JP2012220055A - Air conditioning load prediction device, and air conditioning load prediction method - Google Patents
Air conditioning load prediction device, and air conditioning load prediction method Download PDFInfo
- Publication number
- JP2012220055A JP2012220055A JP2011083743A JP2011083743A JP2012220055A JP 2012220055 A JP2012220055 A JP 2012220055A JP 2011083743 A JP2011083743 A JP 2011083743A JP 2011083743 A JP2011083743 A JP 2011083743A JP 2012220055 A JP2012220055 A JP 2012220055A
- Authority
- JP
- Japan
- Prior art keywords
- load
- time
- air conditioning
- day
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、空調機器の空調負荷を予測する空調負荷予測装置及び空調負荷予測方法に関する。 The present invention relates to an air conditioning load prediction device and an air conditioning load prediction method for predicting an air conditioning load of an air conditioning device.
空調機器のエネルギ消費量である空調負荷を予測することは、空調機器を効率的に運転してエネルギ効率を向上する上で極めて重要であり、特に夜間電力を有効利用する蓄熱機器を備えた空調システムではエネルギ消費量を抑える意味での要求度が高い。また従来の熱源機器の運転は、最大空調負荷を前提とし余剰に蓄熱するケースが発生しており、機器のランニングコストと環境負荷の低減には繋がらず、精度のよい空調負荷予測をすることで負荷に見合ったフィードフォワードの運転手法が要求される。 Predicting the air conditioning load, which is the energy consumption of the air conditioning equipment, is extremely important for efficiently operating the air conditioning equipment and improving the energy efficiency, and in particular, air conditioning equipped with heat storage equipment that effectively uses nighttime power. The system is highly demanded in terms of reducing energy consumption. In addition, the operation of conventional heat source equipment has a case of excessive heat storage on the premise of maximum air conditioning load, which does not lead to reduction of equipment running cost and environmental load, and makes accurate air conditioning load prediction. A feed-forward operation method suitable for the load is required.
このような空調負荷を予測する例としては、例えば下記特許文献1〜3に記載されたものがある。
Examples of predicting such an air conditioning load include those described in
特許文献1に記載ものは、コンピュータ上に構築されたニューラルネットワークモデルを使用して、翌日の時間単位の空調負荷を予測する際に、外界条件データ、室内環境条件データ及び空調システム運転条件データを入力し、該入力データ毎の学習係数を、過去の入力データ及び翌日の時間単位の空調負荷値に基づいて最適化する処理を行うようにしている。
特許文献2に記載ものは、空調負荷実績データ、気象データ、カレンダデータ及び空調機器稼動スケジュールデータを用いて学習した予測モデルに対し、これら各データを入力して空調負荷の予測を行っている。
The thing of
特許文献3に記載ものは、1日の周期的な変動パターンモデル式を付加したARMAモデル式により空調負荷を予測する際に、新事例として入力された現時刻における実測データに対し、過去の実測データを事例とする事例ベースを用いて予測を行う位相事例ベースモデリングにより当日の最高負荷を予測し、この最高負荷に基づいてARMAモデル式による予測負荷を補正している。
このように、従来から空調機器の空調負荷を予測することは、空調機器を効率的に運転してエネルギ効率を向上する上で極めて重要となっている。 As described above, predicting the air conditioning load of an air conditioner has been extremely important in order to improve the energy efficiency by efficiently operating the air conditioner.
そこで、本発明は、空調機器の空調負荷を予測する際に用いる従来の気象データ、外気データを必要とせず、予測当日の立ち上がり負荷を利用し、パラメータ入力の煩雑さを解消し、オペレータが容易に利用できることで、空調機器を効率的に運転してエネルギ効率を向上させることを目的としている。 Therefore, the present invention does not require the conventional weather data and outside air data used when predicting the air conditioning load of the air conditioning equipment, uses the rising load on the prediction day, eliminates the complexity of parameter input, and is easy for the operator. It is intended to improve energy efficiency by operating air conditioning equipment efficiently.
本発明は、過去の一定期間における複数日それぞれの時刻毎の空調負荷量を1日分の空調負荷量で除して各時刻の1日に対する負荷配分率を算出する時負荷配分率算出手段と、前記複数日の時刻毎の空調負荷量のうち、1日における空調が立ち上がる一定時間における各時刻の空調負荷量から1日分の空調負荷量を予測する日負荷量予測手段と、この日負荷量予測手段が予測した1日分の空調負荷量に、前記時負荷配分率算出手段で算出した各時刻の負荷配分率を乗じて各時刻の空調負荷量を予測する時負荷量予測手段とを有することを特徴とする。 The present invention relates to an hourly load distribution rate calculating means for calculating a load distribution rate for one day at each time by dividing an air conditioning load amount for each time of a plurality of days in a past fixed period by an air conditioning load amount for one day. The daily load amount predicting means for predicting the air conditioning load amount for one day from the air conditioning load amount at each time in a certain time when the air conditioning in one day rises among the air conditioning load amounts for each time of the plurality of days, and this daily load A load amount prediction unit for predicting the air conditioning load amount at each time by multiplying the air load load amount for one day predicted by the amount prediction unit by the load distribution rate at each time calculated by the hour load distribution rate calculation unit; It is characterized by having.
