等を検出することにより試料の形
状、構造などを観察、記録することができる。
7 is a device for manually moving the diaphragm 6 in a direction perpendicular to the optical axis. 8 is an electromagnetic lens (hereinafter referred to as objective lens) for further focusing or deflecting the electrons that have passed through the aperture 6;
9 is a manipulator for fixing or moving the sample 10 within the apparatus. By irradiating a sample with this narrowly focused electron beam and detecting reflected electrons, transmitted electrons, secondary electrons, etc. generated from the sample, it is possible to observe and record the shape and structure of the sample. .

発明が解決しようとする問題点 しかしながら、上記の従来の構成では電子源Iの交換や
絞り6の交換の際などに光軸がずれ、その調整が操作の
初期設定として手動で電子源位置調整ネジ2と集束レン
ズ位置調整ネジ5と絞り位置調整装置7で光軸を合せる
ことは、煩雑かつ多くの時間を費やす作業であった。ま
た、光軸の調整は電子顕微鏡の基本性能である分解能に
かかわる作業であり、調整にW)練を要している。
Problems to be Solved by the Invention However, in the above-mentioned conventional configuration, the optical axis shifts when replacing the electron source I or the diaphragm 6, and the adjustment is manually performed using the electron source position adjustment screw as an initial setting for operation. 2, the focusing lens position adjustment screw 5, and the aperture position adjustment device 7 are complicated and time-consuming tasks. Furthermore, adjustment of the optical axis is a work related to resolution, which is the basic performance of an electron microscope, and requires practice.

本発明は上記従来の問題点を解決するもので、光軸調整
の自動化・高精度化・操作性の向上を実現することので
きる自動光軸調整装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide an automatic optical axis adjustment device that can automate optical axis adjustment, increase precision, and improve operability.

問題点を解決するだめの手段 この目的を達成するために本発明の自動光軸調整装置は
電子顕微鏡に試料あるいはマニピュレータに照射された
電荷量(電流量)を検出する照射電流検出器と電子源を
光軸に垂直方向に移動させるための駆動装置と集束レン
ズを光軸に垂直方向に移動させるための駆動装置と絞り
を光軸に垂直方向に移動させるための駆動装置とを備え
、照射電流検出器で得られた電気信号をもとに上記各駆
動装置を制御する制御回路の構成を有している。
Means for Solving the Problems To achieve this objective, the automatic optical axis adjustment device of the present invention includes an electron microscope equipped with an irradiation current detector that detects the amount of charge (current amount) irradiated onto a sample or a manipulator, and an electron source. The irradiation current is It has a configuration of a control circuit that controls each of the drive devices described above based on the electrical signals obtained by the detector.

作用 この構成によって、照射電流量が最大となる位置に電子
源、集束レンズ、絞りを自動的に移動させること、すな
わち、電子源からマニピュレータまでの光軸をあわせる
ことができ、電子顕微鏡の操作性の向上と保守の効率を
高めることができる。
Function: With this configuration, the electron source, focusing lens, and diaphragm can be automatically moved to the position where the amount of irradiation current is maximum, that is, the optical axis from the electron source to the manipulator can be aligned, which improves the operability of the electron microscope. It is possible to improve the performance and maintenance efficiency.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例における自動光軸ali
l fl装置の主構成を示すものである。第1図におい
て、11は電子源lに機械的に接続された電子源駆動装
置、12は集束レンズ駆動装置で集束レンズ4に機械的
に接続されている。13は絞り6に機械的に接続された
絞り駆動装置、15は照射電流検出器でありマニピュレ
ータ9と電気的に接続されている。14は制御回路で、
照射電流検出器15で受けた照射電流量を人力し、各駆
動装置1112.13に適当な電気信号を出力できる。
FIG. 1 shows the automatic optical axis ali in the first embodiment of the present invention.
1 shows the main configuration of the lfl device. In FIG. 1, 11 is an electron source driving device mechanically connected to the electron source 1, and 12 is a focusing lens driving device mechanically connected to the focusing lens 4. 13 is an aperture driving device mechanically connected to the aperture 6; 15 is an irradiation current detector electrically connected to the manipulator 9; 14 is a control circuit;
The amount of irradiation current received by the irradiation current detector 15 can be manually input and an appropriate electric signal can be output to each drive device 1112.13.

