JPS62141447A - Heat pump type regenerative air conditioning equipment - Google Patents

Heat pump type regenerative air conditioning equipment

Info

Publication number
JPS62141447A
JPS62141447A JP60279245A JP27924585A JPS62141447A JP S62141447 A JPS62141447 A JP S62141447A JP 60279245 A JP60279245 A JP 60279245A JP 27924585 A JP27924585 A JP 27924585A JP S62141447 A JPS62141447 A JP S62141447A
Authority
JP
Japan
Prior art keywords
outside air
heat source
heat
air conditioning
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60279245A
Other languages
Japanese (ja)
Other versions
JP2617444B2 (en
Inventor
Yoshiro Sakai
酒井 吉郎
Takashi Yanagihara
柳原 隆司
Yuji Tsubota
坪田 祐二
Toshisuke Onoda
小野田 利介
Shigeo Sugimoto
杉本 滋郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP60279245A priority Critical patent/JP2617444B2/en
Publication of JPS62141447A publication Critical patent/JPS62141447A/en
Application granted granted Critical
Publication of JP2617444B2 publication Critical patent/JP2617444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make it possible to efficiently run heat source apparatus and to realize peak-shift running by a method wherein the allotment of running times of heat source apparatus is calculated by utilizing the enthalpy of the outside air, which is calculated from the outside air temperature and humidity, a forecast table of air-conditioning load and the input data of the capacities of the heat source apparatus so as to output the running control signal of the heat source apparatus on the basis of the calculated allotment. CONSTITUTION:The chiller capacity of a chiller unit and the capacities of heat source apparatus 35 or of the apparatus of heat source devices such as a thermal energy storage tank 2 and the like are inputted in advance to the memory of a microcomputer. First, the allotment of daily running times of heat source apparatus is calculated by utilizing the enthalpy of the outside air, which is calculated from the outside air temperature detected with an outside air temperature sensor 32 and the outside air humidity detected with an outside air humidity sensor 33, the indoor temperature (t) detected with an indoor temperature sensor 31, a forecast table of air-conditioning load, which is inputted in advance, and the input data of the capacities of the heat source apparatus. In accordance with the time allotment determined by the result of the calculation, running control signals for running and stopping of the chiller unit and the like are outputted from the output part of the microcomputer 34 in order to perform proper estimate running of air-conditioning load.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ヒートポンプ式蓄熱冷暖房装置に係り、特に
、ヒートポンプ式チラーユニットと蓄熱槽とを備えた熱
源装置の空調負荷予測運転を行うのに好適な、ヒートポ
ンプ式蓄熱冷暖房装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat pump type thermal storage air conditioning system, and is particularly suitable for performing air conditioning load predictive operation of a heat source device equipped with a heat pump type chiller unit and a heat storage tank. The present invention relates to a heat pump type heat storage cooling and heating device.

〔発明の背景〕[Background of the invention]

近年、電力需要の増大にともなって、電力負荷の昼夜間
格差が拡大する傾向にあシ、電力需要の平準化対策とし
て有効な蓄熱式空調システムの開発が、重要な技術課題
として進められている。
In recent years, as the demand for electricity has increased, the disparity in electricity load between day and night has tended to widen, and the development of thermal storage air conditioning systems, which are effective as a measure to level out electricity demand, is being promoted as an important technical issue. .

例えば、日立評論VOL、66、扁6(1984−6月
)p、17〜20には、小栗正裕ほかにより「ユニット
式氷蓄熱冷暖房システム」という技術レポートが掲載さ
れている。
For example, in Hitachi Review VOL, 66, Bian 6 (June 1984), pp. 17-20, there is a technical report titled "Unit Type Ice Storage Heating and Cooling System" by Masahiro Oguri et al.

当該レポートの空冷ヒートポンプ式チラーユニットは、
昼間に冷温水を作る水側熱交換器、夜間に氷(夏季)!
iたけ温水(冬季)を作る蓄熱槽内の製氷用熱交換器、
外気と熱の授受を行う空気側熱交換器の三つの熱交換器
と受液器、アキュムレータ、圧縮機などで構成されたも
のである。
The air-cooled heat pump chiller unit in this report is
A water-side heat exchanger that produces cold and hot water during the day, and ice at night (summer)!
A heat exchanger for ice making in a heat storage tank that produces hot water (winter),
It consists of three heat exchangers: an air-side heat exchanger that exchanges heat with outside air, a liquid receiver, an accumulator, and a compressor.

このような蓄熱式空調装置において、従来、空調負荷予
測運転を行うには、コンピュータを利用して複雑な予測
シミュレーションを行うか、実負荷に無関係に予め設定
されたスケジュールによって運転するかのどちらかとな
り、前者は大規模なプログラミングを必要とし、後者は
実負荷にうまく適合しないという問題があった。
Conventionally, in order to perform air conditioning load predictive operation in such regenerative air conditioners, either a computer is used to perform a complex predictive simulation, or the operation is performed according to a preset schedule regardless of the actual load. The problem was that the former required extensive programming, and the latter did not suit the actual load well.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の従来技術の実状に鑑みてなされたもの
で、安価でしかも比較的精度の高い空調負荷予測を行い
、熱源機器の効率的な運転、ピークシフト運転を可能に
するヒートポンプ式蓄熱冷暖房装置の提供を、その目的
としている。
The present invention was made in view of the actual state of the prior art described above, and is a heat pump type thermal storage system that performs inexpensive and relatively accurate air conditioning load prediction and enables efficient operation and peak shift operation of heat source equipment. Its purpose is to provide heating and cooling equipment.

