JPS62139821A - 高延性高強度冷延鋼板の製造方法 - Google Patents

高延性高強度冷延鋼板の製造方法

Info

Publication number
JPS62139821A
JPS62139821A JP27957585A JP27957585A JPS62139821A JP S62139821 A JPS62139821 A JP S62139821A JP 27957585 A JP27957585 A JP 27957585A JP 27957585 A JP27957585 A JP 27957585A JP S62139821 A JPS62139821 A JP S62139821A
Authority
JP
Japan
Prior art keywords
temperature
steel
ferrite
austenite
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27957585A
Other languages
English (en)
Inventor
Hidenori Shirasawa
白沢 秀則
Fukuteru Tanaka
田中 福輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27957585A priority Critical patent/JPS62139821A/ja
Publication of JPS62139821A publication Critical patent/JPS62139821A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は間延性高強度冷延鋼板の製造方法に関し、詳し
くは、引張強さ55〜150 kgf/mm”級の複合
組織高延性高強度冷延鋼板の製造方法に関する。
(従来の技術) 近年、例えば、自動車の軽量化要求への高まりを背景と
して、加工性のすくれた高強度冷延1′A仮が使用され
るに至っている。このような高強度冷延1仮としては、
既に、析出、固溶、3■1′栽強化等の種々の手段によ
るものが従来より知られているが、特に、最近において
は、連続焼鈍技術の普及に伴って、マルテンサイトやベ
イナイトのような硬い低温変態生成物による強化能を利
用した複合Mi織高強度冷延鋼板が広く使用されるに至
っている。このような複合組織鋼板を製造するに際して
、箱焼鈍による場合は、Ar、点板上の再結晶温度から
の冷却速度が遅いために、Mn等のオーステナイト安定
化元素を多量に添加する必要があり、このために鋼板の
製造費用が高価となるが、連続焼鈍による場合は、冷却
速度が大きいために、上記のようなオーステナイト安定
化元素の添加を省略することができ、従って、低度に製
造することができるからである。
一般に、連続焼鈍は、再結晶焼鈍後の冷却方法によって
、冷却速度の非常に早い水焼入れ型と、冷却速度の比較
的遅いガスジェット又は気水冷却型とに大別されるが、
使用合金量の低域、従って、製造費用の低減の見地から
は水焼入れ型が有利である。この水焼入れ型連続焼鈍に
おいては、通常、第1図に示すように、Ac、点板上の
再結晶加熱温度に短時間加熱保持した後、強制空冷によ
り所定の温度まで冷却し、この温度(以下、この温度を
水焼入れ開始温度という。)から水焼入れを行ない、引
き続いて、過時効処理を施している。
上記のような方法において、低降伏比であって、且つ、
高強度高延性の冷延鋼板、即ち、強度−延性バランスの
とれた冷延鋼板を得るためには、例えば、特開昭55−
141527号公報には、水焼入れ開始温度及び過時効
処理温度をそれぞれ所定の温度とすることが必要である
とされている。
即ち、複合組織鋼板におけるマルテンサイトやヘイナイ
トの低温変態生成物を強化能の高いマルテンサイト相と
するために水焼入れ開始温度を、また、高温からの急冷
によって過飽和に固溶したフェライト中の炭素を析出さ
せて、延性を改善するために過時効処理温度を、それぞ
れ適正に選ぶ必要があるとされている。
しかしながら、本発明者らは、上記したように、単に水
焼入れ開始温度及び過時効処理温度を制jll調整する
のみでは、十分に硬い第2相が得られず、また、所定の
母材強度を得ようとすれば、第2相の体積率が増大して
、延性が低下し、従って、低降伏比であり、且つ、高延