なお、同図における1、3.4.6.8.9.10は第
3図に示した従来例同符号のものと同様なものである。
Note that 1, 3, 4, 6, 8, 9, and 10 in the same figure are the same as those in the conventional example shown in FIG. 3 with the same symbols.

第2図は制御回路14の動作内容を示したブロック図で
ある。第2図においてIGは1(((射電流推測定ブロ
ックであり、ここで照射電流検出器15で得られた照射
電流のアナログ信号をディジタル化する。
FIG. 2 is a block diagram showing the operation contents of the control circuit 14. In FIG. 2, IG is 1((), which is an injection current estimation block that digitizes the analog signal of the irradiation current obtained by the irradiation current detector 15.

17は最大値判定ブロックで照射電流量測定ブロック1
6からの電気信号が最大値であるかどうかを判別するも
のである。18は駆動電流発生ブロックであり、駆動装
置11.12.13に信号を送るよう電気的に接続され
ている。なお、11は電子源駆動装置、12は集束レン
ズ駆動装置、13は絞り駆動装置、15は照射電流検出
器で、以上これらは第1図と同様な構成である。
17 is the maximum value judgment block and the irradiation current measurement block 1
It is determined whether the electric signal from 6 is at the maximum value. 18 is a drive current generation block, which is electrically connected to send signals to the drive devices 11, 12, and 13. Note that 11 is an electron source drive device, 12 is a focusing lens drive device, 13 is an aperture drive device, and 15 is an irradiation current detector, which have the same configuration as in FIG.

以上のように構成された自動光軸調整装置について、以
下その動作を説明する。
The operation of the automatic optical axis adjustment device configured as described above will be described below.

まず、この装置を始動させると、試料lOあるいはマニ
ピュレータ9に照射されている電流間を照射電流検出器
15で検出し、この電気信号を制御回路14にとりこむ
。この制御回路14内の照射電流測定ブロック16で照
射電流検出器15からのアナログ信号をディジタル信号
に変換し、l最大値判定ブロック17にこのディジタル
信号が入る。最大値判定ブロック17ではこの信号がg
大値であるかどうかを判定し、もし最大でないなら駆動
電流発生フロック18で電子源1、集束レンズ4さらに
絞り6を適度な距離だけ移動させるのに必要な電気信号
を発生させ電子源駆動装置11、集束レンズ駆動装置1
2、絞り移動装置13に送る。この信号を受けた各駆動
装置1112、■3はこれにa械的に接続されている集
束レンズ4、絞り6を光軸に垂直な方向に適度な距離だ
け移動させる。これにより、試料10あるいはマニピュ
レータ9に照射される電荷量が変化する。この電荷量(
電流量)を再び照射電流検出器15で検出し、制御回路
14にフィードバックする。このようにフィートバンク
を繰り返し、照射電流量が最大となる位置に電子源1と
集束レンズ4と絞り6を移動させ、停止する。なお、当
然のことながら最初に制御回路14に入力された照射電
流検出量は最大値判定ブロック17で最大値と判定され
ることはない。
First, when this apparatus is started, the irradiation current detector 15 detects the current irradiated to the sample IO or the manipulator 9, and this electric signal is input to the control circuit 14. An irradiation current measuring block 16 in the control circuit 14 converts the analog signal from the irradiation current detector 15 into a digital signal, and this digital signal is input to a maximum value determination block 17. In the maximum value judgment block 17, this signal is
It is determined whether the value is large, and if it is not the maximum, the driving current generation block 18 generates an electric signal necessary to move the electron source 1, the focusing lens 4, and the aperture 6 by an appropriate distance, and the electron source driving device 11. Focusing lens drive device 1
2. Send to the aperture moving device 13. Upon receiving this signal, each drive device 1112, 3 moves the focusing lens 4 and aperture 6 mechanically connected thereto by an appropriate distance in a direction perpendicular to the optical axis. As a result, the amount of charge applied to the sample 10 or the manipulator 9 changes. This amount of charge (
The amount of current) is detected again by the irradiation current detector 15 and fed back to the control circuit 14. By repeating the foot bank in this manner, the electron source 1, the focusing lens 4, and the aperture 6 are moved to the position where the amount of irradiation current is maximum, and then stopped. Note that, as a matter of course, the detected amount of irradiation current that is first input to the control circuit 14 is not determined to be the maximum value by the maximum value determination block 17.