〔発明の概要〕[Summary of the invention]

本発明に係るヒートポンプ式蓄熱冷暖房装置の構成は、
ヒートポンプ式チラーユニットと、このチラーユニット
に接続する蓄熱槽とを備えたヒートポンプ式蓄熱冷暖房
装置において、 外気温度、外気湿度および室内温度を検知する各検知手
段と、 気象データをもとに予め設定した空調負荷予測テーブル
と上記チラーユニット、蓄熱槽など熱源機器の容量とを
予め入力して記憶する記憶部と、前記外気温度、外気湿
度検知手段が検知した外気温度、外気湿度から外気エン
タルピを演算し、この外気エンタルピと前記室内温度検
知手段が検知した室内温度と前記空調負荷予測テーブル
および熱源機器容量の入力データとを用いて、前記熱源
機器の運転時間割付けを演算する演算部と、その演算に
もとづき前記熱源機器の運転制御信号を出力する出力部
とを有する演算制御手段とを備えたものである。
The configuration of the heat pump type thermal storage heating and cooling device according to the present invention is as follows:
In a heat pump type thermal storage air conditioning system that includes a heat pump type chiller unit and a heat storage tank connected to the chiller unit, each detection means for detecting outside air temperature, outside air humidity, and indoor temperature, and a preset system based on weather data are used. A storage section that inputs and stores the air conditioning load prediction table and the capacity of heat source equipment such as the chiller unit and heat storage tank in advance, and calculates outside air enthalpy from the outside air temperature and outside air humidity detected by the outside air temperature and outside air humidity detection means. , a calculation unit that calculates the operating time allocation of the heat source equipment using the outside air enthalpy, the indoor temperature detected by the indoor temperature detection means, the air conditioning load prediction table and the input data of the heat source equipment capacity; Basically, it is provided with an arithmetic control means having an output section that outputs an operation control signal for the heat source equipment.

なお、本発明を開発した考え方を付記すると、次のとお
シである。
Additionally, the idea behind developing the present invention is as follows.

空調負荷の大きな要素のうち、日々変動するものとして
は、外気負荷と建物など空調すべき対象となる躯体の保
有している蓄熱負荷がある。その他、人や機器等の負荷
もあるが、外気負荷と躯体の蓄熱負荷が主となるものと
考えてよい。
Among the major elements of the air conditioning load, those that fluctuate on a daily basis include the outside air load and the heat storage load of buildings and other structures that are to be air conditioned. There are other loads such as people and equipment, but it can be considered that the outside air load and the heat storage load of the building frame are the main ones.

−日の空調負荷は、一般的に各負荷対象において、何時
頃はどの程度の負荷であるといった概ね一定のパターン
をたどるものであるから、空調開始時に、外気温度、外
気湿度から外気エンタルピを知ることにより一日の外気
負荷を推測し、また、室内温度を知ることで躯体の蓄熱
負荷を推測することができる。
-The daily air conditioning load generally follows a fixed pattern for each load object, such as how much the load is at what time, so when starting air conditioning, it is necessary to know the outside air enthalpy from the outside air temperature and outside air humidity. By doing this, it is possible to estimate the daily outside air load, and by knowing the indoor temperature, it is possible to estimate the heat storage load of the building frame.

したがって、対象とする負荷のパターンと、ヒートポン
プ式チラーユニットのチラー能力、蓄熱槽の蓄熱容量な
ど熱源機器容量を予めマイクロコンピュータなどに入力
しておけば、外気温度、外気湿度および室内温度という
一般的なセンサーで検出できる情報を用いて空調負荷予
測を行い、前記熱源機器、特にチラーユニットの最適運
転時間割付を行うことができるものである。
Therefore, by inputting the target load pattern, the chiller capacity of the heat pump chiller unit, the heat storage capacity of the heat storage tank, and other heat source device capacities in advance into a microcomputer, general information such as outside temperature, outside humidity, and indoor temperature can be input. By using information that can be detected by various sensors, it is possible to predict the air conditioning load and allocate the optimum operation time of the heat source equipment, especially the chiller unit.

〔発明の実施例〕[Embodiments of the invention]

まず、空調負荷予測運転を行うヒートポンプ式蓄熱冷暖
房装置の一例を第4図を参照して説明する。
First, an example of a heat pump type thermal storage air conditioning system that performs air conditioning load predictive operation will be described with reference to FIG. 4.

第4図は、本発明の一実施例に係る空冷ヒートポンプ式
氷蓄熱冷暖房装置の熱源装置部の系統図である。
FIG. 4 is a system diagram of the heat source unit of the air-cooled heat pump type ice storage cooling and heating apparatus according to one embodiment of the present invention.

第4図において、2点鎖線で囲って示した1は空冷ヒー
トポンプ式チラーユニット(以下単にチラーユニットと
いう)、2は、このチラーユニット1に設けたブライン
熱交換器15から得られる低、高温ブラインにより製氷
蓄熱、温水蓄熱を行う蓄熱槽、3は、前記ブライン熱交
換器15から得られる低、高温ブラインにより冷、@水
を得るためのブライン/水熱交換器、4は、前記プライ
ン熱交換器15と前記プライン/水熱交換器3とを接続
するプライン配管に配設された、プラインを循環させる
だめのプラインポンプ、5は、前記プライン/水熱交換
器3と負荷側(たとえば空気調和機のファンコイルユニ
ットなど)とを接続する配管に配設された冷温水ポンプ
、6は、これら各機器を制御するための制御盤である。
In FIG. 4, 1 surrounded by a two-dot chain line is an air-cooled heat pump chiller unit (hereinafter simply referred to as a chiller unit), and 2 is a low- and high-temperature brine obtained from a brine heat exchanger 15 provided in this chiller unit 1. 3 is a brine/water heat exchanger for obtaining cold water using the low and high temperature brine obtained from the brine heat exchanger 15; 4 is the brine heat exchanger for ice storage and hot water heat storage; A pline pump 5 for circulating the pline, which is disposed in the pline piping connecting the pline/water heat exchanger 3 and the pline/water heat exchanger 3, connects the pline/water heat exchanger 3 to the load side (for example, an air conditioner). A cold/hot water pump 6 installed in a pipe connecting the machine's fan coil unit, etc. is a control panel for controlling each of these devices.