性高強度である冷延鋼板、即ち、強度−延性バランスに
すくれた冷延鋼板を得ることが困難であることを見出し
た。
そこで、本発明者らは、かかる問題を解決するためにに
鋭意研究した結果、安定した母材強度を有する複合m織
高延性高強度冷延鋼板を得るためには、熱間圧延板の仕
上温度、巻取温度、再結晶焼鈍後の水焼入れ開始温度及
び水焼入れ後の過時効処理温度を制御調整すると共に、
再結晶加熱温度を制御し、再結晶加熱時のオーステナイ
ト相体積率を所定の範囲に規制することが必要であるこ
とを見出した。
更に、本発明者らは、鋼ミクロ組織について基末的な研
究を重ねた結果、強度−延性バランスにすぐれた複合組
織冷延鋼板を得るためには、前述したように、第2相組
織を高C?Hi度の硬いマルテンサイトとし、これを均
一?jk IIIに分散させるのみならず、再結晶加熱
の冷却及び過時効処理において、上記の硬いマルテンサ
イトを軟化させることなく、フェライト中の固溶fJl
を低減させて、極めて軟質のフェライトとすることが必
要であるとの新しい知見を得た。
通常、フェライトの軟化は、主として、フェライト中の
固溶clの低減によって生し、短時間の焼戻しでは、フ
ェライト中の固溶clは約350℃付近で最も少なくな
り、この場合にフェライトの延性を最も高くなる。
他方、現在、自動車等に用いられている高張力鋼板には
、塗装性を劣化させないように、Siiが約0.2%以
下に抑えられており、鋼板の強化は、主としてC,Mn
、P、T t、Nb等の元素の添加によって図られてい
る。しかし、このように、Si量を低減した組成の銅板
は、これを連続焼鈍して、その組織をフェライト・マル
テンサイト複合組織とした場合、第2図に示すように、
このマルテンサイトは、約200℃を越える温度での焼
戻しによって軟化する。即ら、フェライトを極めた軟質
化するために、再結晶焼鈍後、200℃を越える温度で
焼戻しした場合には、母材強度が低下し他方、母材強度
の低下を防ぐために約200℃で焼戻しした場合には、
フェライトが十分に軟化しない。即ち、いずれの場合も
、強度−延性バランスのすぐれた冷延鋼板を得ることが
できない。
そこで、本発明者らは、硬いマルテンサイトを軟化させ
ることなく、フェライト中の固?g CFjkを低減さ
せて、フェライトを極めて軟質とした複合組織を得るた
めに鋭意研究した結果、連続焼鈍による再結晶加熱後の
冷却において、水焼入れ開始温度を制御し、Cを0.5
%以上含有する主としてマルテンサイトからなる低温変
態生成物とフェライトとの混合組V@鋼板とすると共に
、この後に引き続いて行なう焼戻しにおいて、母材強度
の低下を抑制するために、鋼にSiを1.2〜2.5%
の範囲で添加し、且つ、かかる鋼板を200〜400℃
の高い温度にて短時間の焼戻しを行なうことによって、
非常に硬いマルテンサイトと極めて軟質のフェライトと
からなる冷延鋼板を得ることができることを見出して、
本発明に至ったものである。
(発明の目的) 従って、本発明は、安定した母材強度を有する複合組織
高延性高強度冷延鋼板を提供することを目的とする。
(発明の構成) 本発明による高延性高強度冷延鋼板の製造方法は、重量
%で c   o、os〜0.30%、 Si1.2〜2.5%、及び Mn  1.2〜2.5%、 を含有し、且つ、M n / S i重量比が1.0〜
1.5の範囲にあり、 残部鉄及び不可避的不純物よりなる鋼を熱間圧延して、
フェライトと体積率70%以下の低温変態生成物とから
なる複合組織を有する熱間圧延板を得、酸洗し、冷間圧
延率30%以上にて冷間圧延した後、再結晶焼鈍するに
際して、その加熱温度’c A c +〜Ac3点のフ
ェライト・オーステナイト2相共存域の温度において、
再結晶加熱時のオーステナイト相体積率γvがC量によ
って規定される128C+1.0≦γv(%)≦128
0+55となる温度域として焼鈍を施し、強制空冷し、
次いで、オーステナイト中のC含有量が0.5%以上と
なる温度から冷却速度100℃/秒以上にて急冷した後
、200〜400℃の温度にて過時効処理を施すことを
特徴とする。
先ず、本発明の方法において用いる鋼の化学成分の限定
理由について説明する。
Cは、鋼板の引張強さを支配する重要な元素であり、マ
ルテンサイトMi織を得るためには、少なくとも0.0
5%の添加を必要とし、強度を高める観点からは多いほ