発明の効果 以上のように本発明は電子源を光軸に垂直方向に移動さ
せうる駆動装置と集束レンズを光軸に垂直に移動させう
る駆動装置と絞りを光軸に垂直に移動させうる駆動装置
と照射電流量を検出する検出器とこの検出器からの信号
を人力し、各駆動装置に適切な出力をおこなう制御回路
を電子顕微鏡に設けることにより、操作性と保守性の優
れた自動光軸調整装置を実現することができるものであ
る。
Effects of the Invention As described above, the present invention provides a driving device capable of moving an electron source in a direction perpendicular to the optical axis, a driving device capable of moving a focusing lens perpendicular to the optical axis, and a driving device capable of moving an aperture perpendicular to the optical axis. By equipping the electron microscope with a detector that detects the device and the amount of irradiated current, and a control circuit that manually inputs the signals from this detector and outputs the appropriate output to each drive device, an automatic light beam with excellent operability and maintainability can be achieved. This makes it possible to realize an axis adjustment device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における自動光軸調整装置の
構成図、第2図は制御回路I4の動作内容を示したブし
】ツク図、第3図は従来の電子顕?& L)1の構成図
である。 11・・・・・・電子源駆動装置、12・・・・・・集
束レンズ駆動装置、13・・・・・・絞り駆動装置、1
4・・・・・・制御回路、15・・・・・・照射電流検
出器、16・・・・・・照射布/I!を電流量測定ブロ
ック、17・・・・・・最大値量定ブロック、18・・
・・・・駆動電流発生ブロック。 代理人の氏名 弁理士 中尾敏男 はかI名第2図
FIG. 1 is a block diagram showing the configuration of an automatic optical axis adjustment device according to an embodiment of the present invention, FIG. 2 is a block diagram showing the operation contents of the control circuit I4, and FIG. & L) 1 is a configuration diagram. 11...Electron source drive device, 12...Focusing lens drive device, 13...Aperture drive device, 1
4...Control circuit, 15...Irradiation current detector, 16...Irradiation cloth/I! Current measurement block, 17...Maximum value determination block, 18...
...Drive current generation block. Name of agent: Patent attorney Toshio Nakao (Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 電子源と、上記電子源から発生する電子を集束するため
の集束レンズと、上記集束レンズにより集束された電子
線をさらにしぼりこむ絞りと、対物用電磁レンズと、試
料を移動させるマニピュレータと、上記電子源を光軸に
垂直方向に移動させる駆動装置と、上記集束レンズを光
軸に垂直方向に移動させる駆動装置と、上記絞りを光軸
に垂直方向に移動させる駆動装置と、上記マニピュレー
タの照射電流を検出する検出回路と、上記検出回路によ
り得られた電気信号をフィードバックし、上記各駆動装
置を制御する制御回路とを備えたことを特徴とする自動
光軸調整装置。
an electron source, a focusing lens for focusing electrons generated from the electron source, an aperture for further narrowing down the electron beam focused by the focusing lens, an objective electromagnetic lens, a manipulator for moving the sample, and the above. A drive device that moves the electron source in a direction perpendicular to the optical axis, a drive device that moves the focusing lens in a direction perpendicular to the optical axis, a drive device that moves the aperture in a direction perpendicular to the optical axis, and irradiation of the manipulator. An automatic optical axis adjustment device comprising: a detection circuit that detects a current; and a control circuit that feeds back an electric signal obtained by the detection circuit and controls each of the drive devices.
JP28348385A 1985-12-17 1985-12-17 Automatic optical axis adjuster Pending JPS62143351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28348385A JPS62143351A (en) 1985-12-17 1985-12-17 Automatic optical axis adjuster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28348385A JPS62143351A (en) 1985-12-17 1985-12-17 Automatic optical axis adjuster