チラーユニット1において、7は圧縮機、8は四方弁、
9は空気側熱交換器、10は受液器、11は電磁弁、1
2は膨張弁、13は逆止弁、14はキャピラリチューブ
、15はプライン熱交換器、16はアキュムレータであ
り、これら機器部品を冷媒配管で接続している。プライ
ン熱交換器15は、シェル15a内に冷媒配管のチュー
ブ15bを組込んだもので、シェル15a側にプライン
、チューブ15b側に冷媒を流通させて熱交換を行うよ
うに構成されている。
In the chiller unit 1, 7 is a compressor, 8 is a four-way valve,
9 is an air side heat exchanger, 10 is a liquid receiver, 11 is a solenoid valve, 1
2 is an expansion valve, 13 is a check valve, 14 is a capillary tube, 15 is a pline heat exchanger, and 16 is an accumulator, and these equipment components are connected by refrigerant piping. The pline heat exchanger 15 has tubes 15b of refrigerant piping built into a shell 15a, and is configured to perform heat exchange by circulating plines on the shell 15a side and circulating refrigerant on the tube 15b side.

チラーユニット外の配管系において、17は電磁弁、1
8は逆止弁、19は三方弁を示している。
In the piping system outside the chiller unit, 17 is a solenoid valve;
8 indicates a check valve, and 19 indicates a three-way valve.

蓄熱槽2は、合成樹脂と断熱材で形成された槽体20内
に、例えばポリエチレンチューブを蛇管状に成形してな
る製氷用熱交換器21を組込んだものである。この製氷
用熱交換器21のチューブは、ブライン熱交換器15に
連通するプライン配管に接続されている。
The heat storage tank 2 has an ice-making heat exchanger 21 formed by molding, for example, a polyethylene tube into a serpentine tube shape, into a tank body 20 made of synthetic resin and a heat insulating material. The tubes of this ice-making heat exchanger 21 are connected to pline piping that communicates with the brine heat exchanger 15.

22は温度センサ、23は水位計、24は氷センサでい
ずれも蓄熱の状態を制御するだめの検知手段である。2
5は氷を融かすための散水手段を示す。
22 is a temperature sensor, 23 is a water level gauge, and 24 is an ice sensor, all of which are detection means for controlling the state of heat storage. 2
5 shows a water sprinkling means for melting ice.

ブライン/水熱交換器3は、シェル3a内に水配管のチ
ューブ3bを組込んだもので、シェル3a側にプライン
を流し、チューブ3b側に水を流通させ熱交換を行うよ
うに構成されている。
The brine/water heat exchanger 3 has a water piping tube 3b built into a shell 3a, and is configured to flow prine to the shell 3a side and flow water to the tube 3b side to perform heat exchange. There is.

このような構成の冷熱源装置部の作用を代表的な運転モ
ードについて説明する。
The operation of the cold/heat source device section having such a configuration will be explained with respect to typical operation modes.

蓄氷運転時には、冷媒、プラインは二重実線矢印の方向
に流れる。
During ice storage operation, the refrigerant and plines flow in the direction of the double solid arrow.

チラーユニット1内では、圧縮機7から吐出される高温
高圧の冷媒ガスは、四方弁8を経て空気側熱交換器9に
入シ、空気に放熱して凝縮される。
In the chiller unit 1, high-temperature, high-pressure refrigerant gas discharged from the compressor 7 enters the air-side heat exchanger 9 via the four-way valve 8, radiates heat to the air, and is condensed.

液化した冷媒は、受液器10を経たのち、膨張弁12−
1を介して断熱膨張され、低圧低温の冷媒液の状態でプ
ライン熱交換器15のチューブ15bに流入する。ここ
で、冷媒液はプラインと熱交換して蒸発し、低温低圧の
冷媒ガスとなり四方弁8、アキュムレータ16を経て圧
縮機7に吸入され、以下同じサイクルを繰返す。
After passing through the liquid receiver 10, the liquefied refrigerant passes through the expansion valve 12-
1, and flows into the tube 15b of the pline heat exchanger 15 in the state of a low-pressure, low-temperature refrigerant liquid. Here, the refrigerant liquid exchanges heat with the pline, evaporates, becomes a low-temperature, low-pressure refrigerant gas, and is sucked into the compressor 7 via the four-way valve 8 and the accumulator 16, and the same cycle is repeated thereafter.

プライン熱交換器15で得られた低温プラインは、二重
実線矢印に示すように、蓄熱槽2の製氷用熱交換器21
とブライン熱交換器15のシェル15a内とを結ぶライ
ン配管をプラインポンプ4を介して循環し、蓄熱槽2の
槽体20内の水を冷却して、製氷用熱交換器21のチュ
ーブ外周に着氷を生せしめる。
The low-temperature prine obtained in the prine heat exchanger 15 is transferred to the ice-making heat exchanger 21 of the heat storage tank 2, as shown by the double solid line arrow.
A line pipe connecting the inside of the shell 15a of the brine heat exchanger 15 is circulated through the prine pump 4, and the water in the tank body 20 of the heat storage tank 2 is cooled, and the water is distributed around the tube outer periphery of the ice-making heat exchanger 21. Causes icing.