本発明によれば、過去の一定期間における複数日それぞれの時刻毎の空調負荷量を1日分の空調負荷量で除して各時刻の1日に対する負荷配分率を算出するとともに、複数日の時刻毎の空調負荷量のうち、1日における空調が立ち上がる一定時間における各時刻の空調負荷量から1日分の空調負荷量を予測する。そして、この予測した1日分の空調負荷量に、算出済みの各時刻の負荷配分率を乗じて各時刻の空調負荷量を予測する。このようにして1日における各時刻の空調負荷量を予測することにより、空調機器を効率的に運転してエネルギ効率を向上させることができる。 According to the present invention, the load distribution ratio for one day at each time is calculated by dividing the air-conditioning load amount for each time of a plurality of days in a past fixed period by the air-conditioning load amount for one day. Of the air conditioning load amount at each time, the air conditioning load amount for one day is predicted from the air conditioning load amount at each time in a certain time when the air conditioning in one day rises. Then, the air conditioning load amount at each time is predicted by multiplying the predicted air conditioning load amount for one day by the calculated load distribution rate at each time. Thus, by predicting the air conditioning load amount at each time in one day, the air conditioning equipment can be efficiently operated to improve the energy efficiency.
以下、本発明の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の一実施形態に係わる負荷予測装置は、図1に示すように、負荷データ収集部1と、空調負荷予測部3と、熱源設備制御部5と、熱源設備機器7とを主として備えている。
As shown in FIG. 1, the load prediction apparatus according to an embodiment of the present invention mainly includes a load
負荷データ収集部1は、過去の一定期間における複数日それぞれの時刻毎の空調負荷量を収集して蓄積するもので、後述する蓄熱槽の温度データなども格納する中央監視装置として機能している。空調負荷予測部3は、負荷データ収集部1で収集蓄積したデータに基づいて、熱源設備機器7における空調負荷を、後述するような回帰分析によって予測する。熱源設備制御部5は、空調負荷予測部3で予測した空調負荷を考慮して熱源設備機器7を制御する。
The load
熱源設備機器7は、図2に示すように蓄熱槽9を備えた空調システムであり、室内の空調を行うファンコイル等の室内空調器11と、蓄熱槽9に主に夜間電力を利用して蓄熱するための冷凍機13,15と、蓄熱槽9の熱源を利用して室内空調器11による空調を行うための熱交換器17と、室内の空調を行うための冷凍機19と、を備えている。
As shown in FIG. 2, the heat source equipment 7 is an air conditioning system including a
なお、符号21,23はヘッダ、符号25〜35はポンプである。
次に、空調負荷予測部3による制御動作を含む図3に示すフローチャートに基づいて、上記した負荷予測装置による負荷予測方法を説明する。まず、負荷データ収集部1で、過去の一定期間における複数日それぞれの時刻毎の空調負荷量を収集して蓄積し(ステップS1)、この蓄積した過去のデータから、空調負荷予測のために採用する期間を、前年の同時期の一定期間(例えば前年同月の1ヶ月間)か、直前の一定期間(例えば3週間)のいずれかを設定する(ステップS2)。この設定作業はオペレータが手動で行う。
Next, a load prediction method by the above-described load prediction device will be described based on the flowchart shown in FIG. First, the load
そして、上記採用した期間における複数日それぞれの1日の時刻毎の空調負荷量qdnを、1日分の空調負荷量Qdで除して、各時刻の1日に対する負荷配分率rdnを算出する(ステップS3)。すなわち、rdn=qdn÷Qdである。したがって、空調負荷予測部3は、過去の一定期間における複数日それぞれの時刻毎の空調負荷量を1日分の空調負荷量で除して各時刻の1日に対する負荷配分率を算出する時負荷配分率算出手段を含んでいる。
Then, by dividing the air conditioning load amount q dn for each day of the plurality of days in the adopted period by the air conditioning load amount Q d for one day, the load distribution ratio r dn for one day at each time is obtained. Calculate (step S3). That is, r dn = q dn ÷ Q d . Therefore, the air-conditioning
図4は、1日24時間における午前1時から午前0時までの各時刻毎の冷房負荷配分率rdnを一定期間分示しており、この一定期間分の複数日の冷房負荷配分率rdnの平均値を算出する(ステップS4)。 FIG. 4 shows the cooling load distribution ratio r dn at each time from 1:00 am to midnight in 24 hours a day for a certain period, and the cooling load distribution ratio r dn for this certain period for a plurality of days. Is calculated (step S4).
