JPH0119804Y2 - - Google Patents

Info

Publication number
JPH0119804Y2
JPH0119804Y2 JP13402482U JP13402482U JPH0119804Y2 JP H0119804 Y2 JPH0119804 Y2 JP H0119804Y2 JP 13402482 U JP13402482 U JP 13402482U JP 13402482 U JP13402482 U JP 13402482U JP H0119804 Y2 JPH0119804 Y2 JP H0119804Y2
Authority
JP
Japan
Prior art keywords
sample
sample surface
electron
scanning
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13402482U
Other languages
Japanese (ja)
Other versions
JPS5941856U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13402482U priority Critical patent/JPS5941856U/en
Publication of JPS5941856U publication Critical patent/JPS5941856U/en
Application granted granted Critical
Publication of JPH0119804Y2 publication Critical patent/JPH0119804Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はX線マイクロアナライザーやオージエ
電子分析装置における試料面のエツチング装置に
関する。
[Detailed Description of the Invention] The present invention relates to an etching device for a sample surface in an X-ray microanalyzer or an Auger electron analyzer.

X線マイクロアナライザーにおいては、細く絞
つた電子線を試料上に照射し、そのとき発生する
特性X線を分光結晶により分光し、その検出信号
に基づき試料の定性、定量分析を行つている。こ
の場合、単に試料の表面分析を行うに留まらず、
深さ方向分析がしばしば要求される。この深さ方
向分析を行う場合、従来は機械的研磨手段を利用
し、深さ方向の断層が現われるように数度の角度
で斜め研磨を行い、該研磨によつて生じた断層に
沿つて電子線の照射点を移動させている。
In an X-ray microanalyzer, a narrowly focused electron beam is irradiated onto a sample, the characteristic X-rays generated at that time are separated into spectra using a spectroscopic crystal, and qualitative and quantitative analyzes of the sample are performed based on the detected signals. In this case, it is not enough to simply analyze the surface of the sample.
Depth analysis is often required. When performing this depth direction analysis, conventionally, mechanical polishing means is used to perform diagonal polishing at an angle of several degrees so that the faults in the depth direction appear, and then the electron beams are generated along the faults created by the polishing. The irradiation point of the line is moved.

しかし乍ら、この様な方法では、機械的研磨を
用いるので、研磨作業が大変厄介であり、且つX
線マイクロアナライザーの試料室内で行うことは
殆んど不可能であるため、分析途中での研磨は行
えず、更に研磨角度を微小にコントロールするこ
とができず、従つて充分に高い深さ方向の分解能
が得られない。
However, since this method uses mechanical polishing, the polishing work is very troublesome, and
Since it is almost impossible to perform polishing in the sample chamber of a line microanalyzer, polishing cannot be performed during the analysis, and furthermore, the polishing angle cannot be minutely controlled. Unable to obtain resolution.

一方、オージエ電子分析装置においては、オー
ジエ電子を発生する層が試料の極く表層に限られ
るため、試料面の汚れを取り除き新鮮な試料を露
出した状態で分析を行う必要がある。このため、
従来からイオン銃が試料室に付設され、分析の前
にイオンシヤワーを試料面に浴びせ、該イオンに
より試料表層をエツチングする方法が採用されて
いる。この様なイオンシヤワーによるエツチング
により表面原子層を順次剥ぎながら深さ方向の分
析を行つた場合、深さ方向分解能にはやはり限界
があり、又表層を剥ぎ取りながら分析をおこなう
ため、分析の再現性がなく、且つ深さ方向のライ
ン分析が行えない等の欠点がある。
On the other hand, in the Auger electron analyzer, since the layer that generates Auger electrons is limited to the very surface layer of the sample, it is necessary to remove dirt from the sample surface and perform analysis with a fresh sample exposed. For this reason,
Conventionally, an ion gun is attached to a sample chamber, and a method has been adopted in which an ion shower is applied to the sample surface before analysis, and the surface layer of the sample is etched by the ions. When performing depth analysis while sequentially peeling off the surface atomic layers by etching with an ion shower, there is still a limit to the depth resolution, and since the analysis is performed while removing the surface layer, it is difficult to reproduce the analysis. There are disadvantages such as lack of accuracy and inability to perform line analysis in the depth direction.

而して、本考案は上記点に着目し、微小角の斜
め研磨を可能となし、もつて超高分解能の深さ方
向分析を行うことのできる試料面エツチング装置
を提案することに目的がある。
Therefore, the purpose of the present invention is to focus on the above points and to propose a sample surface etching device that can perform diagonal polishing at minute angles and perform depth direction analysis with ultra-high resolution. .

本考案の構成は試料面に放射線や荷電粒子線を
照射する手段及び該照射によつて試料より生ずる
X線や電子を情報として検出する手段を備えた装
置において、前記試料面へ向けてイオンビームを
照射する為のイオン源、該イオンビームを試料面
上で走査するためのX,Y偏向器及び該X,Y偏
向器のいずれか一方又は双方に2次曲線的に変化
する信号を走査信号として供給する電源を有して
なる分析装置等における試料面エツチング装置に
特徴を有する。
The configuration of the present invention is such that an ion beam is directed toward the sample surface in an apparatus equipped with a means for irradiating a sample surface with radiation or a charged particle beam, and a means for detecting X-rays and electrons generated from the sample as information by the irradiation. An ion source for irradiating the ion beam, an X and Y deflector for scanning the ion beam on the sample surface, and a scanning signal that transmits a signal that changes quadratically to one or both of the X and Y deflectors. The present invention is characterized by a sample surface etching device used in an analytical device, etc., which has a power source supplied as a power source.

以下本考案の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本考案をオージエ電子分析装置に適用
した場合であり、1は被検試料である。この試料
に対向して電子カラム2が設けられ、電子プロー
ブを試料面に照射可能である。該電子カラムは、
通常電子銃、集束レンズ、偏向系及び対物レンズ
等を有している。3はオージエ電子分光器で、例
えばシリンドリカルミラー型アナライザーが使用
され、前記電子カラム2からの電子プローブの照
射により試料1から発生したオージエ電子をその
エネルギーに応じて選別・検出する。分光器から
の検出信号は図示しないが、信号処理回路を通し
て表示装置や記録計に送られ、オージエスペクト
ルを得ている。4はイオン銃であり、ここから発
射されたイオンビームIBはX,Y偏向器5X,
5Yを通して試料1上に照射される。この偏向器
5Xは増幅器6X,2次曲線発生器7及び切換ス
イツチ8を介してX方向走査信号発生器9Xに接
続され、X方向の走査信号(電圧)が供給され
る。又、偏向器5Yは増幅器6Yを介してY方向
走査信号発生器9Yに接続され、Y方向の走査信
号が供給される。両走査信号発生器は鋸歯状波信
号を発生し、9Yは9Xに対し、その周期は数十
倍乃至数百倍に選ばれている。前記切換スイツチ
8をa端子に接続した場合、水平走査信号発生器
9Xからの第2図aに示す如き鋸歯状波信号は2
次曲線発生器7を通るとき、第2図bのような2
次曲線、又はそれに近似の曲線に変換される。こ
の信号が増幅器6Xを介して偏向器5Xに印加さ
れると、X方向走査は初期の時点はゆつくりで、
次第に速くなる。その結果、X方向走査によるイ
オン照射量は第3図の如くなり、第2図bの電圧
変化の少い所の方が高くなる。それ故、エツチン
グは第4図の如くなり、斜めの研磨面1aが得ら
れる。この研磨面1aの角度は第1図の2次曲線
発生器7の係数を変えることにより任意に調整で
きる。
FIG. 1 shows a case where the present invention is applied to an Augier electron analyzer, and 1 is a test sample. An electron column 2 is provided facing the sample, and is capable of irradiating the sample surface with an electron probe. The electron column is
It usually has an electron gun, a focusing lens, a deflection system, an objective lens, etc. Reference numeral 3 denotes an Augier electron spectrometer, which uses, for example, a cylindrical mirror type analyzer, and sorts and detects Auger electrons generated from the sample 1 by irradiation with an electron probe from the electron column 2 according to their energy. Although not shown, the detection signal from the spectrometer is sent to a display device and recorder through a signal processing circuit to obtain an Augier spectrum. 4 is an ion gun, and the ion beam IB fired from this is passed through X and Y deflectors 5X,
5Y onto sample 1. This deflector 5X is connected to an X-direction scanning signal generator 9X via an amplifier 6X, a quadratic curve generator 7, and a changeover switch 8, and is supplied with an X-direction scanning signal (voltage). Further, the deflector 5Y is connected to a Y-direction scanning signal generator 9Y via an amplifier 6Y, and is supplied with a Y-direction scanning signal. Both scanning signal generators generate sawtooth wave signals, and the period of 9Y is selected to be several tens to hundreds of times larger than that of 9X. When the changeover switch 8 is connected to the a terminal, the sawtooth wave signal as shown in FIG. 2a from the horizontal scanning signal generator 9X is 2.
When passing through the next curve generator 7, 2 as shown in FIG.
It is converted to the following curve or a curve approximating it. When this signal is applied to the deflector 5X via the amplifier 6X, the X direction scanning is slow at the initial point,
It gradually becomes faster. As a result, the ion irradiation amount by scanning in the X direction becomes as shown in FIG. 3, and is higher in the area where the voltage change is smaller in FIG. 2b. Therefore, the etching is as shown in FIG. 4, and an oblique polished surface 1a is obtained. The angle of this polishing surface 1a can be arbitrarily adjusted by changing the coefficients of the quadratic curve generator 7 shown in FIG.

今、X方向に1mm移動して1000Åの深さの差が
できるようにイオンビームの走査を行つたとす
る。このとき、直径1000Åの電子プローブを用い
てX方向に走査してオージエ電子分析を行つた場
合、1000Åの電子プローブの移動は深さ方向で
0.1Åの移動となり、又、X方向に1μm移動させ
た場合でも深さは1Åとなり、高い深さ方向分解
能を有していることがわかる。
Now, suppose that the ion beam is scanned so that it moves 1 mm in the X direction and creates a depth difference of 1000 Å. At this time, when performing Auger electron analysis by scanning in the X direction using an electron probe with a diameter of 1000 Å, the movement of the 1000 Å electron probe is in the depth direction.
The movement is 0.1 Å, and even if it is moved 1 μm in the X direction, the depth is 1 Å, indicating that it has high resolution in the depth direction.

この様な斜め研磨が終了した後、電子カラム2
から電子プローブを研磨面1aに照射し、そこか
ら発生するオージエ電子を分光器3によりエネル
ギー分析すれば、該照射点の定性、定量分析が可
能である。又、特定エネルギーのみのオージエ電
子を検出しながら、前記電子プローブの照射位置
を研磨面1aのX方向に移動させると、斜め断層
のオージエラインプロフアイルが得られ、特定元
素の分析を知ることができる。尚、このとき、電
子プローブを二次元的に研磨面1a上で走査し、
オージエ電子の検出出力をその走査と同期した陰
極線管に導入すれば、特定元素による深さ方向情
報をもつ画像を表示できる。
After completing this diagonal polishing, the electron column 2
By irradiating the polishing surface 1a with an electron probe and analyzing the energy of the Auger electrons generated therewith using the spectrometer 3, qualitative and quantitative analysis of the irradiation point is possible. Furthermore, by moving the irradiation position of the electron probe in the X direction of the polished surface 1a while detecting Auger electrons with only a specific energy, an oblique tomographic Augier line profile can be obtained, which makes it possible to know the analysis of specific elements. can. At this time, the electron probe is scanned two-dimensionally on the polishing surface 1a,
By introducing the detection output of Auger electrons into a cathode ray tube that is synchronized with its scanning, it is possible to display images with depth direction information based on specific elements.

尚、上記ではX方向走査用の信号を2次曲線的
に変調した場合を示したが、Y方向走査信号のみ
を或いはX方向とY方向の両走査信号を同時に2
次曲線的に変調するようになしても良い。又、説
明はオージエ電子分析装置について行つたが、X
線マイクロアナライザー等その他の分析装置にも
同様に適用できることは勿論である。
The above example shows the case where the X-direction scanning signal is quadratic modulated, but it is also possible to modulate only the Y-direction scanning signal or both the X-direction and Y-direction scanning signals simultaneously.
It may also be modulated in the following curve. Also, although the explanation was given regarding the Augier electron analyzer,
It goes without saying that the present invention can be similarly applied to other analytical devices such as a line microanalyzer.

以上詳述した様に、本考案はイオンビームの走
査を2次曲線、又はそれに近似した曲線に沿つて
行い、もつてイオンビーム照射量を走査方向に連
続的に変化させるようになしたもので、これによ
つて超微小角の斜め研磨が可能となり、その研磨
面に沿つて分析することにより高い深さ方向分解
能を得ることが可能である。
As detailed above, the present invention scans the ion beam along a quadratic curve or a curve approximating it, thereby continuously changing the ion beam irradiation amount in the scanning direction. This makes it possible to perform diagonal polishing with ultra-small angles, and it is possible to obtain high resolution in the depth direction by analyzing along the polished surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示すブロツク線
図、第2図は第1図装置における走査信号波形を
示す図、第3図は試料面上におけるイオンビーム
照射量分布を示す図、第4図は研磨状態を示す試
料の一部断面図である。 1:試料、1a:研磨面、2:電子カラム、
3:オージエ電子分光器、4:イオン銃、5X:
X偏向器、5Y:Y偏向器、6X,6Y:増幅
器、7:2次曲線発生器、8:切換スイツチ、9
X:X方向走査信号発生器、9Y:Y方向走査信
号発生器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the scanning signal waveform in the apparatus shown in FIG. 1, FIG. 3 is a diagram showing the ion beam irradiation dose distribution on the sample surface, and FIG. FIG. 4 is a partial cross-sectional view of the sample showing the polished state. 1: sample, 1a: polished surface, 2: electron column,
3: Augier electron spectrometer, 4: ion gun, 5X:
X deflector, 5Y: Y deflector, 6X, 6Y: amplifier, 7: quadratic curve generator, 8: selector switch, 9
X: X direction scanning signal generator, 9Y: Y direction scanning signal generator.

Claims (1)

【実用新案登録請求の範囲】 1 試料面に放射線や荷電粒子線を照射する手段
及び該照射によつて試料より生ずるX線や電子
を情報として検出する手段を備えた装置におい
て、前記試料面へ向けてイオンビームを照射す
る為のイオン源、該イオンビームを試料面上で
走査するためのX,Y偏向器及び該X,Y偏向
器のいずれか一方又は双方に2次曲線的に変化
する信号を走査信号として供給する電源を有し
てなる分析装置等における試料面エツチング装
置。 2 前記電源は鋸歯状波信号と2次曲線的に変化
する信号とを切換えて出力し得る構成となした
実用新案登録請求の範囲第1項記載の分析装置
等における試料面エツチング装置。
[Scope of Claim for Utility Model Registration] 1. In an apparatus equipped with a means for irradiating a sample surface with radiation or a charged particle beam and a means for detecting as information X-rays and electrons generated from the sample by the irradiation, An ion source for irradiating an ion beam toward the target, an X and Y deflector for scanning the ion beam on the sample surface, and one or both of the X and Y deflectors that change in a quadratic curve. A sample surface etching device for an analytical device, etc., which has a power supply that supplies signals as scanning signals. 2. A sample surface etching device in an analytical device or the like as claimed in claim 1, wherein the power source is configured to output a sawtooth wave signal and a signal changing in a quadratic curve.
JP13402482U 1982-09-03 1982-09-03 Sample surface etching device for analysis equipment, etc. Granted JPS5941856U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13402482U JPS5941856U (en) 1982-09-03 1982-09-03 Sample surface etching device for analysis equipment, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13402482U JPS5941856U (en) 1982-09-03 1982-09-03 Sample surface etching device for analysis equipment, etc.

Publications (2)

Publication Number Publication Date
JPS5941856U JPS5941856U (en) 1984-03-17
JPH0119804Y2 true JPH0119804Y2 (en) 1989-06-07

Family

ID=30302118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13402482U Granted JPS5941856U (en) 1982-09-03 1982-09-03 Sample surface etching device for analysis equipment, etc.

Country Status (1)

Country Link
JP (1) JPS5941856U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797093B2 (en) * 1988-08-09 1995-10-18 株式会社島津製作所 X-ray photoelectron spectroscopy three-dimensional mapping device
JP5825797B2 (en) * 2011-02-08 2015-12-02 株式会社ブリヂストン Evaluation method for polymer materials
JP2014092426A (en) * 2012-11-02 2014-05-19 Ube Scientific Analysis Laboratory Inc Method for manufacturing organic sample for surface analysis, and surface analysis method using the same

Also Published As

Publication number Publication date
JPS5941856U (en) 1984-03-17

Similar Documents

Publication Publication Date Title
US5315113A (en) Scanning and high resolution x-ray photoelectron spectroscopy and imaging
US5444242A (en) Scanning and high resolution electron spectroscopy and imaging
US5118941A (en) Apparatus and method for locating target area for electron microanalysis
US5272338A (en) Molecular imaging system
JP3101114B2 (en) Scanning electron microscope
JP3401426B2 (en) Sample processing method in FIB-SEM device and FIB-SEM device
JPH0510822B2 (en)
JPH0119804Y2 (en)
US3909610A (en) Apparatus for displaying the energy distribution of a charged particle beam
JP3494068B2 (en) Charged particle beam equipment
JPS5811569B2 (en) Dense Bunkousouchi
JPH1167138A (en) Micro-area observation device
JPH0883589A (en) Scanning electron microscope
JPH0582081A (en) Method and complex device for converged ion beam mass spectrometery
JPS61151959A (en) Scanning electron microscope
JPH0682399A (en) Electron beam analyzing method and apparatus
JPS633258B2 (en)
JPH07183343A (en) X-ray photoelectric spectral analyzer
JPH07161327A (en) Focusing method in charged particle beam
JPS629218B2 (en)
JPS627974B2 (en)
JPS645746B2 (en)
JPH0766774B2 (en) Sample surface analyzer
JPH04112445A (en) Electronic spectral analyzing device
JPH04277456A (en) Charged particle beam device