Publications (1)

Publication Number Publication Date
JPS62143351A true JPS62143351A (en) 1987-06-26

Family

ID=17666131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28348385A Pending JPS62143351A (en) 1985-12-17 1985-12-17 Automatic optical axis adjuster

Country Status (1)

Country Link
JP (1) JPS62143351A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207441A (en) * 1989-02-03 1990-08-17 Fujitsu Ltd Automatic regulation device for electron beam central axis
JPH04328230A (en) * 1991-04-30 1992-11-17 Shimadzu Corp Electron gun
US5243191A (en) * 1990-11-27 1993-09-07 Hitachi, Ltd. Electron microscope
JPH10134746A (en) * 1996-10-29 1998-05-22 Seiko Instr Inc Optical axis adjustment method for focused ion beam and focused ion beam device
WO2019167165A1 (en) * 2018-02-28 2019-09-06 株式会社日立ハイテクノロジーズ Ion milling device and method for adjusting ion source of ion milling device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207441A (en) * 1989-02-03 1990-08-17 Fujitsu Ltd Automatic regulation device for electron beam central axis
US5243191A (en) * 1990-11-27 1993-09-07 Hitachi, Ltd. Electron microscope
JPH04328230A (en) * 1991-04-30 1992-11-17 Shimadzu Corp Electron gun
JPH10134746A (en) * 1996-10-29 1998-05-22 Seiko Instr Inc Optical axis adjustment method for focused ion beam and focused ion beam device
WO2019167165A1 (en) * 2018-02-28 2019-09-06 株式会社日立ハイテクノロジーズ Ion milling device and method for adjusting ion source of ion milling device
JPWO2019167165A1 (en) * 2018-02-28 2021-02-04 株式会社日立ハイテク Ion milling device and ion source adjustment method for ion milling device
US11244802B2 (en) 2018-02-28 2022-02-08 Hitachi High-Tech Corporation Ion milling device and ion source adjusting method for ion milling device

Similar Documents

Publication Publication Date Title
WO2010024105A1 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
JPS62143351A (en) Automatic optical axis adjuster
US20080197282A1 (en) Scanning Transmission Charged Particle Beam Device
JPS5576560A (en) Observation field moving device for electron microscope
JPH11135052A (en) Scanning electron microscope
JPH0119804Y2 (en)
JPS63119147A (en) Focus condition detecting device of changed corpuscular beams
JPS633258B2 (en)
JPS61114453A (en) Charged particle ray device
JP2870891B2 (en) X-ray micro analyzer
JPH09283071A (en) Electron beam device
JPS6324617Y2 (en)
JPH1167138A (en) Micro-area observation device
JP4163393B2 (en) Focus adjustment method in particle beam apparatus
JP3114416B2 (en) Focusing method in charged particle beam device
JPH04522Y2 (en)
JPS61151959A (en) Scanning electron microscope
JPS6342460Y2 (en)
KR830002115B1 (en) Sample analysis device using particle beam
JPS595551A (en) Charged corpuscular ray apparatus
JPS6326935A (en) Analyzing device using charged particle beam
JPS5727548A (en) Scanning type electron microscope
JPH0565968B2 (en)
JPH0323617A (en) Ion beam lithography
JPS61220330A (en) Method and apparatus for ion beam processing of semiconductor device