続いて、上記一定期間分の複数日の各日について、各時刻の負荷配分率と一定期間分の複数日の各時刻の負荷配分率の平均値との差異の二乗を求め、その求めた数値が大きい順に、1ヶ月期間であれば5日程度の冷房負荷配分率rdnを、上記ステップS4での平均値算出から除外する例外日を設定する(ステップS5)。 Subsequently, for each day of the above-mentioned fixed period, calculate the square of the difference between the load distribution ratio at each time and the average value of the load distribution ratio at each time for a certain period of time, and the calculated numerical value In order of increasing size, an exceptional date is set to exclude the cooling load distribution ratio r dn of about 5 days from the average value calculation in step S4 if it is a one month period (step S5).
図5(a)は、図4に対し、上記した例外日を除外した複数日における各時刻の1日に対する負荷配分率rdnを算出した状態を示しており(ステップS6)、図5(b)は図5(a)に対して平均値を算出した状態を示している(ステップS7)。なお、この例外日を除外した複数日における各時刻の1日に対する負荷配分率を、有効負荷配分率とする。 FIG. 5A shows a state in which the load distribution ratio r dn for each day of each time in a plurality of days excluding the exceptional days described above is calculated (step S6), and FIG. ) Shows a state where the average value is calculated with respect to FIG. 5A (step S7). In addition, let the load distribution rate with respect to 1st of each time in the several day except this exceptional day be an effective load distribution rate.
ここで、前記ステップS6の負荷配分率rdnの算出と並行して、負荷予測演算に使用する当日の空調が立ち上がる一定時間における時刻(例えば5時〜8時)を、オペレータが手動で設定した後(ステップS8)、該立ち上がりの各時刻の負荷量に指数逓減法による重み係数Kを設定する(ステップS9)。この重み係数は、空調(熱源)が稼動している最終時刻を最も大きくし、過去に遡るに従って小さくする。すなわち、重み係数は、空調が立ち上がる時間に近いほど小さくしている。これは、過去のデータ(負荷量)を利用する際に直近データから過去に遡るほど精度が悪くなることによる。 Here, in parallel with the calculation of the load distribution ratio r dn in step S6, the operator manually set a time (for example, 5:00 to 8:00) at a certain time when the air conditioning on the day used for the load prediction calculation starts. After (step S8), a weighting coefficient K by exponential diminishing method is set to the load amount at each time of rising (step S9). This weight coefficient is maximized at the last time when the air conditioning (heat source) is operating, and is decreased as it goes back in the past. In other words, the weighting factor is made smaller as it is closer to the time when the air conditioning is started. This is due to the fact that when using past data (load amount), the accuracy worsens as it goes back to the past from the latest data.
上記した重み係数Kは次式で計算する。 The above weighting factor K is calculated by the following equation.
K0=(1−α)1
K-1=(1−α)2
K-2=(1−α)3
K-3=(1−α)4
但し、αは1より小さい(α<1)指数であり、図6に示す各日の1日の実績負荷量と、該実績負荷量に対する直線で示す予測負荷量との差異の2乗の和が最小となる(最小二乗法)値を求め、これを指数αとして設定する。
K 0 = (1−α) 1
K −1 = (1−α) 2
K -2 = (1-α) 3
K -3 = (1-α) 4
However, α is an index smaller than 1 (α <1), and the sum of the squares of the differences between the daily actual load amount shown in FIG. 6 and the predicted load amount indicated by a straight line with respect to the actual load amount Is the smallest (least square method) value, and this is set as the index α.
なお、図6は、横軸が立ち上がり期間(5時〜8時)全体の負荷量で、縦軸が1日(24時間)分の負荷量である。 In FIG. 6, the horizontal axis is the load amount of the entire rising period (5 o'clock to 8 o'clock), and the vertical axis is the load amount for one day (24 hours).
