JPS61220330A - Method and apparatus for ion beam processing of semiconductor device - Google Patents

Method and apparatus for ion beam processing of semiconductor device

Info

Publication number
JPS61220330A
JPS61220330A JP60060573A JP6057385A JPS61220330A JP S61220330 A JPS61220330 A JP S61220330A JP 60060573 A JP60060573 A JP 60060573A JP 6057385 A JP6057385 A JP 6057385A JP S61220330 A JPS61220330 A JP S61220330A
Authority
JP
Japan
Prior art keywords
semiconductor device
ion beam
processing
current
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60060573A
Other languages
Japanese (ja)
Other versions
JP2539359B2 (en
Inventor
Akira Shimase
朗 嶋瀬
Satoshi Haraichi
原市 聰
Hiroshi Yamaguchi
博司 山口
Takeoki Miyauchi
宮内 建興
Mitsuo Usami
光雄 宇佐美
Takahiko Takahashi
高橋 貴彦
Hideo Nakamura
英夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60060573A priority Critical patent/JP2539359B2/en
Priority to KR8602240A priority patent/KR900005783B1/en
Publication of JPS61220330A publication Critical patent/JPS61220330A/en
Application granted granted Critical
Publication of JP2539359B2 publication Critical patent/JP2539359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To detect the end point of processing easily and exactly, by detecting the change of current flowing in the semiconductor device irradiated by the ion beam, wherein the current detecting means are applied. CONSTITUTION:The ion beam 2 is led out, converged, deflected, and applied to process the semiconductor device 9 like VLSI, etc. The substrate current is amplified by the head amplifier 20, converted to the digital signal by the A/D converter 21, and delivered to the main controller. Changing synchronously with the beam scanning, the substrate current becomes small for the scanning lines of the central part, and becomes large for those of the upper and the lower parts. Therefore, in order to obtain the same signal for all of the scanning lines, the synchronizing signal for the beam scanning is inputted to the main controller 22 from the deflector controller 14. Thus, the main controller processes the given substrate current signal, judges, for example, the end point of processing of the aluminum wiring layer B, sends the ON signal to the blanking power source 17, and cuts off the beam to halt the processing.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置、!¥HCVLSI等ケイオンビー
等加イオンビーム加工方法・及びその装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor device,! ¥ Concerning ion beam processing methods and equipment for K-ion beams such as HCVLSI, etc.

〔発明の背景〕[Background of the invention]

従来、「表面分析」集計、安盛編、講談社第4版198
1 m 9月1日発行、第61頁に記載しであるように
、イオンビームな細く絞り、タープ。
Previously, "Surface Analysis" tabulation, edited by Yasamori, Kodansha 4th edition 198
1 m Published on September 1st, as described on page 61, use a narrow ion beam aperture and a tarp.

ト忙照射し、ターゲットを加工することを目的とした装
置はなく、ただ、SIMSI’−セコンダ9− 4オン
 マス スペストロコピーJ(Secondary I
on Mass 5pectroscopy)の分野で
ビームなターゲット九あて、ターゲットの原子をスバ。
There is no device for the purpose of irradiating and processing targets, but SIMSI'-Secondary 9-4-on Mass Spectrocopy J
In the field of mass spectroscopy, the beam is aimed at a target, and the atoms of the target are submerged.

りして、出てくる2次イオンを分析することは行なわれ
ていた。もし、SIMSの装置をイオンビーム加工装置
と見ろならば、その加工終点検出は2次イオンの検出に
よって行なわれると言える。しかし、本発明で言及して
いるイオンビーム加工装置はターゲットに照射するビー
ム電流自体がSIMS等のビーム電流より2桁から3桁
小さいため、発生する2次イオンの量が少なく、それを
加工の終点検出に利用するのは困難である。また、2次
イオンを検出しようとした場合、2次イオンのエネルギ
ーフィルタを備えた高感度の質量分析計が必要となり、
加工装置の価格を大きく引き上げることになる。
Analyzing the secondary ions that come out has been done. If a SIMS device is viewed as an ion beam processing device, it can be said that the processing end point is detected by detecting secondary ions. However, in the ion beam processing equipment referred to in this invention, the beam current itself that irradiates the target is two to three orders of magnitude smaller than the beam current of SIMS, etc., so the amount of secondary ions generated is small, and these are used for processing. It is difficult to use it for end point detection. Additionally, when attempting to detect secondary ions, a highly sensitive mass spectrometer equipped with a secondary ion energy filter is required.
This will significantly increase the price of processing equipment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体装置へのイオンビーム加工1c
おける終点を簡単に、且つ高n度に検出できるようにし
た半導体装置へのイオンビーム加工方法及びその装置を
提供するKある。
The purpose of the present invention is to perform ion beam processing 1c on semiconductor devices.
The present invention provides an ion beam processing method for a semiconductor device and an apparatus for the same, in which the end point of a semiconductor device can be easily detected with a high degree of accuracy.