どよいが、反面、過多に添加するときは、第2相体積率
が高くなり、延性を確保し難くなり、また、スポット溶
接性も低下するので、その上限を0.30%とする。
Siは、鋼をその延性を劣化させないで強化すると共に
、第2相組織を含む複合組繊鋼板におけるマルテンサイ
トの焼戻しによる軟化抵抗を高めるために不可欠の元素
である。この目的のために、本発明においては、Stの
添加量は少なくとも1゜2%が必要であるが、過多に添
加するときは、製造費用を高めるのみならず、適正な再
結晶温度域を高温にするので、2.5%以下とする。
更に、他の側面として、Si量を増大するとき、−FG
的には′A仮の像装性は劣化するが、本発明に従って、
M n / S i重量比を1.0〜1.5の範囲に規
制することによって、塗装性の劣化が生じない。
また、Mn/Si重量比を1.5を越える値としたとき
は、鋼板の延性改善効果も小さくなる。
Mnは、オーステナイト相を安定化し、冷却過程におけ
る主としてマルテンサイトからなる低温変態生成物の生
成を容易にするために、1.2%以上を添加することが
必要であるが、過多に添加するときは、オーステナイト
相への濃化による第2相体積率が増加して、Cの濃縮が
弱まることから、その添加量は2.5%以下とする。
本発明による方法においては、鋼は、上記した元素に加
えて、 P   0.01〜0.15%、 Cr  0.05〜1.0%、 Mo  0.05〜0.6%、 よりなる群から選ばれる少なくとも1種の元素を含有す
ることができる。
Pは、0.01%以上の添加によって、Siと同様に鋼
の強化のために有効であるが、0.15%を越えて過多
に添加すれば、スポット溶接性を阻害する。
Cr及びMOは、それぞれMnと同様に、オーステナイ
ト相を安定化し、冷却過程での低温変態生成物の生成を
容易にするのに有効である。この効果を有効に発揮させ
るためには、それぞれ0.05%の添加を必要とするが
、一方、多すぎるときは、延性の低下をもたらすと共に
、これら合金元素は高価であるので、その上限は、Cr
については1.0%、MOについては0.6%とする。
本発明の方法によれば、上記のような化学組成を有する
鋼を造塊又は連続鋳造によりスラブとし、これを熱間圧
延する。特に、本発明の方法においては、この熱間圧延
において、Ar3点以上の温度にて仕上圧延し、冷却速
度及び巻取温度を適宜に制御して、熱間圧延板の組織を
フェライト及び体積率にて70%以下の低温変態生成物
からなる複合組織とする。巻取温度は600℃以下が好
適である。ここに、上記低温変態生成物(第2相)とは
、マルテンサイト又はヘイナイト又はこれらの混合物を
いい、第2相体積率が70%を越えるときは、熱間圧延
板の強度が高くなり、冷間圧延が困難となると共に、冷
間圧延及び焼鈍後の第2相におけるC?a度が低下し、
強度−延性バランスが低下するので、本発明においては
、この低温変態生成物の体積率を70%以下に規制する
次いで、本発明の方法によれば、上記のようにして得ら
れた熱間圧延板を酸洗し、再結晶させるために、30%
以上の冷延率にて冷間圧延を施した後、再結晶焼鈍する
に際して、その加熱温度をAc、〜Ac3点のフェライ
ト・オーステナイト域において調整して、再結晶加熱時
のオーステナイ1−相の体積率γvをC量(重量%)に
よって次式にて規定される範囲とすることが必要である
128c、+1.0≦γ、(%)≦128C+55即ち
、本発明者らは、第3図に示すように、鋼板の再結晶加
熱時のγvが強度−延性バランスの指標となる引張強さ
と伸びとの積の値に著しく影響し、γvが一定の範囲に
あるときに(以下、この範囲を適正範囲という。)上記
績の値が特に大きくなることを見出した。
この場合において、熱間圧延板の組織がフェライト・パ
ーライトであるときは、炭化物を十分るこ分解させるた
めには、高い再結晶加熱温度が必要である。即ち、所定
の強度を得るための再結晶加熱時のオーステナイトの体
積率γvは必然的に高くなり、高い強度−延性バランス
を得ることが困難となる。
しかし、本発明の方法に従って、熱間圧延板の組織をフ
ェライト及び低温変態生成物とからなる複合組織とする
ことによって、再結晶加熱時の炭化物の努解が速くなる
ために、所定の強度を得るための再結晶加熱時のオース
テナイトの体禎率γ1は、第3図に示すように低くする
ことができ、より高い強度−延性バランスを得ることが