次に、立ち上り期間の各時刻の負荷量に重み係数を乗じた数値の合計数値と、前記ステップS7で算出した有効負荷配分率から、次式により1日の負荷量Qを予測する(ステップS10)。すなわち、空調負荷予測部3は、複数日の時刻毎の空調負荷量のうち、1日における空調が立ち上がる一定時間における各時刻の空調負荷量から1日分の空調負荷量を予測する日負荷量予測手段を含んでいる。
Next, the daily load amount Q is predicted from the total numerical value obtained by multiplying the load amount at each time in the rising period by the weighting factor and the effective load distribution ratio calculated in step S7 (step S10). ). That is, the air-conditioning
Q={(Qo×K0)+(Q-1×K-1)+(Q-2×K-2)+(Q-3×K-3)}÷{(Ro×K0)+(R-1×K-1)+(R-2×K-2)+(R-3×K-3)}
但し、Qo:予測時刻の負荷量(実測値)
Q-1:予測時刻1時間前の負荷量(実測値)
Q-2:予測時刻2時間前の負荷量(実測値)
Q-3:予測時刻3時間前の負荷量(実測値)
Ro:予測時刻の負荷配分率
R-1:予測時刻1時間前の負荷配分率
R-2:予測時刻2時間前の負荷配分率
R-3:予測時刻3時間前の負荷配分率
Ko:予測時刻の重み係数
K-1:予測時刻1時間前の重み係数
K-2:予測時刻2時間前の重み係数
K-3:予測時刻3時間前の重み係数
そして、最後に上記予測した1日の負荷量(日負荷量)Qに各時刻の負荷配分率を乗じて各時刻の負荷量(時負荷量)qを次式により算出し(ステップS11)、算出した各時負荷量データを図1の熱源設備機器7に出力する(ステップS12)。すなわち、空調負荷予測部3は、日負荷量予測手段が予測した1日分の空調負荷量に、前記時負荷配分率算出手段で算出した各時刻の負荷配分率を乗じて各時刻の空調負荷量を予測する時負荷量予測手段を含んでいる。
Q = {(Q o × K 0 ) + (Q −1 × K −1 ) + (Q −2 × K −2 ) + (Q −3 × K −3 )} ÷ {(R o × K 0 ) + (R -1 × K -1) + (R -2 × K -2) + (R -3 × K -3)}
However, Q o : Load amount at the predicted time (actual value)
Q -1 : Load amount one hour before the predicted time (actual value)
Q -2 :
Q- 3 : Load amount (actual value) 3 hours before the predicted time
R o : Load distribution ratio at the predicted time R −1 : Load distribution ratio at one hour before the predicted time R −2 : Load distribution ratio at two hours before the predicted time R −3 : Load distribution ratio at three hours before the predicted time K o : Weighting coefficient for prediction time K -1 : Weighting coefficient for 1 hour before prediction time K -2 : Weighting coefficient for 2 hours before prediction time K -3 : Weighting coefficient for 3 hours before prediction time Multiply the daily load amount (daily load amount) Q by the load distribution rate at each time to calculate the load amount (hour load amount) q at each time by the following equation (step S11), and calculate the calculated hourly load amount data. It outputs to the heat source equipment 7 of FIG. 1 (step S12). That is, the air conditioning
q1=Q×R1
q2=Q×R2
q3=Q×R3
・・・・・・
q24=Q×R24
但し、q1:1時の予測負荷量
q2:2時の予測負荷量
q3:3時の予測負荷量
・・・・・・
q24:24時の予測負荷量
図7は、このようにして算出した予測負荷量(破線A)と、実際の空調機器運転負荷量である実績負荷量(実線B)とを各時刻毎に示しており、これら相互間の差が極めて小さく、負荷量の予測が精度よく実施されたことがわかる。
q 1 = Q × R 1
q 2 = Q × R 2
q 3 = Q × R 3
・ ・ ・ ・ ・ ・
q 24 = Q × R 24
However, q 1 : Predicted load at 1 o'clock
q 2 : Predictive load at 2 o'clock
q 3 : Predictive load at 3 o'clock
・ ・ ・ ・ ・ ・
q 24 : Predicted load amount at 24:00 FIG. 7 shows the predicted load amount (broken line A) calculated in this way and the actual load amount (solid line B) that is the actual air conditioner operating load amount for each time. It can be seen that the difference between these is extremely small, and the load amount is accurately predicted.
また、破線Cの時刻1時に対応する数値は、算出した1日の予測負荷量Qdに相当し、破線Aで示す時刻毎の予測負荷量を、時間が経過するに従ってその前の時刻での予測負荷量を順次差し引いて示している。実線Dは、実線Bで示す実績負荷量を、時間が経過するに従ってその前の時刻で使用する実績負荷量を順次差し引いて示している。これら破線C及び実線Dの数値は、処理負担熱量として図7の右側の目盛りに対応している。 The numerical value corresponding to 1 o'clock of the broken line C corresponds to the calculated daily predicted load Q d, and the predicted load for each time indicated by the broken line A is obtained at the previous time as time passes. The predicted load is subtracted sequentially. A solid line D indicates the actual load amount indicated by the solid line B by sequentially subtracting the actual load amount used at the previous time as time elapses. The numerical values of the broken line C and the solid line D correspond to the scale on the right side of FIG.
図8は、図7に破線Aで示した予測負荷量に対し、一例として9時の時点での立ち上り負荷を予測した時間別負荷予測及び処理負担予測熱量と図2に示した冷凍機13、15,19及び熱交換器17の当日の運転計画のシミュレーションを示している。なお、図8のデータと図7のデータとは、異なる日を対象としているので、数値が互いに異なっている。
FIG. 8 shows the predicted load amount indicated by the broken line A in FIG. 7 as an example, the hourly load prediction in which the rising load at 9 o'clock is predicted and the predicted processing load heat amount, and the
図8において、9時に予測された処理負担予測熱量(破線C)の9時(E部)と17時(F部)との減算により該当時間9時から17時までの必要室内空調負荷量と夜間に蓄熱された熱量(2点鎖線Gより下部の領域)を消費するよう、冷凍機19(H部)の運転を仮定し、各時間の室内空調負荷の変動を熱交換器17(I部)において実施するよう運転パターンを設定する。その際、夜間蓄熱量では賄えない室内空調負荷量を補うため冷凍機13(J部)を9時から11時まで稼働させる運転パターンを仮定する。これにより蓄熱槽9に蓄えられた熱量が室内空調負荷の高負荷時間終了の17時に蓄熱槽の熱を使い切るようシュミレーションし、フィードフォワードによる冷凍機13、15、19及び熱交換器17の最適運転計画を容易に設定することができる。
In FIG. 8, the required indoor air-conditioning load amount from 9:00 to 17:00 is calculated by subtracting the processing load predicted heat amount (dashed line C) predicted at 9:00 from 9:00 (E part) and 17:00 (F part). Assuming that the refrigerator 19 (H section) is operated so as to consume the amount of heat stored at night (region below the two-dot chain line G), the fluctuation of the indoor air conditioning load at each time is assumed to be the heat exchanger 17 (I section). ) Set the operation pattern to be carried out. At this time, an operation pattern is assumed in which the refrigerator 13 (J section) is operated from 9 o'clock to 11 o'clock in order to compensate for the indoor air conditioning load that cannot be covered by the night heat storage amount. As a result, the amount of heat stored in the
図9は、図8で示された負荷予測及び図2による冷凍機13、15,19及び熱交換器17の実際の稼働結果と負荷実績の結果を示している。
FIG. 9 shows the load prediction shown in FIG. 8 and the actual operation results and actual load results of the
図9において、22時から8時まで夜間電力利用による冷凍機13,15(J、K部)の運転で蓄熱槽9に畜熱し、室内空調負荷は冷凍機19(H部)にて行う。9時の時点において立ち上がり負荷を考慮した各時刻の予測負荷量が演算され、予測負荷熱量(破線A)として示される。空調負荷が高まる9時から11時までは、冷凍機19(H部)と冷凍機13(J部)による負荷予測時にシュミレーションされた熱源機器運転計画での運転を行い、蓄熱槽9に蓄熱した熱量を利用して熱交換器17(I部)で室内空調負荷に追従させた運転を示している。12時から17時までは冷凍機19(H部)のベース運転と蓄熱槽9に蓄熱した熱量を熱交換器17(I部)により室内空調負荷に追従し、電力ピーク時間帯では、冷凍機13(J部)を停止した運転を示している(ピークカット運転)。また18時から22時はベース機である冷凍機19(H部)にて室内空調負荷に追従した運転を示している。
In FIG. 9, the
このように図8及び図9より、従来のフィードバック制御ではその時刻の必要負荷熱量(実績)で熱源機器を追いかけ運転し、蓄熱槽へ過剰蓄熱してしまうことによる残蓄熱が発生するが、日負荷量を予測した必要熱量から冷凍機13,15,19の運転パターンを決め、計画的に冷凍機13(J部)を11時に停止させ、夜間に蓄熱した熱量を熱交換器17(I部)で有効に使い切ることを考慮したシミュレーションが可能となり、実際、図9での予測負荷熱量(破線A)と実績負荷熱量(実線B)との関係及び、処理負担予測熱量(破線C)と実績処理負担熱量(実線D)との関係は、それぞれ±5%以内の精度となっており、熱源機器の最適化運転及びエネルギの効率利用が得られる。
Thus, from FIG. 8 and FIG. 9, in the conventional feedback control, the heat source device is chased with the required load heat amount (actual result) at that time, and residual heat is generated due to excessive heat storage in the heat storage tank. The operation pattern of the
以上のように、本実施形態によれば、過去の一定期間における複数日それぞれの時刻毎の空調負荷量(時負荷量)qdnを1日分の空調負荷量(日負荷量)Qdで除して各時刻の1日に対する負荷配分率rdnを算出するとともに、複数日の時刻毎の空調負荷量のうち、1日における空調が立ち上がる一定期間(例えば5時〜8時)における各時刻の空調負荷量から1日分の空調負荷量Qdを予測する。 As described above, according to the present embodiment, the air conditioning load amount (hour load amount) q dn for each time of a plurality of days in the past fixed period is set to the air conditioning load amount (daily load amount) Q d for one day. In addition to calculating the load distribution ratio r dn for each day at each time, each time in a certain period (for example, 5:00 to 8 o'clock) during which air-conditioning starts on one day out of the air-conditioning load amount for each time on multiple days The air conditioning load amount Q d for one day is predicted from the air conditioning load amount.
この場合、1日分の空調負荷量Qdを、特定の説明変数(空調が立ち上がる一定期間の負荷量)によって、一定の精度(例えば95%の精度)で同定することが可能である。 In this case, the air conditioning load amount Q d for one day can be identified with a certain accuracy (for example, an accuracy of 95%) by a specific explanatory variable (a load amount during a certain period when the air conditioning is started up).
そして、この予測した1日分の空調負荷量Qdに、算出済みの各時刻の負荷配分率rdnを乗じて各時刻の空調負荷量qを予測する。このようにして1日における各時刻の空調負荷量qを予測することにより、空調機器である熱源設備機器7を効率的に運転してエネルギ効率を向上させることができる。 The air conditioning load amount q at each time is predicted by multiplying the predicted air conditioning load amount Q d for one day by the calculated load distribution ratio r dn at each time. Thus, by predicting the air conditioning load amount q at each time in one day, it is possible to efficiently operate the heat source equipment device 7 that is an air conditioning device and improve energy efficiency.
その際、本実施形態では、次のような効果が得られる。 At that time, in the present embodiment, the following effects are obtained.
(1)プログラム構造がシンプルで低コスト。 (1) Simple program structure and low cost.
(2)簡易なアルゴリズムで予測結果が明確に得られる。 (2) A prediction result can be clearly obtained with a simple algorithm.
(3)空調負荷の実績値の蓄積を基にした設定パラメータ(空調負荷予測のために採用する過去の一定期間)の更新が容易である。すなわち、XX月XX日〜YY月YY日の設定ができ、月、季節などで任意に指定できる。 (3) It is easy to update the setting parameter (a past fixed period adopted for the air conditioning load prediction) based on the accumulation of the actual value of the air conditioning load. That is, XX month XX day to YY month YY can be set, and can be arbitrarily specified by month, season, or the like.
(4)空調機器を使用する建物固有の負荷特性にあったパラメータ(前述した回帰分析による建物固有の負荷配分率)を設定することが可能である。例えば、オフィスビルであれば、出勤時間帯やオフィスビル活動ピーク時間帯に応じて負荷配分率を設定でき、商業ビルであれば、繁忙時間帯である例えば平日夕刻や休日午後のピーク時間帯に応じて負荷配分率を設定できる。これらの建物は、時負荷量の変動パターンが統一性と法則性を一定レベルで有していることから、建物固有の負荷配分率を精度よく算出することができる。 (4) It is possible to set a parameter (a load distribution ratio specific to a building based on the above-described regression analysis) suitable for the load characteristics specific to the building using the air conditioner. For example, for office buildings, the load distribution ratio can be set according to the working hours and peak hours of office building activities, and for commercial buildings, it is a busy time zone, such as weekday evenings and holiday afternoon peak hours. The load distribution ratio can be set accordingly. Since these buildings have a uniform pattern and regularity in the fluctuation pattern of the hourly load amount, the load distribution rate specific to the building can be calculated with high accuracy.
また、空調負荷予測の改善によって、蓄熱機器を備えた空調システムの最適化運転制御の採用が容易になり、簡単な操作で自動化運転が実現する。このことによって機器の成績係数が向上し、深夜電力の最大活用と電力ピークカット、ピークシフトなどにつながり、省エネルギとCO2削減に貢献することが可能となる。 Moreover, the improvement of the air conditioning load prediction makes it easy to adopt the optimized operation control of the air conditioning system equipped with the heat storage device, thereby realizing an automated operation with a simple operation. This improves the coefficient of performance of the equipment, leading to maximum utilization of late-night power, power peak cut, peak shift, etc., and can contribute to energy saving and CO 2 reduction.
また、設備内容の変更や運用内容の変更には、プログラム構造等を変更することなく、予測式のパラメータ(空調負荷予測のために採用する過去の一定期間及び、当日の空調が立ち上がる一定時間における時刻)を変更することによって容易に対応することができる。 In addition, changes in equipment contents and operational contents can be made without changing the program structure, etc. without changing the parameters of the prediction formula (for the past fixed period used for air conditioning load prediction and for the fixed time when the air conditioning of the day starts up. This can be easily handled by changing the (time).
また、本実施形態では、1日における空調が立ち上がる一定時間における各時刻の空調負荷量に重み係数を設定し、この重み係数は、空調が立ち上がる時間に近いほど、過去に遡るほど、小さく設定している。このような設定とすることで、過去のデータ(負荷量)を利用する際に直近データから過去に遡るほど精度が悪くなるので、空調負荷予測をより高精度化することができる。 Further, in this embodiment, a weighting factor is set for the air conditioning load amount at each time in a certain time when air conditioning rises in one day, and this weighting factor is set smaller as the time when air conditioning rises is closer to the past. ing. With such a setting, when past data (load amount) is used, the accuracy decreases as the data traces back to the past from the latest data, so that the air conditioning load prediction can be made more accurate.
また、本実施形態では、一定期間における複数日それぞれの時刻毎の空調負荷量は、複数日の同一時刻での平均値としているので、より高精度な空調負荷予測が可能となる。 Moreover, in this embodiment, since the air conditioning load amount for each time of a plurality of days in a certain period is an average value at the same time on a plurality of days, a more accurate air conditioning load prediction can be performed.
また、本実施形態では、各時刻の1日に対する負荷配分率と、過去の一定期間の複数日の同時刻の負荷配分率の平均値との差が、少なくとも最も大きい日を除外して各時刻の1日に対する負荷配分率を算出しているので、より高精度な空調負荷予測が可能となる。 Further, in the present embodiment, each time except for the day when the difference between the load distribution ratio for one day at each time and the average value of the load distribution ratio at the same time for a plurality of days in the past for a certain period is the largest. Therefore, the air conditioning load prediction can be performed with higher accuracy.
なお、上記した実施形態では、空調負荷として冷房負荷を用いて説明したが、暖房負荷であっても同様に本発明を適用できる。 In the embodiment described above, the cooling load is used as the air conditioning load. However, the present invention can be similarly applied to a heating load.
3 空調負荷予測部(時負荷配分率算出手段、日負荷量予測手段、時負荷量予測手段) 3 Air conditioning load prediction unit (hour load distribution rate calculation means, daily load amount prediction means, hour load amount prediction means)
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011083743A JP5763955B2 (en) | 2011-04-05 | 2011-04-05 | Air conditioning load prediction device and air conditioning load prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011083743A JP5763955B2 (en) | 2011-04-05 | 2011-04-05 | Air conditioning load prediction device and air conditioning load prediction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012220055A true JP2012220055A (en) | 2012-11-12 |
JP5763955B2 JP5763955B2 (en) | 2015-08-12 |
Family
ID=47271781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011083743A Active JP5763955B2 (en) | 2011-04-05 | 2011-04-05 | Air conditioning load prediction device and air conditioning load prediction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5763955B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108006887A (en) * | 2017-11-20 | 2018-05-08 | 北京建筑大学 | Existing building idle call energy model building method and Energy consumption forecast for air conditioning method |
JP2018115812A (en) * | 2017-01-18 | 2018-07-26 | 東芝キヤリア株式会社 | Control device and method for air conditioning system |
CN111623486A (en) * | 2020-05-22 | 2020-09-04 | 海尔优家智能科技(北京)有限公司 | Method and device for determining starting time, storage medium and electronic device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62141447A (en) * | 1985-12-13 | 1987-06-24 | Tokyo Electric Power Co Inc:The | Heat pump type regenerative air conditioning equipment |
JPH04282703A (en) * | 1991-03-12 | 1992-10-07 | Kajima Corp | Method for forecasting load of air conditioner |
JPH07110147A (en) * | 1993-10-14 | 1995-04-25 | Tokyo Electric Power Co Inc:The | Operation support apparatus for heat generating/heat storing apparatus |
JPH0876858A (en) * | 1994-09-08 | 1996-03-22 | Toshiba Corp | Heat source control system |
JPH08136031A (en) * | 1994-11-01 | 1996-05-31 | Matsushita Refrig Co Ltd | Load forecast corrector |
JPH08240335A (en) * | 1995-03-03 | 1996-09-17 | Toshiba Corp | Air-conditioning heat load estimating device for building |
JPH11125448A (en) * | 1997-10-22 | 1999-05-11 | Ntt Power And Building Facilities Inc | Thermal load-predicting device |
JPH11141929A (en) * | 1997-11-13 | 1999-05-28 | Taisei Corp | Simple air conditioning load prediction method |
JP2001050570A (en) * | 1999-08-09 | 2001-02-23 | Yamatake Corp | Thermal storage operation control method |
-
2011
- 2011-04-05 JP JP2011083743A patent/JP5763955B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62141447A (en) * | 1985-12-13 | 1987-06-24 | Tokyo Electric Power Co Inc:The | Heat pump type regenerative air conditioning equipment |
JPH04282703A (en) * | 1991-03-12 | 1992-10-07 | Kajima Corp | Method for forecasting load of air conditioner |
JPH07110147A (en) * | 1993-10-14 | 1995-04-25 | Tokyo Electric Power Co Inc:The | Operation support apparatus for heat generating/heat storing apparatus |
JPH0876858A (en) * | 1994-09-08 | 1996-03-22 | Toshiba Corp | Heat source control system |
JPH08136031A (en) * | 1994-11-01 | 1996-05-31 | Matsushita Refrig Co Ltd | Load forecast corrector |
JPH08240335A (en) * | 1995-03-03 | 1996-09-17 | Toshiba Corp | Air-conditioning heat load estimating device for building |
JPH11125448A (en) * | 1997-10-22 | 1999-05-11 | Ntt Power And Building Facilities Inc | Thermal load-predicting device |
JPH11141929A (en) * | 1997-11-13 | 1999-05-28 | Taisei Corp | Simple air conditioning load prediction method |
JP2001050570A (en) * | 1999-08-09 | 2001-02-23 | Yamatake Corp | Thermal storage operation control method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018115812A (en) * | 2017-01-18 | 2018-07-26 | 東芝キヤリア株式会社 | Control device and method for air conditioning system |
CN108006887A (en) * | 2017-11-20 | 2018-05-08 | 北京建筑大学 | Existing building idle call energy model building method and Energy consumption forecast for air conditioning method |
CN111623486A (en) * | 2020-05-22 | 2020-09-04 | 海尔优家智能科技(北京)有限公司 | Method and device for determining starting time, storage medium and electronic device |
CN111623486B (en) * | 2020-05-22 | 2022-01-28 | 海尔优家智能科技(北京)有限公司 | Method and device for determining starting time, storage medium and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP5763955B2 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6976976B2 (en) | Multilevel model predictive control system and method | |
US9784464B2 (en) | Air-conditioning control system and air-conditioning control method | |
US10042332B2 (en) | Electric/thermal energy storage schedule optimizing device, optimizing method and optimizing program | |
US11497144B2 (en) | Optimized thermal control of data center | |
Nghiem et al. | Receding-horizon supervisory control of green buildings | |
US8543248B2 (en) | System for managing energy at loads | |
US10488069B2 (en) | Generation of coordinated control commands for groupings of heating/ventilation/cooling thermostats | |
JP4347602B2 (en) | Heat source operation support control method, system and program | |
US20170031962A1 (en) | Systems and methods for visualizing equipment utilization in a central plant | |
WO2018217251A1 (en) | Model predictive maintenance system for building equipment | |
JP2015012783A (en) | Energy management server, energy management method, and program | |
CN103513632A (en) | Energy management system | |
EP3862644B1 (en) | Information processing device and air-conditioning system provided with same | |
Dai et al. | A reinforcement learning-enabled iterative learning control strategy of air-conditioning systems for building energy saving by shortening the morning start period | |
US12038189B2 (en) | Optimization engine for energy sustainability | |
JP5763955B2 (en) | Air conditioning load prediction device and air conditioning load prediction method | |
Yu et al. | Load allocation improvement for chiller system in an institutional building using logistic regression | |
JP6226367B2 (en) | Energy use support system, support method and support program | |
EP4123864A1 (en) | A system for controlling energy supply and/or consumption from an energy network | |
US20140246909A1 (en) | System and method for balancing supply and demand of energy on an electrical grid | |
JP6315563B2 (en) | Equipment operation system and equipment operation method | |
JP2021009694A (en) | Model predicting maintenance system involving budget restrictions | |
JP5975276B2 (en) | Operation management device, correction method of actual measured power when demand response control is activated | |
JP6534038B2 (en) | Demand power control apparatus and demand power control method | |
CN114766025A (en) | Maintenance support system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5763955 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |