JPS6342460Y2 - - Google Patents

Info

Publication number
JPS6342460Y2
JPS6342460Y2 JP1872883U JP1872883U JPS6342460Y2 JP S6342460 Y2 JPS6342460 Y2 JP S6342460Y2 JP 1872883 U JP1872883 U JP 1872883U JP 1872883 U JP1872883 U JP 1872883U JP S6342460 Y2 JPS6342460 Y2 JP S6342460Y2
Authority
JP
Japan
Prior art keywords
objective lens
electron beam
sample
semiconductor detector
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1872883U
Other languages
Japanese (ja)
Other versions
JPS59125057U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1872883U priority Critical patent/JPS59125057U/en
Publication of JPS59125057U publication Critical patent/JPS59125057U/en
Application granted granted Critical
Publication of JPS6342460Y2 publication Critical patent/JPS6342460Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はX線分析装置を備えた電子顕微鏡の改
良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement of an electron microscope equipped with an X-ray analyzer.

透過結像型電子顕微鏡の対物レンズを強励磁で
使用して高分解能の走査電子顕微鏡として使用す
ることが一般に行われているが、走査顕微鏡とし
ての機能に更にX線分析の機能を追加して、試料
中の微細な元素分析を行うことも多い。この場合
のX線分析の手段としてはエネルギ分散型のX線
分光器が使用されるのが普通である。この型のX
線分光器は、その検出素子として常に低温に維持
される半導体検出器が用いられる。この半導体検
出器は、エネルギの高い電子線が入射するとその
X線検出特性が劣化する傾向があるため、試料に
入射して反射する電子線が半導体検出器に入射し
ないようにすることが必要となる。ところで、透
過結像型電子顕微鏡を走査電子顕微鏡として使用
する場合には好都合なことに対物レンズの磁場が
強励磁に保たれているため、対物レンズ磁場の略
中央に挿入される試料からの反射電子が対物レン
ズの磁場によつて偏向されてしまい、半導体検出
器に入射する反射電子は極めて少くなる。ところ
が透過結像型電子顕微鏡には種々の観察モードが
あり、対物レンズの励磁を極めて弱くしたり、零
にする場合もある。このような場合には半導体検
出器を取り外すか又は、その受光面にシヤツター
を挿入する必要があるが、それを忘れたりすると
半導体検出器に大量の反射電子が入射して検出器
を損傷してしまう事故が生ずる。
It is common practice to use the objective lens of a transmission imaging electron microscope with strong excitation and use it as a high-resolution scanning electron microscope. , often performs minute elemental analysis in samples. In this case, an energy dispersive X-ray spectrometer is usually used as a means for X-ray analysis. This type of X
A line spectrometer uses a semiconductor detector that is always maintained at a low temperature as its detection element. This semiconductor detector tends to deteriorate its X-ray detection characteristics when a high-energy electron beam is incident on it, so it is necessary to prevent the electron beam that is incident on the sample and reflected from entering the semiconductor detector. Become. By the way, when a transmission imaging electron microscope is used as a scanning electron microscope, the magnetic field of the objective lens is conveniently maintained at a strong excitation level, so that the reflection from the sample inserted approximately at the center of the objective lens magnetic field is The electrons are deflected by the magnetic field of the objective lens, and the number of reflected electrons that enter the semiconductor detector becomes extremely small. However, transmission imaging electron microscopes have various observation modes, and the excitation of the objective lens may be made extremely weak or zero. In such a case, it is necessary to remove the semiconductor detector or insert a shutter into its light-receiving surface, but if you forget to do this, a large amount of backscattered electrons will enter the semiconductor detector and damage it. An accident will occur.

本考案は反射電子から半導体検出器の損傷を防
止することを目的としている。
The purpose of the present invention is to prevent damage to semiconductor detectors from reflected electrons.

本考案は対物レンズ磁極片の略中央に挿入され
る試料から発生するX線をエネルギ分散型X線分
光器の検出素子に導くように構成した装置におい
て、前記対物レンズの励磁強度が一定値以下であ
ることを検出する手段と、該手段からの検出信号
に基づいて対物レンズに入射する電子線を偏向す
るための偏向コイルへ一定値以上の偏向信号を供
給する手段を設けたことを特徴としている。
The present invention provides an apparatus configured to guide X-rays generated from a sample inserted into the approximate center of an objective lens magnetic pole piece to a detection element of an energy dispersive X-ray spectrometer, in which the excitation intensity of the objective lens is below a certain value. and a means for supplying a deflection signal of a certain value or more to a deflection coil for deflecting the electron beam incident on the objective lens based on the detection signal from the means. There is.

以下図面を用いて本考案を詳述する。 The present invention will be explained in detail below using the drawings.

第1図は本考案の一実施例装置を示すもので、
第2図はその要部の拡大図である。図中、電子銃
1から出射される電子線2の経路は走査像モード
におけるものであり、該モードにおいては対物レ
ンズの上下磁極片3,4間の略中央に挿入される
試料5の上下には二つのレンズ磁場6a,6bが
形成される。試料5を照射する電子線2は集束レ
ンズ磁場7と対物レンズ磁場6aによつて試料面
上で細く集束され、その試料照射領域からはX線
8だけではなく反射電子9や2次電子等が発生す
る。試料を照射する電子線の位置は、偏向電源1
0の出力がスイツチ11の端子aを介して供給さ
れる偏向コイル12によつて任意に変えられる。
偏向コイル12には、スイツチ11の端子bを介
して定電流電源13と接続されており、該スイツ
チ11はスイツチ制御回路14によつて切り換え
られる。又スイツチ制御回路14は切換スイツチ
15を介してその出力を印加する差動増幅器16
によつて制御される。即ち差動増幅器16はレン
ズ電源17の出力電圧が基準電源18以下になる
と出力信号を発生してスイツチ11をb端子へ切
り変える。19はエネルギ分散型X線分光器であ
り、該X線分光器19は、コリメータ20、ウイ
ンド又はシヤツタ機構21、支持筒22、半導体
検出器23より構成され、試料5の近傍に配置さ
れている。尚、切換スイツチ15はX線分光器を
X線検出状態にセツトしたときON状態とする
が、その操作は手動であつてもよいがX線分光器
取り外し等の操作と連動させることが好ましい。
FIG. 1 shows an embodiment of the device of the present invention.
FIG. 2 is an enlarged view of the main part. In the figure, the path of the electron beam 2 emitted from the electron gun 1 is in the scanning image mode, and in this mode, the path of the electron beam 2 emitted from the electron gun 1 is in the scanning image mode. Two lens magnetic fields 6a and 6b are formed. The electron beam 2 that irradiates the sample 5 is narrowly focused on the sample surface by the focusing lens magnetic field 7 and the objective lens magnetic field 6a, and from the sample irradiation area, not only the X-rays 8 but also reflected electrons 9, secondary electrons, etc. are emitted. Occur. The position of the electron beam that irradiates the sample is determined by the deflection power supply 1.
The zero output can be changed arbitrarily by the deflection coil 12 supplied through the terminal a of the switch 11.
The deflection coil 12 is connected to a constant current power source 13 via a terminal b of a switch 11, and the switch 11 is switched by a switch control circuit 14. The switch control circuit 14 also includes a differential amplifier 16 to which the output is applied via the changeover switch 15.
controlled by. That is, when the output voltage of the lens power source 17 becomes lower than the reference power source 18, the differential amplifier 16 generates an output signal and switches the switch 11 to the b terminal. Reference numeral 19 denotes an energy dispersive X-ray spectrometer, and the X-ray spectrometer 19 is composed of a collimator 20, a window or shutter mechanism 21, a support tube 22, and a semiconductor detector 23, and is arranged near the sample 5. . The changeover switch 15 is turned on when the X-ray spectrometer is set to the X-ray detection state, and although this operation may be done manually, it is preferable to link it with operations such as removing the X-ray spectrometer.