できるのである。
更に、広範な研究の結果、本発明によれば、第4図に示
すように、上記γvの適正範囲の下限値と上限値とが実
質的に鋼板中のC含有量によってそれぞれ前記式のよう
に規定される。即ち、γvの適正範囲として、第4図に
は上記引張強さと伸びとの積の値が1800kgf−χ
/mm ”以上である領域を斜線領域で示すが、この領
域は鋼板中のC含有量の1次函数としてのγvによって
規定されるのである。
従って、再結晶加熱温度が19を式128C41,0(
%)で規定されるよりも小さくする温度である場合には
、Cがオーステナイト相中に十分に固溶しないために、
第2相中にセメンタイトが混在することとなり、十分な
強度を得ることができない。一方、再結晶加熱温度がT
vを弐128C+55 (%)で規定されるよりも太き
(する温度である場合には、再結晶後の短い冷却過程に
おいては、オーステナイト中にCが十分に濃縮せず、延
性が劣化する。即ち、再結晶加熱温度を制御し、γvを
前記した適正範囲内とすることによって、初めて強度−
延性バランスにすくれた冷延鋼板を得ることができるの
である。上記のような再結晶加熱温度での保持時間は、
10秒乃至10分が好適である。
このように、熱間圧延板の組織をフェライト及び低温変
態生成物からなる混合m織とし、次いで、酸洗し、30
%以上冷間圧延し、Ac、〜Ac3点のフェライト・オ
ーステナイト域温度に鋼を加熱保持して、この再結晶加
熱時のγvを上記所定の適正範囲とした後、本発明の方
法によれば、強制空冷等の方法によって、比較的遅い冷
却速度にてフェライトとオーステナイトの2相複合Mi
織のオーステナイト中のC濃度が0.5%以上となる温
度まで冷却し、更に、引き続いて、水焼入れを行なつた
後、焼戻しを行なう。
即ち、本発明の方法においては、非常にC濃度の高いマ
ルテンサイトと極めて軟質のフェライトを有する複合組
織冷延鋼板を得るために、再結晶焼鈍後の水焼入れ開始
温度を制御して、これをマルテンサイトm織におけるC
a度が0.5%以上とし、且つ、このような温度から冷
却速度100℃/秒以上にて急冷する。冷却速度が10
0’C/秒よりも遅いときは、十分に硬いマルテンサイ
トを得ることができないばかりでなく、過時効処理前の
フェライト中の固溶炭素量が少なくなり、過時効処理に
よってフェライト中の固溶炭素量を十分に低くすること
ができないからである。従って、冷却速度の上限は、上
記のように、十分に固いマルテンサイトを得ることがで
きると共に、過時効処理前のフェライト中の固溶炭素量
を多くできればよく、特に制限されないので、実操業上
、可能な限りに早い冷却速度とする。
本発明においては、この後、更に、フェライト中に固?
容したCを析出させて、かかる複合組繊鋼板の延性を増
すために、200〜400℃の温度に加熱保持して焼戻
す過時効処理を施す。水焼入れ開始温度において、マル
テンサイト中のclが0.5%よりも少ないときは、十
分に硬いマルテンサイトを得ることができない。ここに
、本発明の方法においては、この焼戻し温度において、
マルテンサイトの軟化が生じないようにするために、鋼
板中のSl量を1.2〜2.5%の範囲とする。かかる
量のSiの添加によって、0.5%以上の高いC?5度
を存する熱的に不安定なマルテンサイトの焼戻しによる
軟化抵抗を高めることができ、300℃以上の高温にて
焼戻ししても、母材引張強さを低下させることなく、延
性の向上を実現することができる。
焼戻し温度が200℃よりも低いときは、フェライト中
の炭化物が十分に析出せず、延性が劣化し、他方、40
0℃よりも高いときは、マルテンサイトが焼戻されるの
で、強度か著しく低下し、いずれの場合も、強度−延性
バランスにず(れた複合組繊冷延鋼板を得ることができ
ない。
(発明の効果) 以上のように、本発明の方法によれば、熱間圧延(反の
製造条件及び連続焼鈍条件を適正比することによって、
第2相中へのCの濃縮を非常に高めて、十分に硬いマル
テンサイトを得ると共に、フェライト中に十分な星のC
を析出させることによって、フェライトを柔らかくする
ので、安定して低降伏比であって、且つ、延性のすくれ
た高強度の冷延鋼板を得ることができる。
特に、本発明の方法によれば、熱間圧延板の組織をフェ
ライト及び低温変態生成物からなる混合Mi織とし、再
結晶加熱時のオーステナイト体積率を適正な範囲に制御
することによって、再結晶加勢時のオーステナイトの体
積率を低くすることができる。更に、本発明の方法によ
れば、連続焼鈍によって、再結晶加熱後の水焼入れ開始
温度を制御し、C)I:0.5%以上含有する主として
マルテンサイトからなる低温変態生成物とフェライトと
の混合組織とすると共に、鋼板におけるSi量を前記所
定の範囲として、引き続いて行なう焼戻しによる母材強
度の低下を抑制することによって、非常に硬いマルテン
サイトと極めて軟質のフェライトとからなる複合組織を
得ることができるので、強度−延性ハランスにずくれた
複合組織冷延鋼板を得ることができる。従って、かかる
鋼板は、例えば、自動車用に好適に使用することができ
る。
(実施例) 以下に実施例を挙げて本発明を説明する。
実施例1 第1表に示す化学組成を有する鋼を仕上温度850〜9
00℃,巻取り温度500〜600′cにて熱間圧延し
て、第2表に示す体積率にて第2相を有する厚さ2.8
鰭の複合組織熱間圧延板を得た。
これを酸洗した後、厚さ0.8 amに冷間圧延し、次
いで、第2表に示すように、850℃で再結晶加熱し、
600〜680℃の範囲の温度から水焼入れを開始し、
この水焼入れの後、第2表に示す温度に加熱して過時効
処理(焼戻し)を施した。
このようにして得られた鋼板の機械的性質を第2表に示
す。
fllsi量の効果 比較鋼種AはSl量が0.20%であり、これを180
℃’7:焼戻1.L、りもツカ比較w41.300 ’
Cで焼戻ししたものが比較鋼2である。これらを比較す
ると、比較鋼2は、焼戻し温度が高いために延性は幾分
改善されているが、母材引張強さの低下が大きいために
、強度−延性バランスは比較鋼1よりも低下している。
鋼種Cは本発明で規定する化学組成を有する。
比較鋼4はこれを180℃で焼戻ししたものであり、こ
れに対して、本発明鋼5は300℃で焼戻ししたもので
ある。明らかに本発明鋼5は、比較鋼4に比べて延性が
顕著に改善され、しかも、母材引張強さの低下が少ない
ので、強度−延性バランスが著しくすくれている。
このような焼戻しによる鋼の軟化抵抗の向上は、Sil
が1.20%の本発明鋼B及びSi量が2.30%の本
発明鋼りにおいても明瞭に認められる。
(2)  マルテンサイト中のC濃度の効果鋼種がいず
れもDであって、Si量が2.30%である比較鋼6及
び7を本発明!’i19と比較すると、比較w47は、
水焼入れ開始温度が高いためにマルテンサイト中のCA
M度が低く、水焼入れ開始温度を低くしてマルテンサイ
ト中のC濃度を高めた本発明鋼9に比較して、強度は高
いが、延性が著しく低く、その結果、強度−延性バラン
スが極めて悪い。比較鋼7は、焼戻し温度が高いので、
焼戻し温度の低い比較鋼6よりも母材引張強さが大きく
低下している。比較鋼8は、マルテンサイト中のC?a
度が高いが、焼戻し温度が低いために、強度−延性バラ
ンスに尚、十分ではない。
これに対して、本発明鋼9によれば、水焼入れ開始温度
を低くし、マルテンサイト中のC?Q度を高めたので、
焼戻し温度が比較鋼7と同じくに300℃であるにもか
かわらずに、母材引張強さの低下が少く、他方、延性の
改善が著しいので、極めてすぐれた強度−延性バランス
を有している。
即ち、鋼の軟化抵抗は、鋼中のSi量のみならず、マル
テンサイト中のCC度によっても影古されることが理解
される。以上のように、本発明によれば、マルテンサイ
ト中のC?W度が0.5重量%以上ノ?k 合811 
’cK @仮にSiを1.2〜2.5 %(7) li
u囲で添加することによって、fA仮の軟化抵抗を強め
るごとができ、かくして、強度−延性バランスにすくれ
た高強度冷延鋼板を得ることができる。
【図面の簡単な説明】
第1図は水焼入れ方式の連続焼鈍における熱サイクルを
示す模式的なグラフ、第2図は、複合組織鋼板の母材引
張強さ及び延性に及ぼす焼戻し温度及びSilの影響を
示すグラフ、第3図は、再結晶加熱時のオーステナイト
相体、積率γvに対する母材強度及び強度−延性バラン
スの変化を示すグラフ、第4図は鋼におけるC含有量と
再結晶加熱時のγvの適正範囲の関係を示すグラフであ
る。 特許出願人  株式会社神戸製鋼所 代理人 弁理士  牧 野 逸 部 第1図 詩 1い ス 、云       第2図 ピ ■    γ炬ノきし迩り定(・C) 第3図 OZo     170    60    BOi0
0竿2絹λ本横学G(勾

Claims (2)

    【特許請求の範囲】
  1. (1)重量%で C 0.05〜0.30%、 Si 1.2〜2.5%、及び Mn 1.2〜2.5%、 を含有し、且つ、Mn/Si重量比が1.0〜105の
    範囲にあり、 残部鉄及び不可避的不純物よりなる鋼を熱間圧延して、
    フェライトと体積率70%以下の低温変態生成物とから
    なる複合組織を有する熱間圧延板を得、酸洗し、冷間圧
    延率30%以上にて冷間圧延した後、再結晶焼鈍するに
    際して、その加熱温度をAc_1〜Ac_3点のフェラ
    イト・オーステナイト2相共存域の温度において、再結
    晶加熱時のオーステナイト相体積率γ_vがC量によつ
    て規定される 128C+1.0≦γ_v(%)≦128C+55とな
    る温度域として焼鈍を施し、強制空冷し、次いで、オー
    ステナイト中のC含有量が0.5%以上となる温度から
    冷却速度100℃/秒以上にて急冷した後、200〜4
    00℃の温度にて過時効処理を施すことを特徴とする高
    延性高強度冷延鋼板の製造方法。
  2. (2)重量%で (a)C 0.05〜0.30%、 Si 1.2〜2.5%、及び Mn 1.2〜2.5%、 を含有し、且つ、Mn/Si重量比が1.0〜105の
    範囲にあり、更に、 (b)P 0.01〜0.15%、 Cr 0.05〜1.0%、及び Mo 0.05〜0.6% よりなる群から選ばれる少なくとも1種の元素を含有し
    、 残部鉄及び不可避的不純物よりなる鋼を熱間圧延して、
    フェライトと体積率70%以下の低温変態生成物とから
    なる複合組織を有する熱間圧延板を得、酸洗し、冷間圧
    延率30%以上にて冷間圧延した後、再結晶焼鈍するに
    際して、その加熱温度をAc_1〜Ac_3点のフェラ
    イト・オーステナイト2相共存域の温度において、再結
    晶加熱時のオーステナイト相体積率γ_vがC量によつ
    て規定される 128C+1.0≦γ_v(%)≦128C+55とな
    る温度域として焼鈍を施し、強制空冷し、次いで、オー
    ステナイト中のC含有量が0.5%以上となる温度から
    冷却速度100℃/秒以上にて急冷した後、200〜4
    00℃の温度にて過時効処理を施すことを特徴とする高
    延性高強度冷延鋼板の製造方法。
JP27957585A 1985-12-11 1985-12-11 高延性高強度冷延鋼板の製造方法 Pending JPS62139821A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27957585A JPS62139821A (ja) 1985-12-11 1985-12-11 高延性高強度冷延鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27957585A JPS62139821A (ja) 1985-12-11 1985-12-11 高延性高強度冷延鋼板の製造方法

Publications (1)

Publication Number Publication Date
JPS62139821A true JPS62139821A (ja) 1987-06-23

Family

ID=17612891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27957585A Pending JPS62139821A (ja) 1985-12-11 1985-12-11 高延性高強度冷延鋼板の製造方法

Country Status (1)

Country Link
JP (1) JPS62139821A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241115A (ja) * 1986-11-26 1988-10-06 Kobe Steel Ltd 伸びフランジ性にすぐれた高強度冷延鋼板の製造方法
JPS6479322A (en) * 1987-09-21 1989-03-24 Kobe Steel Ltd Production of composite structure high-strength cold rolled steel sheet having excellent bulging property and fatigue characteristic
JPH01230715A (ja) * 1987-06-26 1989-09-14 Nippon Steel Corp プレス成形性の優れた高強度冷延鋼板の製造方法
JPH0285321A (ja) * 1988-09-20 1990-03-26 Kobe Steel Ltd 薄肉tバーの製造方法
US5074924A (en) * 1989-06-21 1991-12-24 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613843A (ja) * 1984-06-15 1986-01-09 Kobe Steel Ltd 高延性高強度冷延鋼板の製造方法
JPS6274024A (ja) * 1985-09-26 1987-04-04 Kobe Steel Ltd 冷延高強度鋼の製造法
JPS6299417A (ja) * 1985-10-24 1987-05-08 Kobe Steel Ltd 高延性高強度冷延鋼板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613843A (ja) * 1984-06-15 1986-01-09 Kobe Steel Ltd 高延性高強度冷延鋼板の製造方法
JPS6274024A (ja) * 1985-09-26 1987-04-04 Kobe Steel Ltd 冷延高強度鋼の製造法
JPS6299417A (ja) * 1985-10-24 1987-05-08 Kobe Steel Ltd 高延性高強度冷延鋼板の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241115A (ja) * 1986-11-26 1988-10-06 Kobe Steel Ltd 伸びフランジ性にすぐれた高強度冷延鋼板の製造方法
JPH01230715A (ja) * 1987-06-26 1989-09-14 Nippon Steel Corp プレス成形性の優れた高強度冷延鋼板の製造方法
JPS6479322A (en) * 1987-09-21 1989-03-24 Kobe Steel Ltd Production of composite structure high-strength cold rolled steel sheet having excellent bulging property and fatigue characteristic
JPH0285321A (ja) * 1988-09-20 1990-03-26 Kobe Steel Ltd 薄肉tバーの製造方法
US5074924A (en) * 1989-06-21 1991-12-24 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line

Similar Documents

Publication Publication Date Title
US5658400A (en) Rails of pearlitic steel with high wear resistance and toughness and their manufacturing methods
EP4317511A1 (en) Low-carbon low-alloy q&p steel or hot-dip galvanized q&p steel with tensile strength greater than or equal to 1180 mpa, and manufacturing method therefor
EP4317512A1 (en) Low-carbon, low-alloy and high-formability dual-phase steel having tensile strength of greater than or equal to 590 mpa, hot-dip galvanized dual-phase steel, and manufacturing method therefor
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
JPH0759726B2 (ja) 局部延性にすぐれる高強度冷延鋼板の製造方法
JPS63286517A (ja) 低降状比高張力鋼の製造方法
JP2004018912A (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP2004018911A (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP2652539B2 (ja) 張出し成形性及び疲労特性にすぐれる複合組織高強度冷延鋼板の製造方法
JPH03215623A (ja) 強靭な高強度鋼の製造方法
JPH03202421A (ja) 異方性の小さい高延性高強度冷延鋼板の製造方法
JPS62139821A (ja) 高延性高強度冷延鋼板の製造方法
JPH0135051B2 (ja)
CN115181917A (zh) 780MPa级别低碳低合金高成形性双相钢及快速热处理制造方法
JPS63241120A (ja) 高延性高強度複合組織鋼板の製造法
JPH0135052B2 (ja)
CN115181884A (zh) 1280MPa级别低碳低合金热镀锌Q&P钢及快速热处理热镀锌制造方法
JPH0645827B2 (ja) 加工性のすぐれた高強度鋼板の製造方法
JPS6320414A (ja) 高靭性高張力鋼板の製造法
JP2612452B2 (ja) 高延性高強度冷延鋼板の製造方法
JPS63312917A (ja) ばね性と延性の優れた高強度鋼板の製造方法
JPH0277521A (ja) 板厚方向の均質性に優れた溶接用超高張力鋼板の製造方法
JPH0543779B2 (ja)
CN115161541B (zh) 780MPa级别高成形性热镀锌双相钢及快速热处理热镀锌制造方法
JPH03207814A (ja) 低降伏比高張力鋼板の製造方法