〔発明の概要〕[Summary of the invention]

本発明は、複数層を有する半導体装置をイオンビームに
よりて加工ずろ除、電流検出手段によりイオンビームが
照射された半導体装置に流れる電流を検出し、この検出
された電流の変化により高a度でしかも簡単に加工終点
を検出するよう圧したことを特徴とする半導体装置への
イオンビーム加工方法及びその装置である。即ち本発明
は、例えば第2図ta)に示すようにバ。
The present invention removes processing deviations from a semiconductor device having multiple layers using an ion beam, detects a current flowing through the semiconductor device irradiated with the ion beam using a current detection means, and detects a change in the detected current at a high temperature. Moreover, the present invention provides an ion beam processing method and an apparatus for processing a semiconductor device, characterized in that the processing end point can be easily detected. That is, the present invention can be applied to a bar as shown in FIG. 2 (ta), for example.

シペーション膜A1アルミ配線層B%8i(h/jtf
c。
Cipation film A1 Aluminum wiring layer B%8i (h/jtf
c.

シリコン基板りで、場所によってはアルミ配線層と5i
Oz層が数層積層されたVl、S I等の半導体装置を
イオンビームを所定の領域で例えば第2図(G)に示す
ように走査して加工していく際、シリコン基板から流れ
る基板電流が第2図(b)に示すように、バ、シペーシ
ョン膜を加工する領域Aは走査による電流の変化が小さ
く、アルミ層を加工する領域Bは次に走査による電流の
変化が大きくなり、5iOzFfjCを加工する領域は
更に走晋による電流の変化が大きくなり、シリコン基板
りを加工する領域はI&後に走査による電流の変化は小
さくなることに着目し、この基板電流の変化を検出する
ことによってイオンビーム加工が必要とする層までの加
工終点を高精度に検出できろようIcI、、超微細加工
を可能にしたものである。
Silicon substrate with aluminum wiring layer and 5I depending on the location
When processing a semiconductor device such as Vl or SI in which several Oz layers are stacked by scanning an ion beam in a predetermined area as shown in FIG. 2(G), the substrate current flowing from the silicon substrate As shown in Fig. 2(b), in region A where the sipation film is processed, the change in current due to scanning is small, and in region B where the aluminum layer is processed, the change in current due to scanning is large, and 5iOzFfjC We focused on the fact that in the region where the substrate is processed, the change in current due to scanning becomes larger, and in the region where the silicon substrate is processed, the change in current due to scanning after I& is smaller. IcI enables ultra-fine machining to be performed, allowing highly accurate detection of the end point of the layer required for beam machining.

〔発明の実施例〕 以下本発明を図に示す実施例に基づいて説明する。第1
図は本発明の半導体装置へのイオンビーム加工方法を実
施するだめのイオンピ・−ム加工装置の基本構成を示す
図である。即ち、イオノ源1と引き出し電極5との間に
電圧をかけてイオンビーム2を引き出し、集束レンズ4
でターゲット9上にビームを集束する。イオン光学系に
は上記電極以外にビームディファイディ/グアバ−チャ
5、ブランキング電極6、グラ/キングアパーチャア、
ディフレクタ電極8を設けている。ブランキング電極6
とはブランキング電極17から電圧を与え、イオンビー
ムな高速で偏向し、タープy ) ’p 」二でのビー
ムのオンオフを行なう。また、グイフレフタ電@8には
、グイフレフタコントローラ14からイオンビーム偏向
電圧を与えるが、同じ偏向電圧をC几T1sの偏向WL
罹に与えろ。この時、ターゲット9から発生する2次電
子11をディテクタ12で検出し、へ、ドアンプ15で
増巾した信号でCRT15に輝度変調をかけることKよ
り、ターゲット9表面の2次電子信号を得、走査電子顕
微鏡と同じ原理で走査イオン顕微鏡として、加工すべざ
ターデアト9氏面を観察できる。これで、加工位置決め
を行なう。また、テーブル10から取り出した電流を電
流計16で計測し、レコーダ18に記録している。
[Embodiments of the Invention] The present invention will be described below based on embodiments shown in the drawings. 1st
The figure shows the basic configuration of an ion beam processing apparatus for carrying out the ion beam processing method for semiconductor devices of the present invention. That is, a voltage is applied between the ion source 1 and the extraction electrode 5 to extract the ion beam 2, and the focusing lens 4
to focus the beam onto target 9. In addition to the above-mentioned electrodes, the ion optical system includes a beam defid/guarantee 5, a blanking electrode 6, a graph/king aperture,
A deflector electrode 8 is provided. Blanking electrode 6
A voltage is applied from the blanking electrode 17, the ion beam is deflected at high speed, and the beam is turned on and off at the tarp. In addition, the ion beam deflection voltage is applied to the Guifuta electric @ 8 from the Guifuta controller 14, and the same deflection voltage is applied to the deflection WL of the C T1s.
Give it to the sick. At this time, the secondary electrons 11 generated from the target 9 are detected by the detector 12, and the brightness modulation is applied to the CRT 15 with the signal amplified by the amplifier 15, thereby obtaining a secondary electron signal on the surface of the target 9. Using the same principle as a scanning electron microscope, it can be used as a scanning ion microscope to observe the surface of the processed surface. Now, perform processing positioning. Further, the current taken out from the table 10 is measured with an ammeter 16 and recorded on a recorder 18.

次に本発明の具体的実施例を説明する。Next, specific examples of the present invention will be described.

〈実施例t〉 第3図は本発明の一実施例を示したものである。前述の
通り、イオンビーム2を引ざ出し、集束し、偏向し、V
LSI等の半導体装置9を加工する。この時、基板電流
をへ、ドアンブ20で増幅り、 、A/Dコンバータ2
1でデジタル信号とし、メインコントローラ22へ入力
する。また、基板電流はビーム走査に同期して変化し、
中央部の走査線では小さく、上下端部の走査線では大き
くなる。そこで、常に同じ走査線の信号が取れるように
デフレクタコントローラ14からビーム走査の同期信号
をメインコントローラ22へ入力している。メインコン
トローラ22は入力された基板電流信号を処理し、例え
ばアルミ配線層Bまでの加工の終点を判断し、ブランキ
ング電源17釦オン信号を送シ、ビーム遮断して加工を
停止する。
<Embodiment t> FIG. 3 shows an embodiment of the present invention. As mentioned above, the ion beam 2 is extracted, focused, and deflected, and the V
A semiconductor device 9 such as an LSI is processed. At this time, the substrate current is amplified by the amplifier 20, and the A/D converter 2
1 as a digital signal and input it to the main controller 22. In addition, the substrate current changes in synchronization with beam scanning,
It is small in the central scanning line, and large in the scanning lines at the upper and lower ends. Therefore, a beam scanning synchronization signal is input from the deflector controller 14 to the main controller 22 so that the same scanning line signal can always be obtained. The main controller 22 processes the input substrate current signal, determines the end point of processing up to, for example, aluminum wiring layer B, sends a button-on signal to the blanking power supply 17, cuts off the beam, and stops processing.

基板電流は加工が進行するに従い第4図[a)のBK変
化する。基板電流は1走査が終了し、次の走査に移る時
に最大値を示す。また、走査領域中央部では最小値とな
る。そこで、デフレクタコントローラ14からの同期信
号受信時とその時から1走査の時間の2が濾過した時の
電流値を抽出して第4図(b)の様な基板X流の最大、
最小をモニタする。今回は1走査が1秒オーダーで比較
的遅いため、同期信号による信号抽出を行なったが、1
走査を速くした場合には同期信号をトリガーとしてA/
Dゴンパータ21を動作させる方式に替える。第4図(
b)の様に最小値を得、最小値の時間変化からだけでも
加工の終点検出は可能であるが、半導体の構造によって
は最小値に材質による著しい変動が見られない場合があ
る。その場合には基板電流の最大値と最小値の差を計算
し、第4図(c)の様な変化中のモニタリングを行ない
良好な終点検出が可能となる。
The substrate current changes BK as shown in FIG. 4(a) as processing progresses. The substrate current reaches its maximum value when one scan ends and the next scan begins. Furthermore, the value is the minimum value at the center of the scanning area. Therefore, the maximum current value of the substrate X current as shown in FIG.
Monitor min. This time, one scan was relatively slow on the order of one second, so we extracted signals using a synchronization signal, but 1
When scanning is made faster, the synchronization signal is used as a trigger for A/
The system is changed to one in which the D gomperter 21 is operated. Figure 4 (
Although it is possible to obtain the minimum value as shown in b) and detect the end point of processing only from the change in the minimum value over time, depending on the structure of the semiconductor, the minimum value may not vary significantly depending on the material. In that case, the difference between the maximum value and the minimum value of the substrate current is calculated, and monitoring is performed during the change as shown in FIG. 4(c), thereby making it possible to accurately detect the end point.

現在、加工速度はQ、1μns l/SeC程度である
Currently, the processing speed is about Q, 1 μns l/SeC.

2μ属×2μ風の矩形加工を行なうとすると深さ方向の
加工速度はCLO25μm/seeとなる。−走査を1
秒として加工を進めているが、終点の判断は4点を順次
比較して行なうため、終点の判断中にα1pm加工が進
行する。しかし、眉間絶縁膜の厚さは1p#1程度であ
り実用上(11%M加工が進んでも問題はなく、終点検
出N度は充分である。もし、さらに高精度の加工終点検
出が必要ならd走査速度を速めるか走査線数を減らし、
−走査で加工される深さを減らせば良い。
When machining a rectangular shape of 2 μm x 2 μm, the processing speed in the depth direction is CLO 25 μm/see. - scan 1
Machining is proceeding in seconds, but since the end point is determined by sequentially comparing four points, α1pm machining progresses while the end point is being determined. However, the thickness of the glabella insulating film is about 1p#1, and for practical purposes (11%), there is no problem even if M processing progresses, and the end point detection N degree is sufficient.If even higher precision processing end point detection is required. d Increase the scanning speed or reduce the number of scanning lines,
- The depth processed by scanning can be reduced.

〈実施例2〉 第5図は本実施例の説明図である。本実施例では2次電
子の効果を除き純粋な基板電流の変化のみをモニタでき
る事を考えた。2次電子11は引き込み電源23から引
き込み電極24にプラス電位を与え、そのほとんどをフ
ァラデー力、ブ26中へ導入する。ファラデーカップ2
6にはそこから発生する2次電子を逃がさない様に電子
トラップ電極25にトラ、プ戒源27からマイナス電位
をかける。また、ファラデー力、プ26自身を2次電子
加速電源28でプラス電位に浮かしている。2次電子電
流は基板電流と同様にへ、ドアンプ29で増巾した後、
減算器30で基板電流から減算される。2次電子の効果
を除いた基板電流をA/Dコンバータ31を通しメイン
コントローラ22で信号処理し、加工の終点を判断しブ
ランキング電源17にオン信号を送って加工を停止する
。2次電子の効果を除いた基板電流の変化第4図fb)
に示した基板電流の最小値の変化に近いものが得られる
が、それは完全に基板への9−り電流のみを反映したも
のであり、終点検出の信頼性が高くなる。ただ、終点の
判断は実施例tと同じ方式のため、11μ属の誤差を生
ずる。
<Example 2> FIG. 5 is an explanatory diagram of this example. In this embodiment, it was considered that only changes in pure substrate current could be monitored, excluding the effect of secondary electrons. The secondary electrons 11 apply a positive potential to the lead-in electrode 24 from the lead-in power source 23, and most of them are introduced into the Faraday force or tube 26. faraday cup 2
At 6, a negative potential is applied to the electron trap electrode 25 from a source 27 so that the secondary electrons generated therefrom do not escape. Furthermore, the Faraday force pu 26 itself is floated to a positive potential by the secondary electron accelerating power supply 28. The secondary electron current is amplified by the amplifier 29 in the same way as the substrate current, and then
It is subtracted from the substrate current by a subtracter 30. The substrate current, excluding the effect of secondary electrons, passes through the A/D converter 31 and is signal-processed by the main controller 22 to determine the end point of machining and send an on signal to the blanking power supply 17 to stop the machining. Change in substrate current excluding the effect of secondary electrons (Figure 4 fb)
Although a change close to the minimum value of the substrate current shown in FIG. 1 is obtained, this completely reflects only the 9-direction current to the substrate, and the reliability of end point detection is increased. However, since the end point is determined using the same method as in Example t, an error of about 11 μm occurs.

しかし、実用上問題とはならない。However, this does not pose a practical problem.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明くよれば、[L1μ闇以下の
精度で加工の終点検出が可能であるので、実用上問題に
ない程度に下部への損傷を抑える°ことがでよる。また
、他の方法は、例えば2次イオンを検出する方法等、に
比べ機器構成が単Xlテすむため、加工装置の価格を抑
えろと同時に終点検出の信頼性を高める効果がある。
As explained above, according to the present invention, it is possible to detect the end point of machining with an accuracy of less than [L1 μm, so damage to the lower part can be suppressed to an extent that is not a problem in practice. In addition, since other methods require a single Xl equipment configuration compared to, for example, a method of detecting secondary ions, they have the effect of reducing the cost of the processing equipment and at the same time increasing the reliability of end point detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオンビーム加工装置の構成図、第2図は加工
過程を示す説明図、第3図は実施例tの機器構成図、第
4図は基板電流の信号処理を示す説明図、第5図は実施
例20機器構成図である。 1・・・イオン源、2・・・イオンビーム、3・・・引
き出し電極、4・・・実速レンズ、5・・・ビームディ
ファイディングアパーチャ、6・・・ブランキング電極
、7・・・ブランキングアパチャー、8・・・デフレク
タ電極、9・・・タープ、)、10・・・テーブル、1
1・・・2次電子、12・・・2次電子ディテクタ、1
5・・・へ、ドアンブ、14・・・デフレクタコントロ
ーラ、15・・・CRT、16・・・電流計、17・・
・ブランキング電源、19・・・レコーダ、20・・・
へ、ドアンフ、21・・・A/Dコンバータ、22・・
・メインコントローラ、23・・・2次電子引き込み電
源、24・・・2次電子引き込み電極、25・・・2次
電子トラップ電極、26・・・ファラデー力、ブ、27
・・・2次電子トラ、プ電極、28・・・2次電子加速
電源、29・・・へ、ド1ンプ、50・・・減算器、3
1・・・A/Dコンバータ。 第 1 え 第2図 第 3 図 躬 4 幻 躬50
Fig. 1 is a configuration diagram of the ion beam processing apparatus, Fig. 2 is an explanatory diagram showing the processing process, Fig. 3 is an equipment configuration diagram of Example t, Fig. 4 is an explanatory diagram showing signal processing of substrate current, FIG. 5 is a diagram showing the equipment configuration of Example 20. DESCRIPTION OF SYMBOLS 1... Ion source, 2... Ion beam, 3... Extraction electrode, 4... Actual speed lens, 5... Beam-defining aperture, 6... Blanking electrode, 7... Blanking aperture, 8... Deflector electrode, 9... Tarp, ), 10... Table, 1
1...Secondary electron, 12...Secondary electron detector, 1
5... to doorbell, 14... deflector controller, 15... CRT, 16... ammeter, 17...
・Blanking power supply, 19...Recorder, 20...
To, door, 21...A/D converter, 22...
・Main controller, 23...Secondary electron drawing power supply, 24...Secondary electron drawing electrode, 25...Secondary electron trap electrode, 26...Faraday force, 27
. . . Secondary electron tracker, pull electrode, 28 . . . Secondary electron accelerating power source, 29 .
1... A/D converter. 1st figure 2nd figure 3 illustrator 4 illusion 50

Claims (1)

【特許請求の範囲】 1、イオン源から射出されるイオンビームをイオン光学
系で集束させ、更に偏向電極等で偏向させて複数層を有
する半導体装置に照射し、照射された半導体装置に流れ
る電流を電流検出手段により検出し、この検出された電
流の変化により半導体装置のある層への加工の終点を検
出して加工することを特徴とする半導導体装置へのイオ
ンビーム加工方法。 2、半導体装置に流れる電流として基板へリークする電
流であることを特徴とする特許請求の範囲第1項記載の
半導体装置へのイオンビーム加工方法。 3、イオン源から射出されるイオンビームをイオン光学
系で集束させ、更に偏向電極等で偏向させて複数層を有
する半導体装置に照射し、照射された半導体装置に流れ
る電流を電流検出手段により検出し、照射された半導体
装置から発生する2次電子を2次電子検出手段により検
出し、これら検出された信号の差の変化により半導体装
置のある層への加工の終点を検出して加工することを特
徴とする半導体装置へのイオンビーム加工方法。 4、イオンビームを射出するイオン源と、該イオン源か
ら射出されたイオンビームを集束させるイオン光学系と
、上記イオン源が射出されたイオンビームを偏向させる
偏向電極と、上記イオン光学系及び偏向電極により集束
、偏向されたイオンビームが照射される半導体装置を載
置したテーブルと、該半導体装置に流れる電流を検出す
る電流検出手段と、該電流検出手段で検出される電流の
変化を検出して加工の終点を検出する加工終点検出手段
とを備え付けたことを特徴とする半導体装置へのイオン
ビーム加工装置。 5、イオンビームを射出するイオン源と、該イオン源か
ら射出されたイオンビームを集束させるイオン光学系と
、上記イオン源から射出されたイオンビームを偏向させ
る偏向電極と、上記イオン光学系及び偏向電極により集
束、偏向されたイオンビームが照射される半導体装置を
載置したテーブルと、該半導体装置に流れる電流を検出
する電流検出手段と、イオンビームが半導体装置に照射
されて発生する2次電子を捕獲検出するファラデーカッ
プと、該ファラデーカップから検出される2次電子の信
号と電流検出手段から検出される電流の信号とにもとづ
いて得られる加工終点検出信号の変化により加工の終点
を検出する加工終点検出手段とを備え付けたことを特徴
とする半導体装置へのイオンビーム加工装置。 6、加工終点検出手段において、加工終点検出信号を電
流の信号から2次電子の信号を減算して得ることを特徴
とする特許請求の範囲第5項記載のイオンビーム加工装
置。
[Claims] 1. An ion beam emitted from an ion source is focused by an ion optical system, further deflected by a deflection electrode, etc., and irradiated onto a semiconductor device having multiple layers, and a current flows through the irradiated semiconductor device. A method for processing a semiconductor device with an ion beam, the method comprising detecting the current by a current detection means, and detecting and processing the end point of processing a certain layer of the semiconductor device based on a change in the detected current. 2. The ion beam processing method for a semiconductor device according to claim 1, wherein the current leaks to the substrate as a current flowing through the semiconductor device. 3. The ion beam emitted from the ion source is focused by an ion optical system, further deflected by a deflection electrode, etc., and irradiated onto a semiconductor device having multiple layers, and the current flowing through the irradiated semiconductor device is detected by a current detection means. Then, secondary electrons generated from the irradiated semiconductor device are detected by a secondary electron detection means, and the end point of processing a certain layer of the semiconductor device is detected and processed based on a change in the difference between these detected signals. An ion beam processing method for semiconductor devices characterized by: 4. An ion source that emits an ion beam, an ion optical system that focuses the ion beam emitted from the ion source, a deflection electrode that deflects the ion beam emitted from the ion source, and the ion optical system and deflection. A table on which a semiconductor device is placed, which is irradiated with an ion beam focused and deflected by an electrode, a current detection means for detecting a current flowing through the semiconductor device, and a current detection means for detecting a change in the current detected by the current detection means. An ion beam processing apparatus for a semiconductor device, characterized in that it is equipped with processing end point detection means for detecting the end point of processing. 5. An ion source that emits an ion beam, an ion optical system that focuses the ion beam that is emitted from the ion source, a deflection electrode that deflects the ion beam that is emitted from the ion source, and the ion optical system and deflection. A table on which a semiconductor device is irradiated with an ion beam focused and deflected by an electrode, a current detection means for detecting a current flowing through the semiconductor device, and secondary electrons generated when the semiconductor device is irradiated with the ion beam. The end point of machining is detected based on a change in a machining end point detection signal obtained based on a Faraday cup that captures and detects a secondary electron signal detected from the Faraday cup and a current signal detected from a current detection means. An ion beam processing device for semiconductor devices, characterized in that it is equipped with processing end point detection means. 6. The ion beam processing apparatus according to claim 5, wherein the processing end point detection means obtains the processing end point detection signal by subtracting the secondary electron signal from the current signal.
JP60060573A 1985-03-27 1985-03-27 Ion beam processing method and device for semiconductor device Expired - Lifetime JP2539359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60060573A JP2539359B2 (en) 1985-03-27 1985-03-27 Ion beam processing method and device for semiconductor device
KR8602240A KR900005783B1 (en) 1985-03-27 1986-03-26 Ion beam cutting method and device thereof for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060573A JP2539359B2 (en) 1985-03-27 1985-03-27 Ion beam processing method and device for semiconductor device

Publications (2)

Publication Number Publication Date
JPS61220330A true JPS61220330A (en) 1986-09-30
JP2539359B2 JP2539359B2 (en) 1996-10-02

Family

ID=13146134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060573A Expired - Lifetime JP2539359B2 (en) 1985-03-27 1985-03-27 Ion beam processing method and device for semiconductor device

Country Status (2)

Country Link
JP (1) JP2539359B2 (en)
KR (1) KR900005783B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316125A (en) * 1989-03-30 1991-01-24 Mitsubishi Electric Corp Manufacture of semiconductor device
US6753253B1 (en) * 1986-06-18 2004-06-22 Hitachi, Ltd. Method of making wiring and logic corrections on a semiconductor device by use of focused ion beams

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579877A (en) * 1980-05-16 1982-01-19 Varian Associates Final point detection in physical etching process
JPS58202038A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Ion beam processing apparatus
JPS59208830A (en) * 1983-05-13 1984-11-27 Hitachi Ltd Ion beam processing method and device thereof
JPS60200529A (en) * 1984-03-24 1985-10-11 Mitsubishi Electric Corp Process of ion-beam etching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579877A (en) * 1980-05-16 1982-01-19 Varian Associates Final point detection in physical etching process
JPS58202038A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Ion beam processing apparatus
JPS59208830A (en) * 1983-05-13 1984-11-27 Hitachi Ltd Ion beam processing method and device thereof
JPS60200529A (en) * 1984-03-24 1985-10-11 Mitsubishi Electric Corp Process of ion-beam etching

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753253B1 (en) * 1986-06-18 2004-06-22 Hitachi, Ltd. Method of making wiring and logic corrections on a semiconductor device by use of focused ion beams
JPH0316125A (en) * 1989-03-30 1991-01-24 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR900005783B1 (en) 1990-08-11
JP2539359B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP4093662B2 (en) Scanning electron microscope
US6822233B2 (en) Method and apparatus for scanning transmission electron microscopy
JP3951590B2 (en) Charged particle beam equipment
US5093572A (en) Scanning electron microscope for observation of cross section and method of observing cross section employing the same
US7276693B2 (en) Inspection method and apparatus using charged particle beam
US4933552A (en) Inspection system utilizing retarding field back scattered electron collection
JPH11326247A (en) Substrate-inspection device and substrate-inspection system provided therewith and substrate-inspection method
JPH11238484A (en) Projection type charged particle microscope and substrate inspection system
JP2006032107A (en) Reflection image forming electron microscope and pattern defect inspection device using it
US7218126B2 (en) Inspection method and apparatus for circuit pattern
JPH0286036A (en) Ion micro-analyzer
JP3330382B2 (en) Test and repair equipment for integrated circuits
JP2001148232A (en) Scanning electron microscope
JPH10223168A (en) Sample analyzer
JPS61220330A (en) Method and apparatus for ion beam processing of semiconductor device
JP4658783B2 (en) Sample image forming method
JP3711244B2 (en) Wafer inspection system
JP3343421B2 (en) Charged particle beam equipment
JP4178003B2 (en) Semiconductor circuit pattern inspection system
JPH03272554A (en) Scanning electron microscope for section observation and section observing method using it
JP2001319612A (en) Direct imaging electron microscope
US2348031A (en) Method of focusing electron microscopes
JP2000188310A (en) Circuit pattern inspection device
JPH07296759A (en) Observing method of semiconductor element, and scanning electron microscope used therefor
JPS61224319A (en) Ion beam processing method and device thereof