以上の様に構成された装置において、電子線2
の照射により試料5から発生するX線8はコリメ
ータ20、ウインド又はシヤツタ機構21を通過
して支持筒22内の半導体検出器23に入射して
電気信号に変換され、測定回路(図示せず)によ
る元素分析が行われる。ところが反射電子9はレ
ンズ磁場6aのために偏向作用を受けるためX線
のようにコリメータ20を通過するケースは殆ん
ど生じなくなる。そのため、走査像モードの観察
を行う限りにおいては、反射電子9による半導体
検出器23の損傷が問題となることはない。
In the apparatus configured as described above, the electron beam 2
The X-rays 8 generated from the sample 5 by the irradiation pass through the collimator 20, window or shutter mechanism 21, enter the semiconductor detector 23 in the support tube 22, are converted into electrical signals, and are converted into electrical signals by a measurement circuit (not shown). Elemental analysis is performed by However, since the reflected electrons 9 are deflected by the lens magnetic field 6a, they rarely pass through the collimator 20 like X-rays. Therefore, as long as scanning image mode observation is performed, damage to the semiconductor detector 23 caused by the backscattered electrons 9 does not pose a problem.

次にオペレータが半導体検出器23を取り外し
たり、シヤツタを挿入することなく走査像モード
以外の観察を行うため対物レンズのレンズ電源の
出力を一定値以下に弱くしたりすると、対物レン
ズ励磁強度が差動増幅器16によつて検知され、
その出力信号は切換スイツチ15を介してスイツ
チ制御回路14に印加されスイツチ11を端子b
に接続する。その結果、定電流電源13から大き
な値の偏向電流が偏向コイル12に供給され電子
線2を大きく偏向して試料5が電子線に照射され
ないようにする。従つて試料から発生する反射電
子線が半導体検出器23に入射して損傷すること
を防止することができる。この段階で、オペレー
タは半導体検出器等で構成される支持筒21の取
り付け位置をずらせるか、その検出面にシヤツタ
を挿入する等の処置をした後スイツチをOFFに
切り換えた後所望の観察を行う。
Next, when the operator removes the semiconductor detector 23 or weakens the output of the lens power supply of the objective lens below a certain value in order to perform observation in a mode other than the scanning image mode without inserting a shutter, the excitation intensity of the objective lens becomes different. detected by the dynamic amplifier 16;
The output signal is applied to the switch control circuit 14 via the changeover switch 15, and the switch 11 is connected to terminal b.
Connect to. As a result, a large value of deflection current is supplied from the constant current power source 13 to the deflection coil 12 to largely deflect the electron beam 2 so that the sample 5 is not irradiated with the electron beam. Therefore, it is possible to prevent reflected electron beams generated from the sample from entering the semiconductor detector 23 and damaging it. At this stage, the operator shifts the mounting position of the support tube 21, which is composed of a semiconductor detector, etc., or inserts a shutter into its detection surface, then turns the switch OFF, and then performs the desired observation. conduct.

以上の様に、本考案は透過結像型電子顕微鏡に
組み込まれるエネルギ分散型X線分光装置を簡単
な手段によつて反射電子から保護し故障の少ない
X線分析装置を備えた電子顕微鏡を提供する。
As described above, the present invention protects the energy dispersive X-ray spectrometer incorporated in a transmission imaging electron microscope from backscattered electrons by a simple means, and provides an electron microscope equipped with an X-ray analyzer that is less likely to malfunction. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例装置の概略構成図で
あり、第2図は第1図の一実施例装置の要部の拡
大図である。 1:電子銃、2:電子線、3,4:対物レンズ
磁極片、5:試料、7:集束レンズ磁場、8:X
線、9:反射電子、10:偏向電源、13:定電
流電源、14:スイツチ制御回路、16:差動増
幅器、17:レンズ電源、18:基準電源、1
9:X線分光器、20:コリメータ、21:シヤ
ツタ機構、22:支持筒、23:半導体検出器。
FIG. 1 is a schematic configuration diagram of an embodiment of the device of the present invention, and FIG. 2 is an enlarged view of the main parts of the embodiment of the device shown in FIG. 1: Electron gun, 2: Electron beam, 3, 4: Objective lens magnetic pole piece, 5: Sample, 7: Focusing lens magnetic field, 8: X
line, 9: reflected electron, 10: deflection power supply, 13: constant current power supply, 14: switch control circuit, 16: differential amplifier, 17: lens power supply, 18: reference power supply, 1
9: X-ray spectrometer, 20: collimator, 21: shutter mechanism, 22: support tube, 23: semiconductor detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 対物レンズ磁極片の略中央に挿入される試料か
ら発生するX線をエネルギ分散形X線分光器の検
出素子に導くように構成した装置において、前記
対物レンズの励磁強度が一定値以下であることを
検出する手段と、該手段からの検出信号に基づい
て対物レンズに入射する電子線を偏向するための
偏向コイルへ一定値以上の偏向信号を供給する手
段を設けたことを特徴とするX線分析装置を備え
た電子顕微鏡。
In a device configured to guide X-rays generated from a sample inserted approximately at the center of an objective lens magnetic pole piece to a detection element of an energy dispersive X-ray spectrometer, the excitation intensity of the objective lens is below a certain value. and means for supplying a deflection signal of a certain value or more to a deflection coil for deflecting an electron beam incident on an objective lens based on a detection signal from the means. Electron microscope with analytical equipment.
JP1872883U 1983-02-10 1983-02-10 Electron microscope equipped with an X-ray analyzer Granted JPS59125057U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1872883U JPS59125057U (en) 1983-02-10 1983-02-10 Electron microscope equipped with an X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1872883U JPS59125057U (en) 1983-02-10 1983-02-10 Electron microscope equipped with an X-ray analyzer

Publications (2)

Publication Number Publication Date
JPS59125057U JPS59125057U (en) 1984-08-23
JPS6342460Y2 true JPS6342460Y2 (en) 1988-11-07

Family

ID=30149906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1872883U Granted JPS59125057U (en) 1983-02-10 1983-02-10 Electron microscope equipped with an X-ray analyzer

Country Status (1)

Country Link
JP (1) JPS59125057U (en)

Also Published As

Publication number Publication date
JPS59125057U (en) 1984-08-23

Similar Documents

Publication Publication Date Title
EP1028452B1 (en) Scanning electron microscope
US6822233B2 (en) Method and apparatus for scanning transmission electron microscopy
JP2875940B2 (en) Electron beam device equipped with sample height measuring means
US4169244A (en) Electron probe testing, analysis and fault diagnosis in electronic circuits
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
US9947504B2 (en) Particle beam apparatus and method for operating a particle beam apparatus
JPH0828196B2 (en) Electronic detector
JP2001084942A (en) Scanning electron microscope
US20070181805A1 (en) Scanning electron microscope having a monochromator
JP3170680B2 (en) Electric field magnetic lens device and charged particle beam device
US3717761A (en) Scanning electron microscope
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
US20030230713A1 (en) Raster electron microscope
GB1594597A (en) Electron probe testing analysis and fault diagnosis in electronic circuits
JPS6342460Y2 (en)
GB2208035A (en) Analytical electron microscope
JPH0465490B2 (en)
JP4146103B2 (en) Electron beam apparatus equipped with a field emission electron gun
JPH11135052A (en) Scanning electron microscope
JP3014369B2 (en) Electron beam device equipped with sample height measuring means
JP3342580B2 (en) Charged particle beam equipment
JP3014986B2 (en) Scanning electron microscope
JPH0228609Y2 (en)
KR100711198B1 (en) Scanning electron microscope
JPH04522Y2 (en)