との蓄氷運転は、基本的には夜間、電力消費の少ない時
間に行なって蓄氷し、昼間の空調負荷の大きいときに解
氷放熱するものである。
Ice storage operation is basically carried out at night, when power consumption is low, to store ice, and then melt the ice and radiate heat during the day when the air conditioning load is high.

蓄氷運転は、スケジュールタイマーで時間管理がなされ
、蓄熱量の管理は、製氷過程で生じる水の体積変化(水
位計23による検知)や、蓄熱槽水温の管理(温度セン
サー22による検知)などが行われる。
The ice storage operation is time-controlled by a schedule timer, and the amount of heat storage is managed by controlling changes in the volume of water that occurs during the ice-making process (detected by the water level gauge 23) and the water temperature in the heat storage tank (detected by the temperature sensor 22). It will be done.

次に、冷却運転(冷房運転)時には、冷媒、プラインは
実線矢印の方向に流れる。
Next, during cooling operation (cooling operation), the refrigerant and the plines flow in the direction of the solid arrow.

チラーユニット1内での冷媒の流れは、前述の蓄熱運転
に準じているが、異なる点は膨張弁12−2を介してい
ることである。
The flow of refrigerant within the chiller unit 1 is similar to the heat storage operation described above, except that it flows through the expansion valve 12-2.

ブライン熱交換器15で得られた低温プラインは、実線
矢印に示すようにプライン配管を流れ、プライン/水熱
交換器3のシェル3a内を流れて、チューブ3bに入っ
てくる負荷側からの還シ水を冷却するように構成されて
いる。
The low-temperature prine obtained in the brine heat exchanger 15 flows through the pline piping as shown by the solid arrow, flows through the shell 3a of the pline/water heat exchanger 3, and is returned from the load side entering the tube 3b. The system is configured to cool water.

プラインは、蓄熱槽2をバイパスし、プラインポンプ4
を介してチラーユニット1のプライン熱交換器15に戻
り、以下循環する。一方、ブライン/水熱交換器3で冷
却された水は、三方弁19、温度調節弁26によシ、一
部は蓄熱槽へ流れ、一部は直接負荷側に流れるよう制御
され、一定温度の冷水が冷温水ポンプ5を介して負荷側
、たとえば空気調和機のファンコイルユニット(図示せ
ず)に供給される。
The pline bypasses the heat storage tank 2 and is connected to the pline pump 4.
The heat is returned to the pline heat exchanger 15 of the chiller unit 1 via the heat exchanger 1, and is circulated thereafter. On the other hand, the water cooled by the brine/water heat exchanger 3 is controlled by a three-way valve 19 and a temperature control valve 26 so that part of it flows to the heat storage tank and part of it flows directly to the load side, so that the temperature remains constant. The cold water is supplied via the cold/hot water pump 5 to a load side, for example, a fan coil unit (not shown) of an air conditioner.

冷却運転中の制御は、予想負荷量と、蓄熱量およびチラ
ーユニット冷却能力の比較にもとづいてチラーユニット
1を制御し、負荷に対応するものである。
Control during the cooling operation is to control the chiller unit 1 based on a comparison of the expected load amount, the amount of heat storage, and the chiller unit cooling capacity to correspond to the load.

次に、加熱運転時には、捷ずチラーユニット1内での冷
媒の流れは、破線矢印の方向になる。圧縮機7から吐出
される高温高圧の冷媒ガスは、四方弁8を経てブライン
熱交換器15のチューブ15b内に入りブラインと熱交
換して凝縮される。
Next, during heating operation, the refrigerant flows in the unshuffled chiller unit 1 in the direction of the broken line arrow. The high-temperature, high-pressure refrigerant gas discharged from the compressor 7 passes through the four-way valve 8, enters the tube 15b of the brine heat exchanger 15, exchanges heat with brine, and is condensed.

液化した冷媒は、受液器10を経たのち、キャピラリチ
ューブ14を介して断熱膨張され、低圧低温の冷媒液の
状態で空気側熱交換器9に流入する。
After passing through the liquid receiver 10, the liquefied refrigerant is adiabatically expanded through the capillary tube 14, and flows into the air-side heat exchanger 9 in the state of a low-pressure, low-temperature refrigerant liquid.

ここで、冷媒液は外気と熱交換して蒸発し、低温低圧の
冷媒ガスとなり四方弁8、アキュムレータ16を経て圧
縮機7に戻り、以−「同じザイクルを繰返す。
Here, the refrigerant liquid exchanges heat with the outside air and evaporates, becoming a low-temperature, low-pressure refrigerant gas and returning to the compressor 7 via the four-way valve 8 and the accumulator 16, whereupon the same cycle is repeated.

チラーユニット1外の配管系におけるブラインの流れは
、加熱蓄熱運転のときは破線矢印で示すようになる。す
なわち、ブライン熱交換器15で得られた高温ブライン
は蓄熱槽2の製氷用熱交換器21を流れて槽体20内の
水を加熱する。
The flow of brine in the piping system outside the chiller unit 1 is as shown by the broken line arrow during heating and heat storage operation. That is, the high temperature brine obtained in the brine heat exchanger 15 flows through the ice making heat exchanger 21 of the heat storage tank 2 and heats the water in the tank body 20.

加熱空調、すなわち暖房運転のときは、ジグザグ矢印で
示すように、ブラインは、ブライン熱交換器15とブラ
イン/水熱交換器3との間を循環する。プライン熱交換
器15で得られた高温ブラインは、ブライン/水熱交換
器3でシェル3a内を流れ、チューブ3bに入ってくる
負荷側からの還り水を加熱し、冷温水ポンプ5によって
負荷側に温水を供給する。
During heating air conditioning, ie, heating operation, brine circulates between the brine heat exchanger 15 and the brine/water heat exchanger 3, as shown by the zigzag arrows. The high temperature brine obtained in the prine heat exchanger 15 flows through the shell 3a in the brine/water heat exchanger 3, heats the return water from the load side that enters the tube 3b, and returns it to the load side by the cold/hot water pump 5. supply hot water.

このようた熱源装置の一般的な制御手順について説明す
る。
A general control procedure for such a heat source device will be explained.

蓄熱運転の場合、現在の蓄熱量が予め設定しである蓄熱
量に達しているか、いないかを判定し、達していれば、
チラーユニット1.ブラインポンプ4は停止する。達し
ていなければ、チラーユニット1.ブラインポンプ4は
運転する。蓄熱量が設定値に達するまで運転を継続する
In the case of heat storage operation, it is determined whether the current amount of heat storage has reached a preset amount of heat storage or not, and if it has reached,
Chiller unit 1. Brine pump 4 stops. If not, chiller unit 1. Brine pump 4 is operated. Operation continues until the amount of heat storage reaches the set value.

空調運転の場合、例えば冷房運転では、まず冷温水ポン
プ5が起動する。次いで、蓄熱槽2の温度が設定値よシ
高くなったらチラーユニット1を起動させる。設定値ま
で達していない場合は、測定している蓄熱残量と、予め
設定した予測負荷を比較し、蓄熱残量が不足していれば
チラーユニット1が運転され、蓄熱残量が充分であれば
チラーユニット1は停止する。
In the case of air conditioning operation, for example, in cooling operation, the cold/hot water pump 5 is started first. Next, when the temperature of the heat storage tank 2 becomes higher than the set value, the chiller unit 1 is activated. If the set value has not been reached, the measured remaining heat storage amount is compared with the predicted load set in advance, and if the remaining heat storage amount is insufficient, the chiller unit 1 is operated, and if the remaining heat storage amount is sufficient, the chiller unit 1 is operated. The chiller unit 1 stops.

次に、前述の空冷ヒートポンプ式氷蓄熱冷暖房装置の熱
源装置において、空調負荷予測運転を行うだめの構成と
手順を第1図ないし第3図を参照して説明する。
Next, the configuration and procedure for performing air conditioning load predictive operation in the heat source device of the air-cooled heat pump type ice storage heating and cooling system will be described with reference to FIGS. 1 to 3.

第1図は、本発明の一実施例に係る空冷ヒートポンプ式
氷蓄熱冷暖房装置の空調負荷予測制御部の構成を示すブ
ロック図、第2図は、対象負荷の特性を求めるだめの負
荷予測テーブルの作成手順を示すフローチャート、第3
図は、その負荷予測テーブルの様式を示す説明図である
FIG. 1 is a block diagram showing the configuration of an air conditioning load prediction control section of an air-cooled heat pump type ice storage heating and cooling system according to an embodiment of the present invention, and FIG. Flowchart showing the creation procedure, Part 3
The figure is an explanatory diagram showing the format of the load prediction table.

第1図において、31は、空調対象となる室内の温度を
検知する検知手段に係る室内温度センサー、32は、外
気温度を検知する検知手段に係る外気温度センサー、3
3は、外気湿度を検知する検知手段に係る外気湿度セン
サー、34は、演算制御手段に係るマイクロコンピュー
タで、第1図にマイクロコンピュータ34の枠内に示し
た各ブロックは、本実施例におけるマイクロコンピュー
タ34の機能を表わしたものである。35は、先に第4
図で説明した空冷ヒートポンプ式氷蓄熱冷暖房装置の熱
源装置部の熱源機器である。
In FIG. 1, 31 is an indoor temperature sensor related to a detection means for detecting the temperature in a room to be air conditioned, 32 is an outdoor temperature sensor related to a detection means for detecting outside air temperature, 3
3 is an outside air humidity sensor that is a detection means for detecting outside air humidity; 34 is a microcomputer that is an arithmetic and control means; each block shown within the frame of the microcomputer 34 in FIG. 1 is a microcomputer in this embodiment; It represents the functions of the computer 34. 35 is the fourth
This is a heat source device of the heat source unit of the air-cooled heat pump type ice storage air-conditioning system explained in the figure.

さて、空調負荷を予測するためには、先に述べたように
外気負荷と建物など空調すべき対象となる躯体の保有し
ている蓄熱負荷(以下躯体負荷という)とを予測しなけ
ればならない。そして、外気負荷を予測するだめには外
気エンタルピを知る必要がある。
Now, in order to predict the air conditioning load, as mentioned earlier, it is necessary to predict the outside air load and the heat storage load (hereinafter referred to as the "frame load") held by the building frame that is the object of air conditioning, such as a building. In order to predict the outside air load, it is necessary to know the outside air enthalpy.

外気エンタルピは、下記のとおシマイクロコンピュータ
で演算する。
The outside air enthalpy is calculated using the following microcomputer.

i  −(597,3+0.441T)Xx+0.24
TH:検出した外気相対湿度 %RI−IT =検出し
た外気温度    C hs:水蒸気分圧      rrun I−I gX
 :絶対湿度        kg/kg’i :外気
エンタルピ     kcal/kg負荷予測は、第2
図に示すような手順により負荷対象のパターン特性を分
析する。
i - (597,3+0.441T)Xx+0.24
TH: Detected outside air relative humidity %RI-IT = Detected outside air temperature C hs: Water vapor partial pressure rrun I-I gX
: Absolute humidity kg/kg'i : Outside air enthalpy kcal/kg Load prediction is based on the second
Analyze the pattern characteristics of the load target using the procedure shown in the figure.

1ず、負荷計算に使われるもので、−膜化された気象デ
ータであるマイクロHASPにより時刻負荷A(1)を
求める。この時刻負荷人(1)は全体負荷であるが、と
れを外気負荷B (I)とその他の負荷C(I)に区分
する。その他の負荷は空調対象となる建家の躯体負荷や
人、機械などの負荷であるが、躯体負荷が主となるもの
である。
1. First, the time load A(1) is determined using micro HASP, which is used for load calculation and is filmized meteorological data. This time load person (1) is the total load, but the load is divided into outside air load B (I) and other loads C (I). Other loads include the structural load of the building to be air-conditioned, the loads of people, machines, etc., but the structural load is the main load.

これら外気負荷n (I)とその他の負荷C(1)を1
週間プロットして平均的パターンを求める。外気負荷B
 (I)の平均的パターンをD (I) 、その他の負
荷C(I)の平均的パターンをE (I)とする。
These outside air loads n (I) and other loads C (1) are 1
Plot weekly to find average pattern. Outside air load B
Let the average pattern of (I) be D (I), and the average pattern of other loads C(I) be E (I).

次に躯体負荷と空調開始時室温との相関式を求める。建
家などの躯体はあだだ壕っていて、朝の空調開始時に蓄
熱負荷を保有しているので、躯体負荷は起動時に大きく
効いてくる要素であるから、室温tのときの躯体負荷を
Q1=f(t)の相関式で表わす。これは、起動後2時
間の負荷と考える。
Next, find the correlation between the structural load and the room temperature at the start of air conditioning. The frames of buildings, etc. are sloping and have a heat storage load when air conditioning is started in the morning, so the frame load is a factor that is greatly affected at the time of startup, so the frame load when the room temperature is t is It is expressed by the correlation equation Q1=f(t). This is considered to be the load for 2 hours after startup.

そこで毎時合計負荷は、起動を8時として8時から10
時までの2時間の間は、躯体負荷Q1と外気負荷の平均
的パターンD (I)とを加えたもので表わされる。す
なわち、 Q (I) =Q1−1−D(I)(I)また、起動後
2時間を過ぎたのち、10時から、運転を停止する18
時までの合計負荷は、外気負荷の平均的パターンD (
I)とその他負荷の平均的パターンE (I)とを加え
たものと考えてよい。すなわち、 Q (I)= D (I)十E (I)これら各時間を
一日の合計負荷として加算し、外気エンタルピーと室内
温度との相関値として表示したものが第3図の負荷予測
テーブルである。
Therefore, the hourly total load is calculated from 8:00 to 10:00, starting at 8:00.
The two-hour period up to that time is represented by the sum of the structural load Q1 and the average outside air load pattern D (I). That is, Q (I) = Q1-1-D (I) (I) Also, after 2 hours after startup, the operation will be stopped from 10 o'clock 18
The total load up to the time is the average outside air load pattern D (
It can be thought of as the addition of E (I) and other average load patterns E (I). In other words, Q (I) = D (I) 10E (I) The load prediction table in Figure 3 is obtained by adding up each of these hours as the total load for the day and displaying it as a correlation value between outdoor air enthalpy and indoor temperature. It is.

第3図において、欄内に負荷予測の数値が入るべきもの
で、例えば外気エンタルピーが18.0kcat/kg
 、室内温度28Cのときの負荷予測は長円印を付した
欄に示されるものである。
In Figure 3, the load prediction value should be entered in the column, for example, the outside air enthalpy is 18.0kcat/kg.
The load prediction when the room temperature is 28C is shown in the column marked with an oval.

このように、空調負荷予測テーブルは、外気負荷、躯体
の蓄熱負荷を主体とする負荷をパターン化して各時刻の
空調負荷を求め、それを合計した一日の空調負荷の値を
、外気エンタルピと室内温度との相関値として表示した
もので、季節的な補正は補正係数を掛けて行うことがで
きる。この空調負荷予測テーブルは、マイクロコンピュ
ータ34に予め入力し記憶部に記憶させるものである。
In this way, the air conditioning load prediction table patterns the loads mainly consisting of the outdoor air load and the heat storage load of the building frame, calculates the air conditioning load at each time, and calculates the total air conditioning load value for the day as the outdoor air enthalpy. It is displayed as a correlation value with indoor temperature, and seasonal corrections can be made by multiplying by a correction coefficient. This air conditioning load prediction table is input in advance to the microcomputer 34 and stored in the storage section.

マイクロコンピュータ34の記憶部には、チラーユニッ
ト1のチラー能力や蓄熱槽2など熱源装置の機器、すな
わち熱源機器35の容量も予め入力しておく。
The chiller capacity of the chiller unit 1 and the capacity of the heat source device such as the heat storage tank 2, that is, the capacity of the heat source device 35 are also input into the storage section of the microcomputer 34 in advance.

そこで、外気温度センサー32が検知した外気温度、外
気湿度センサー33が検知した外気湿度から演算される
外気エンタルピiと、室内温度センサー31が検知した
室内温度tと、予め入力した空調負荷予測テーブルおよ
び熱源機器容量の入力データとを用いて、前記熱源機器
の一日の運転t17) 時間割付けを演算する。その演算結果の時間割付け、す
なわちタイムスケジュールに従って、チラーユニットの
運転、停止など運転制御信号が、マイクロコンピュータ
34の出力部から出力され、適正な空調負荷予測運転が
行われる。
Therefore, the outside air enthalpy i calculated from the outside air temperature detected by the outside air temperature sensor 32, the outside air humidity detected by the outside air humidity sensor 33, the indoor temperature t detected by the indoor temperature sensor 31, the air conditioning load prediction table input in advance, Using the input data of the heat source equipment capacity, the daily operation time t17) of the heat source equipment is calculated. According to the time allocation of the calculation result, that is, the time schedule, operation control signals such as operation and stop of the chiller unit are outputted from the output section of the microcomputer 34, and an appropriate air conditioning load prediction operation is performed.

本実施例の空冷ヒートポンプ式氷蓄熱冷暖房装置によれ
ば、気象データを基にした、簡易なプログラムにより安
価で比較的精度の高い空調負荷予測を行うことができ、
氷蓄熱式の蓄熱槽を利用した熱源機器の最適運転時間割
付けがなされ、ピークシフト運転など熱源機器35を効
率的に運転することができる。例えば、夏季の運転パタ
ーンとしては、夜間、電力消費の少ない時間に蓄氷運転
によって蓄熱槽2に蓄えられた熱量を、昼間の電力需要
のピーク時に放出するピークカット、ピークシフト運転
を適切な空調負荷予測運転で実施できる。
According to the air-cooled heat pump type ice storage heating and cooling system of this embodiment, it is possible to perform air conditioning load prediction with relatively high accuracy at low cost using a simple program based on weather data.
Optimum operation time allocation is made for the heat source equipment using the ice heat storage type heat storage tank, and the heat source equipment 35 can be efficiently operated such as peak shift operation. For example, as an operating pattern in the summer, the amount of heat stored in the heat storage tank 2 through ice storage operation during the night when electricity consumption is low is released during peak electricity demand in the daytime, and peak shift operation is performed using appropriate air conditioning. This can be done with load predictive operation.

まだ、負荷の実態に応じ、蓄氷運転、冷却運転など運転
モードの切換えが適正な予測のもとにタイムスケジュー
ルによって行うことができる。
However, depending on the actual load condition, switching between operating modes such as ice storage operation and cooling operation can be performed according to a time schedule based on appropriate predictions.

なお、上記の実施例では、ブライン熱交換器15.ブラ
イン/水熱交換器3を介在させて蓄氷を行う空冷ヒート
ポンプ式氷蓄熱冷暖房装置の熱源装置の例を説明したが
、本発明は、これに限るものではなく、ブラインを用い
ない空冷ヒートポンプ式氷蓄熱冷暖房装置、あるいは水
蓄熱など他の蓄熱手段を備えた空冷ヒートポンプ式冷暖
房装置の熱源装置についても汎用的に適用できるもので
ある。
In addition, in the above embodiment, the brine heat exchanger 15. Although an example of a heat source device of an air-cooled heat pump ice storage air-conditioning system that stores ice through the interposition of the brine/water heat exchanger 3 has been described, the present invention is not limited to this, and the present invention can be applied to an air-cooled heat pump type that does not use brine. The present invention can also be generally applied to a heat source device of an ice storage heating/cooling system or an air-cooled heat pump type cooling/heating system equipped with other heat storage means such as water storage.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、安価でしかも精度
の高い空調負荷予測を行い、熱源機器の効率的な運転、
ピークシフト運転を可能にする、ヒートポンプ式蓄熱冷
暖房装置を提供することができる。
As described above, according to the present invention, air conditioning load prediction is performed at low cost and with high accuracy, and efficient operation of heat source equipment is achieved.
It is possible to provide a heat pump type thermal storage cooling/heating device that enables peak shift operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る空冷ヒートポンプ式
氷蓄熱冷暖房装置の空調負荷予測制御部の構成を示すブ
ロック図、第2図は、対象負荷の特性を求めるだめの負
荷予測テーブルの作成手順゛を示すフローチャート、第
3図は、その負荷予測テーブルの様式を示す説明図、第
4図は、本発明の一実施例に係る空冷ヒートポンプ式氷
蓄熱冷暖房装置の熱源装置部の系統図である。 1・・・空冷ヒートポンプ式チラーユニット、2・・・
蓄熱槽、31・・・室内温度センサー、32・・・外気
温度センサー、33・・・外気湿度セッサ−,34・・
・マイ第1閃 第2図
FIG. 1 is a block diagram showing the configuration of an air conditioning load prediction control section of an air-cooled heat pump type ice storage heating and cooling system according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing the format of the load prediction table, and FIG. 4 is a system diagram of the heat source unit of the air-cooled heat pump type ice storage air-conditioning system according to an embodiment of the present invention. It is. 1...Air-cooled heat pump chiller unit, 2...
Heat storage tank, 31...Indoor temperature sensor, 32...Outside air temperature sensor, 33...Outside air humidity sensor, 34...
・My 1st Flash Figure 2

Claims (1)

【特許請求の範囲】 1、ヒートポンプ式チラーユニツトと、このチラーユニ
ツトに接続する蓄熱槽とを備えたヒートポンプ式蓄熱冷
暖房装置において、 外気温度、外気湿度および室内温度を検知する各検知手
段と、 気象データをもとに予め設定した空調負荷予測テーブル
と上記チラーユニツト、蓄熱槽など熱源機器の容量とを
予め入力して記憶する記憶部と、前記外気温度、外気湿
度検知手段が検知した外気温度、外気湿度から外気エン
タルピを演算し、この外気エンタルピと前記室内温度検
知手段が検知した室内温度と前記空調負荷予測テーブル
および熱源機器容量の入力データとを用いて、前記熱源
機器の運転時間割付けを演算する演算部と、その演算に
もとづき前記熱源機器の運転制御信号を出力する出力部
とを有する演算制御手段とを備えたことを特徴とする、
ヒートポンプ式蓄熱冷暖房装置。 2、特許請求の範囲第1項記載のものにおいて、空調負
荷予測運転に供せられる空調負荷予測テーブルは、外気
負荷、躯体の蓄熱負荷を主体とする負荷をパターン化し
て各時刻の空調負荷を求め、それを合計した一日の空調
負荷の値を、外気エンタルピと室内温度との相関値とし
て表示したもので、演算制御手段に入力するものである
、ヒートポンプ式蓄熱冷暖房装置。
[Scope of Claims] 1. A heat pump type thermal storage air conditioning system comprising a heat pump type chiller unit and a heat storage tank connected to the chiller unit, which includes detection means for detecting outside air temperature, outside air humidity, and indoor temperature, and meteorological data. A storage section that inputs and stores in advance an air conditioning load prediction table set in advance and the capacity of heat source equipment such as the chiller unit and heat storage tank, and an outside air temperature and outside air humidity detected by the outside air temperature and outside air humidity detection means. a calculation unit that calculates outside air enthalpy and uses this outside air enthalpy, the indoor temperature detected by the indoor temperature detection means, the air conditioning load prediction table and the input data of the heat source equipment capacity to calculate the operating time allocation of the heat source equipment; and an arithmetic control means having an output section that outputs an operation control signal for the heat source device based on the arithmetic operation,
Heat pump type thermal storage heating and cooling device. 2. In the item described in claim 1, the air conditioning load prediction table used for the air conditioning load prediction operation patterns the loads mainly consisting of the outside air load and the heat storage load of the building frame, and calculates the air conditioning load at each time. A heat pump type regenerative cooling/heating system in which the value of the daily air conditioning load obtained by summing the values is displayed as a correlation value between the outside air enthalpy and the indoor temperature, and is input to the calculation control means.
JP60279245A 1985-12-13 1985-12-13 Air-conditioning load prediction operation method of thermal storage cooling and heating device Expired - Fee Related JP2617444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279245A JP2617444B2 (en) 1985-12-13 1985-12-13 Air-conditioning load prediction operation method of thermal storage cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279245A JP2617444B2 (en) 1985-12-13 1985-12-13 Air-conditioning load prediction operation method of thermal storage cooling and heating device

Publications (2)

Publication Number Publication Date
JPS62141447A true JPS62141447A (en) 1987-06-24
JP2617444B2 JP2617444B2 (en) 1997-06-04

Family

ID=17608457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279245A Expired - Fee Related JP2617444B2 (en) 1985-12-13 1985-12-13 Air-conditioning load prediction operation method of thermal storage cooling and heating device

Country Status (1)

Country Link
JP (1) JP2617444B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210686A (en) * 1995-02-03 1996-08-20 Hitachi Plant Eng & Constr Co Ltd Air-conditioning system
JP2012220055A (en) * 2011-04-05 2012-11-12 Kume Sekkei:Kk Air conditioning load prediction device, and air conditioning load prediction method
US8457933B2 (en) 2007-11-12 2013-06-04 The Industry & Academic Cooperation In Chungnam National University Method for predicting cooling load
CN105091209A (en) * 2014-05-23 2015-11-25 国网山西省电力公司电力科学研究院 Control system and method based on air conditioning load prediction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110840B2 (en) * 2002-06-03 2008-07-02 ダイキン工業株式会社 Humidity control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983246A (en) * 1972-12-15 1974-08-10
JPS5246653A (en) * 1975-10-11 1977-04-13 Mitsubishi Electric Corp Contrtol system for a heat source machine of an ar conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983246A (en) * 1972-12-15 1974-08-10
JPS5246653A (en) * 1975-10-11 1977-04-13 Mitsubishi Electric Corp Contrtol system for a heat source machine of an ar conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210686A (en) * 1995-02-03 1996-08-20 Hitachi Plant Eng & Constr Co Ltd Air-conditioning system
US8457933B2 (en) 2007-11-12 2013-06-04 The Industry & Academic Cooperation In Chungnam National University Method for predicting cooling load
JP2012220055A (en) * 2011-04-05 2012-11-12 Kume Sekkei:Kk Air conditioning load prediction device, and air conditioning load prediction method
CN105091209A (en) * 2014-05-23 2015-11-25 国网山西省电力公司电力科学研究院 Control system and method based on air conditioning load prediction

Also Published As

Publication number Publication date
JP2617444B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
CN204063699U (en) Refrigerating circulatory device
US3563304A (en) Reverse cycle refrigeration system utilizing latent heat storage
Ding et al. Experiment investigation of reverse cycle defrosting methods on air source heat pump with TXV as the throttle regulator
JP5394047B2 (en) Method and apparatus for measuring cooling capacity of air conditioning system by package type air conditioner
JPH0886478A (en) Ice storage type refrigerator unit
CN107084483A (en) A kind of air conditioner and control method
CN100567850C (en) Full-liquid type water-icing machine
WO2006114983A1 (en) Refrigeration cycle device
JP7328498B2 (en) Information processing device, air conditioner, information processing method, air conditioning method, and program
JP2018080884A (en) Air conditioner
CN107906811B (en) Anti-freezing control method for heat pump unit
JPS62141447A (en) Heat pump type regenerative air conditioning equipment
EP3594588B1 (en) Geothermal heat pump device
CN115451455A (en) Step type cold (hot) water machine set
JPH0814676A (en) Air conditioner
JP2002071169A (en) Ice heat storage type air conditioning device and method for controlling the same
JP2013011423A (en) Refrigerating apparatus
JP3309282B2 (en) Design method of air conditioning system with heat storage tank
JPH0424613B2 (en)
JPH1089742A (en) Refrigerating system
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JP3108202B2 (en) Operation control method for air conditioner
JP3217113B2 (en) Thermal storage operation method for thermal storage tank
JP3142897B2 (en) Cooling and heating system with heat storage function
JP3306107B2 (en) Operation control method for air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees