JPS62139377A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPS62139377A
JPS62139377A JP60280342A JP28034285A JPS62139377A JP S62139377 A JPS62139377 A JP S62139377A JP 60280342 A JP60280342 A JP 60280342A JP 28034285 A JP28034285 A JP 28034285A JP S62139377 A JPS62139377 A JP S62139377A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
low resistance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60280342A
Other languages
Japanese (ja)
Inventor
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60280342A priority Critical patent/JPS62139377A/en
Priority to DE8686107823T priority patent/DE3686785T2/en
Priority to EP86107823A priority patent/EP0205139B1/en
Priority to US06/872,726 priority patent/US4751719A/en
Publication of JPS62139377A publication Critical patent/JPS62139377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Abstract

PURPOSE:To obtain the element which operates in a stable single mode with high yield by eliminating the need of connecting a negative resistance to an external part by arranging a distribution of resistance corresponding to a distribution of an electric field strength of the light in a direction of a resonator axis. CONSTITUTION:On a diffraction grating 60 formed on a surface of an N-type InP substrate 1, a lambda/4 shift region 50 of the boundary where a cycle of salients and recesses is inverted is formed. Next, on the substrate 1, an N-type InGaAsP light guiding layer 2, an InGaAsP active layer 3, a P-type InP cladding layer 4 and a P-type InP second cladding layer 5 are laminated by liquid-phase epitaxial growth. Then, an SiO2 film 110 is formed by CVD technique and this film 110 is removed into stripe form. Zn is diffused selectively down to the layer 5 to form a low resistance region 100. By using the substrate 1 from which the film 110 is removed, a P-type InGaAsP cap layer 9, an SiO2 insulating film 74, low reflection films 30 and 31, and a mesa stripe 70 are formed and the semiconductor laser element which operates by a stable single mode is fabricated with high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発明は元通信用あるいは光計測器用等の光源として用
いられる一″14−尋体レーザ裟置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a 1" 14-body laser device used as a light source for communications, optical measuring instruments, etc.

(従来の技術と発明が専決しようとブーる問題点)卓−
軸モードで動作する分布帰還形、′P4体レーザ(Di
stributed Feedbaclc l、ase
r Diode;以後1)lI″B LL)と略ブ°)
、あるいは分布ブラッグ反射形子導体レーザ(1)is
tributed Bragg。
(Problems that conventional technology and inventions are trying to resolve)
Distributed feedback type 'P4 body laser (Di
distributed Feedbaclc l, ase
r Diode; hereafter abbreviated as 1) lI″B LL)
, or distributed Bragg reflection type conductor laser (1) is
Tributed Bragg.

Reflector I、aser Diode  ;
以後DHRLDと略)は高速および長距離の元ファイバ
通信用元源、あるいは単一波長動作に優れることからコ
ヒーレントな光学系8組んだ元計副器の光源として期待
され急速な研究開発が進められて込る。
Reflector I, aser Diode;
DHRLD (hereinafter abbreviated as DHRLD) is expected to be used as a source for high-speed and long-distance original fiber communication, or as a light source for a primary metering sub-device with eight coherent optical systems due to its excellent single-wavelength operation, and rapid research and development is progressing. Enter.

ところで、内部に回折格子が形成されたDiI’BLD
では作製した全ての素子が安定な単一軸モード動作を示
す訳ではなく、回折格子が素子の端面においてどのよう
な位相で終っているかによって単一軸モードで動作した
り、複数の軸モードで動作したシする。また、DFB 
LDの動作電流を増大し光出力を増加させた時に、発掘
軸モードのジャンプが生じ、注入電流−光出力特性にキ
ンクを生じる場合もある。以上な様な理由で安定な単一
軸モードで動作する素子を高い裏作歩留りで得ることは
難しいという問題があった。本発明者等は上記問題を解
決するために、特願昭60−125449に記載される
第3図に示す構造の半導体レーザを発明した。この半導
体レーザは共振器方向の光の電界強度分布に対応して、
活性層3へ注入するキャリアの密度を制御することがで
きる様に、従来素子表面全体に形成していた電極fi−
3つのp側電極80、81.82に分割したことが特徴
である。この半導体レーザ装置に電流を注入する場合、
第4図(a)に示す様に、各々の電極80.81.82
の外側に抵抗値の異なる負荷抵抗100.101.10
2を接続して用いた。この半導体レーザ装置は、用いる
負荷抵抗の値を適切に選ぶことにより1第4図(b)に
示す様に半導体レーザ内部の共振器軸方向に分布した光
の電界強度と、電流′IM度とがほぼ相似の形状を為す
ことができる。また発振軸モードが異なる時、そのモー
ドの光の電界強度分布は第4図山に比べて異なる。その
様な発振軸モード発振閾値が非常に大きくなる。従って
第4図(blに示される光の電界強度分布を有する軸モ
ードは安定に発振することになる。実際この半導体レー
ザ装置は50mW以上の高出力域まで安定な単一軸モー
ドで動作する素子が70%程度以上の高い歩留りで得ら
れた。しかしながら、上記半導体レーザでは最適な負荷
抵抗101,102.lQ3を選び、各々半導体レーザ
の外側に接続しなければならず1組立、調整工数に非常
に多くの工数を費す必要があるという問題点を有してい
た。即ち、負荷抵抗100゜101、102はp#Jt
極80.81.82力1ら近い位置にリード線を4L9
出して各々その先に接続させる必要がある。従来半導体
レーザ力)らのリード線はp側及びn側の電極力)ら各
々1本で済んでいたものが3本、4本と複数本となるた
めに、特殊な半導体レーザのマウント法が必要であり、
又、負荷抵抗101,102,103との接続等、複雑
な組立工程を必要としていた。
By the way, DiI'BLD with a diffraction grating formed inside
However, not all of the fabricated devices exhibited stable single-axis mode operation, but depending on the phase of the diffraction grating at the end face of the device, it operated in a single-axis mode or in multiple-axis modes. I will do it. Also, DFB
When the operating current of the LD is increased to increase the optical output, a jump in the excavation axis mode may occur, causing a kink in the injection current-optical output characteristics. For the reasons mentioned above, there has been a problem in that it is difficult to obtain devices that operate in a stable single-axis mode with a high production yield. In order to solve the above problem, the present inventors invented a semiconductor laser having the structure shown in FIG. 3, which is described in Japanese Patent Application No. 125449/1982. This semiconductor laser responds to the electric field intensity distribution of light in the cavity direction.
In order to control the density of carriers injected into the active layer 3, the electrode fi-
The feature is that it is divided into three p-side electrodes 80, 81, and 82. When injecting current into this semiconductor laser device,
As shown in FIG. 4(a), each electrode 80, 81, 82
Load resistors with different resistance values outside of 100.101.10
2 was connected and used. By appropriately selecting the value of the load resistor used, this semiconductor laser device can control the electric field intensity of the light distributed in the cavity axis direction inside the semiconductor laser and the current 'IM degree, as shown in Figure 4(b). can form almost similar shapes. Furthermore, when the oscillation axis mode is different, the electric field intensity distribution of the light in that mode is different compared to the peak in FIG. Such an oscillation axis mode oscillation threshold becomes very large. Therefore, the axial mode with the electric field intensity distribution of light shown in Figure 4 (bl) oscillates stably.In fact, this semiconductor laser device has an element that operates in a stable single-axis mode up to a high output range of 50 mW or more. This was achieved with a high yield of about 70% or more. However, in the above semiconductor laser, the optimum load resistors 101 and 102.lQ3 had to be selected and connected to the outside of the semiconductor laser, which required a large amount of man-hours for assembly and adjustment. This has the problem that it requires a lot of man-hours.That is, the load resistance 100°101, 102 is p#Jt
Connect the lead wire 4L9 near the pole 80.81.82 Force 1
You need to take them out and connect them to each other. Conventionally, the lead wires for the semiconductor laser (electrode force) on the p-side and n-side electrodes were required to be one each, but now there are three or four lead wires, so a special mounting method for the semiconductor laser is required. is necessary,
Further, complicated assembly processes such as connection with load resistors 101, 102, and 103 are required.

本発明は従来の半導体レーザと同様にp側及びn側の2
電極部を有し、高い裏作歩留りで、安定した単一軸モー
ドで動作する素子が得られる。半導体レーザ及びその製
造方法を提供することにある。
Similar to conventional semiconductor lasers, the present invention has two
It is possible to obtain a device that has an electrode portion, has a high production yield, and operates in a stable single-axis mode. An object of the present invention is to provide a semiconductor laser and a method for manufacturing the same.

(問題点を解決するための手段) 本発明の半導体レーザは活性層に隣接して回折格子が形
成されている構造を有し活性層内の共振器軸方向の光の
電界強度分布にほぼ比例した形状に注入電流分布形状を
制御する手段を有し、かつ前記手段が、前記活性層を挟
んで形成されるクラッド層の一部に設けられた、前記共
ノ辰器軸方向に分布した抵抗率を有する半導膚から成る
こと特徴とする構造となっている。またその製造方法は
第1導電形の半導体基板上に、活性層と、前記活性層の
上方又は下方に隣接し上面あるいは下面が周期状の凹凸
形状を為す回折格子である光ガイド層とを形成し、さら
に前記活性層と前記元ガイド層との)ら成る積層構造上
に、低抵抗層と高抵抗層と力)ら構成されるクラッド場
を形成する工程と、前記クラッド1の高抵抗層の一部に
、拡散あるいはイオン注入法により前記共振器軸方向に
分布した低抵抗層を高抵抗層をつきぬけ低抵抗層に達す
る深さまで形成する工程とを少なくとも含むことを特徴
とする構成となっている。
(Means for Solving the Problems) The semiconductor laser of the present invention has a structure in which a diffraction grating is formed adjacent to the active layer, and is approximately proportional to the electric field intensity distribution of light in the cavity axis direction within the active layer. means for controlling the injected current distribution shape into a shape, and the means is provided on a part of the cladding layer formed with the active layer sandwiched therebetween, and the resistor is distributed in the direction of the coronal axis. The structure is characterized by being made of semiconducting skin with a high density. The manufacturing method includes forming, on a semiconductor substrate of a first conductivity type, an active layer and a light guide layer which is adjacent to the active layer above or below and is a diffraction grating whose upper or lower surface has a periodic uneven shape. Further, a step of forming a cladding field composed of a low resistance layer, a high resistance layer and a high resistance layer of the cladding 1 on the laminated structure consisting of the active layer and the original guide layer; The structure is characterized in that it includes at least a step of forming a low resistance layer distributed in the axial direction of the resonator by diffusion or ion implantation to a depth that penetrates the high resistance layer and reaches the low resistance layer. ing.

(作用) 不発明の詳細な説明する前に本発明の基本的な考え方を
説明する。先の発明では半導体レーザの活性層の共振器
軸方向の電流分布を制御するために、半導体レーザの電
極を分割し、半導体レーザの外側に幾つ力)の抵抗を接
続させていた。これを電極を分割せずに行うには、半導
体レーザ内部に、m極の)ら活性層に到る電流経路の抵
抗値に分布をもたせる必要がある。半導体層の抵抗の値
を変えるには、一般にキャリアm度を変化させれば良い
。例えばp形LnP膚の比抵抗アは、キャリア濃度が1
 x IQ”d”の時、約0.10α、また4×101
7cIIL′と小さくした時に2倍の約0.20aとな
る。従って、活性層に至る電流経路の半導体層内に、キ
ャリア濃度の分布を設けることによって、半導体レーザ
表面の電極は同一でも、活性層に流れる11L流の値を
変えることができる。従って、半導体レーザの内部の共
振器軸方向電界強度分布に対応させて、活性層へ流れる
電流に分布を形成させることができる。以下実施例を用
いて説明する。
(Operation) Before explaining the non-invention in detail, the basic idea of the present invention will be explained. In the previous invention, in order to control the current distribution in the resonator axis direction of the active layer of the semiconductor laser, the electrodes of the semiconductor laser were divided and a resistor of some force was connected to the outside of the semiconductor laser. In order to do this without dividing the electrodes, it is necessary to create a distribution in the resistance values of the current path from the m-pole to the active layer inside the semiconductor laser. In order to change the resistance value of the semiconductor layer, it is generally sufficient to change the carrier m degree. For example, the specific resistance A of p-type LnP skin has a carrier concentration of 1.
x When IQ “d”, approximately 0.10α, also 4×101
When it is reduced to 7cIIL', it becomes about 0.20a, which is twice as large. Therefore, by providing a carrier concentration distribution in the semiconductor layer in the current path leading to the active layer, the value of the 11L flow flowing into the active layer can be changed even if the electrodes on the surface of the semiconductor laser are the same. Therefore, it is possible to form a distribution in the current flowing to the active layer in accordance with the resonator axial electric field strength distribution inside the semiconductor laser. This will be explained below using examples.

(実施例) 第1図は本発明の実施例を示す半導体レーザの斜視図で
ある。n形1nP基板1の上に中央に、回折格子60の
山と谷の周期が反転するλ/4シフト領域50が形成さ
れたυFB LDである。この構造について、第2図の
製造プロセスの基本工程を示す断面図を用いて説明する
。まず表面が(001)宇高等が昭和59年度電子・通
信学会全国大会予稿集1017で報告した。l)F″B
 LDと同様に、中央部回折格子の山と谷の周期が反転
した境界のλ/4シフト領域50が形成されている。こ
の回折格子60の形成は波長321 nmのHe−Cd
ガスレーザヲ用い、干渉露光法で行った。回折格子60
の周期は2000に、深さは800xであった。 次に
液相エピタキシャル成長により、(b)図に示す様にこ
のn形1nP基板lの上にn形InGaAsP元ガイド
層2(発光波長にして、1.15 trys組成、pa
厚は回折格子ωの谷の部分で0.1μBSn  ドー7
、キャリア濃度7 X IQ” cm−” ) 、ノン
ドープ1nGaAsP fL性層3(発光波長にして1
.3μm組成、膜厚O11μ列p形InPクラッド層4
(pIiS厚Q、5 prn%Zfl  ドー1、キャ
リア濃度1 x IQ ” crt*−” )およびp
−形1nP第2クラッドノWji5(膜厚Q、5μm、
Znドーズ、キャリア濃度4 x IQ” cm−” 
)を、積層する。次に、(0図に示す様に表面にCVD
によりS10!膜110を形成シ1通常のフォトリソグ
ラフィの技術により、部分的にS i U x膜11Q
を紙面に垂直に幅100μmのストライプ状に除去する
。その後り形1nP第2クラッド層5を突き抜ける様に
約0.7μmの深さまでZnの選択拡散を行い低抵抗領
域1008形成する。p−形InP 第2クラッド層5
の低抵抗領域100のキャリア濃度は3 x IQ ”
 cry−”まで増大し。
(Example) FIG. 1 is a perspective view of a semiconductor laser showing an example of the present invention. This is a υFB LD in which a λ/4 shift region 50 in which the period of peaks and valleys of a diffraction grating 60 is inverted is formed in the center on an n-type 1nP substrate 1. This structure will be explained using the cross-sectional view of FIG. 2 showing the basic steps of the manufacturing process. First of all, Uko, whose surface is (001), reported in the proceedings of the 1981 National Conference of the Institute of Electronics and Communication Engineers, 1017. l) F″B
Similar to the LD, a λ/4 shift region 50 is formed at the boundary where the period of the peaks and valleys of the central diffraction grating is reversed. This diffraction grating 60 is formed using He-Cd with a wavelength of 321 nm.
This was done using a gas laser and interference exposure method. Diffraction grating 60
The period was 2000 and the depth was 800x. Next, by liquid phase epitaxial growth, an n-type InGaAsP original guide layer 2 (1.15 trys composition in terms of emission wavelength, pa
The thickness is 0.1 μBSn at the valley part of the diffraction grating ω.
, carrier concentration 7 × IQ"cm-"), non-doped 1nGaAsP fL layer 3 (1
.. 3μm composition, film thickness O11μ row p-type InP cladding layer 4
(pIiS thickness Q, 5 prn%Zfl do 1, carrier concentration 1 x IQ "crt*-") and p
- type 1nP second cladding Wji5 (film thickness Q, 5 μm,
Zn dose, carrier concentration 4 x IQ"cm-"
) are stacked. Next, (CVD on the surface as shown in Figure 0)
By S10! The film 110 is partially formed by forming the S i U x film 11Q using ordinary photolithography technology.
is removed in a stripe shape with a width of 100 μm perpendicular to the plane of the paper. Thereafter, Zn is selectively diffused to a depth of approximately 0.7 μm so as to penetrate through the 1nP second cladding layer 5 to form a low resistance region 1008. p-type InP second cladding layer 5
The carrier concentration of the low resistance region 100 is 3 x IQ''
It increases to "cry-".

この領域の比抵抗は約0.04 QCmまで減少した。The resistivity in this region decreased to about 0.04 QCm.

次に5iQt膜をエツチングして取り除いたのが(d)
図である。以後は水戸等が昭和57年度電子通信学会総
合全国大会の予稿集857で報告した様に。
Next, the 5iQt film was removed by etching (d).
It is a diagram. From then on, as Mito et al. reported in Proceedings 857 of the 1985 National Conference of the Institute of Electronics and Communication Engineers.

この基板を用いて、第1図(a)の斜視図1こ示される
二重チャンネルブレーナ埋め込み形構造を形成する。p
形InGaAsPキャップ層8の表面には5i(Jx杷
縁膜を用いた電流狭窄構造のCr/AL1金属を用イタ
p11Ilt極86.またn−1nP基板l側には全体
の厚さが14Qμmの厚さになるまで研磨したのちに%
 n @AuGeNi金属を用いたn側電極83を形成
した。低抵抗領域100がほぼ中央に位置するように、
300μmの共振器長に弁開したのち両側の端面に、S
i層を蒸着して、反射率が約2チの低反射膜30.31
を形成した。第1因(b)は fg1図(a)の斜視図
における一点鎖線A −B −Cで示される断面図であ
る。この1fru¥iは、メサストライプ70のはぼ中
央断面を示しており、活性pJ3の発光部分を示すもの
である。p側゛1極86を正、n側電極83(−負にバ
イアスして、活性層3に電流を注入したところ、20m
Aの閾(+1で発振した。
This substrate is used to form a double channel brainer embedded structure shown in perspective view 1 of FIG. 1(a). p
The surface of the InGaAsP cap layer 8 is made of Cr/AL1 metal with a current confinement structure using a 5i (Jx) edge film. After polishing until smooth, %
An n-side electrode 83 was formed using n@AuGeNi metal. so that the low resistance region 100 is located approximately in the center.
After opening the valve to a resonator length of 300 μm, S
Low reflective film with a reflectance of about 2 cm by depositing an i-layer 30.31
was formed. The first factor (b) is a sectional view taken along the dashed line A-B-C in the perspective view of FIG. 1(a). This 1fru\i shows a cross section at the center of the mesa stripe 70, and shows the light emitting part of active pJ3. When a current was injected into the active layer 3 with the p-side electrode 86 biased positive and the n-side electrode 83 (-negative), a current of 20 m
A threshold (Oscillated at +1.

前方、後方の端面力)らほぼ同等の光出力が得られ前方
および後方端面から出射した元を合わせた微分量子効率
1i60%であった。
Almost the same optical output was obtained from the front and rear end surfaces (front and rear end surfaces), and the combined differential quantum efficiency of the light emitted from the front and rear end surfaces was 1i60%.

発振スペクトルは単一軸モードでその波長は1.305
μmであった。注入電流−光出力には軸モードジャング
等によって生じるキンクの発生が見られず40mW以上
の高出力域まで安定な単一軸モードで動作した。
The oscillation spectrum is a single axis mode and its wavelength is 1.305
It was μm. No kink caused by axial mode jang was observed in the injection current-optical output, and the device operated in a stable single-axis mode up to a high output range of 40 mW or more.

またこの様な安定な午−一モード動作を示す素子の数は
全体の約7割以上であった。
Moreover, the number of devices exhibiting such stable 1-mode operation was about 70% or more of the total.

以上の様に、良好な素子特性、及び歩留ま9が得られる
理由は次の様に考えられる。第1図(blにおいて、p
側電極867i−正、n 1+III’g極83を負に
バイアスして、電流を流すと、p−1n p 第二クラ
、ド層において低抵抗領域100の部分の比抵抗は約0
.040αであるかそれ以外の領域の比抵抗は約0.2
 uzであるため約5倍の比抵抗差が生じる。従って、
活性N3に流れる電流は共−器方向に第4図(blの破
線で示される形状と同様の分布を生じることになる。従
って、光の電)゛ト強度に、電(&密度の分布が似通っ
た形状となる。これ力)ら、注入′1流を増加した場合
も第4図(b)の実根で示される電界強度分布を示す軸
モードが安定に1lJjJ起され、異なる電界強度分布
を示す軸モードは発振しにくくなっている。従って安定
な単一軸モードで動作する素子の再現性、均一性が良好
になった。
As described above, the reason why good device characteristics and a yield of 9 are obtained is considered as follows. Figure 1 (in bl, p
When the side electrode 867i-positive and the n1+III'g pole 83 are biased negatively and a current flows, the specific resistance of the low resistance region 100 in the p-1np second layer is approximately 0.
.. 040α or other areas have a specific resistance of approximately 0.2
Since it is uz, a difference in specific resistance of about 5 times occurs. Therefore,
The current flowing through the active N3 will produce a distribution similar to the shape shown by the broken line in Figure 4 (bl) in the direction of the collector.Therefore, the distribution of the photoelectric intensity and the electric density will change. They have similar shapes.If the injection flow is increased, an axial mode with the electric field intensity distribution shown by the real root in Fig. 4(b) is stably generated, and a different electric field intensity distribution is generated. The axis mode shown is less likely to oscillate. Therefore, the reproducibility and uniformity of the device operating in a stable single-axis mode have been improved.

第1図の実施例では、低抵抗領域100を素子の中央に
設けたが、例えば、第1図において、λ/4シフト領域
50を設けず、又右側の81への反射M31の反射率を
90%程度まで大さくした場合lこけ、半導体レーザの
内部の共振器方向電界強度分布は右側の端面に向って増
大する形となる。この場合、低抵抗領域100を右側の
端面に近く設けることが必要である。また以上の実施例
では低抵抗領域100を形成するためにZnの選択拡散
を用いたが、 f3eなどのイオン注入fF:行って形
成することもできる。また実施例ではクラッドノーを低
抵抗層と高抵抗消の2層で構成したが、他の構成、例え
ば低抵抗層一層で構成し出射端面近傍の領域に不純物補
償領域を形成して高抵抗化と共振器方向に分布した抵抗
領域を形成してもよい。
In the embodiment shown in FIG. 1, the low resistance region 100 is provided in the center of the element, but for example, in FIG. When the size is increased to about 90%, the electric field strength distribution in the cavity direction inside the semiconductor laser increases toward the right end facet. In this case, it is necessary to provide the low resistance region 100 close to the right end face. Further, in the above embodiments, selective diffusion of Zn was used to form the low resistance region 100, but it can also be formed by ion implantation fF: such as f3e. In addition, in the embodiment, the cladding layer is composed of two layers, a low resistance layer and a high resistance layer, but it can also be made of other structures, such as a single low resistance layer, and an impurity compensation region is formed in the region near the output end face to increase the resistance. A resistance region distributed in the direction of the resonator may be formed.

ストライプ構造は埋込ストライプ構造としたが他のスト
ライプ構造でも実施例と同様の効果が得られる。(スト
ライプ構造は本発明の本質的な部分ではない)。
Although the stripe structure is a buried stripe structure, the same effect as in the embodiment can be obtained with other stripe structures. (The striped structure is not an essential part of the invention).

(発明の効果) 半導体レーザ内部に、共振器軸方向の光の電界強度分布
に対応した、抵抗の分布を設けることによって、安定な
単一軸モードで動作する素子を高い歩留りで得ることが
できた。
(Effects of the invention) By providing a resistance distribution inside the semiconductor laser that corresponds to the electric field intensity distribution of light in the direction of the cavity axis, it was possible to obtain a device that operates in a stable single-axis mode at a high yield. .

従来の電極を分割した素子に比べ、半導体レーザの外部
に負荷抵抗を+&続させる必要がなく、通常の半導体レ
ーザと同様に用いることができた。
Compared to conventional devices with divided electrodes, there is no need to connect a load resistor to the outside of the semiconductor laser, and the device can be used in the same way as a normal semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図fa)は本発明の実施例を示す半導体レーザの斜
視図、第り図(bJは、第1図A−11−Cの線におけ
る@面図、第2図(a) (b) (C)(d)は第1
図の半導体レーザを作製するための基本工程因、第3図
は従来例の半導体レーザの斜視図、第4図(a)U従来
例の半導体レーザーこ負荷抵抗を接続した模式図、第4
図[b)は、半纏体レーザ内部の光の′44層度分布及
び電流密度の分布を示すものでるる。 図”F * lはn形1nP、d板、2はn形1 n (J a A
 S P元カイト/!2. 3 rt l nGaAs
P 1.5−性l−141dp形lnPノラッド層、5
はp形1nf’電流ブロック層、8はp形InGaAS
Pキaryブ層、30.31  は低反IJgg、50
ばλ/4シフト狽域、60は回折格子、7083H11
側電極、100は低抵抗領域、110は3102ψ  
       ^ 口 オ 1 図 オ 2 口 第4図 Oz
Fig. 1fa) is a perspective view of a semiconductor laser showing an embodiment of the present invention; (C) (d) is the first
Figure 3 is a perspective view of a conventional semiconductor laser; Figure 4 (a) is a schematic diagram of a conventional semiconductor laser connected to a load resistor;
Figure [b] shows the '44 layer degree distribution of light and the current density distribution inside the semi-integrated laser. Figure "F*l is n-type 1nP, d plate, 2 is n-type 1n (J a A
S P Former Kite/! 2. 3 rt l nGaAs
P 1.5-characteristic l-141dp type lnP Norad layer, 5
is p-type 1nf' current blocking layer, 8 is p-type InGaAS
Pary layer, 30.31 is low resistance IJgg, 50
λ/4 shift region, 60 is a diffraction grating, 7083H11
side electrode, 100 is low resistance region, 110 is 3102ψ
^ Mouth 1 Figure 2 Mouth 4th Figure Oz

Claims (1)

【特許請求の範囲】 1、活性層及び活性層に隣接して形成されている回折格
子を少なくとも内包している多層積層構造と、活性層内
の共振器軸方向の光の電界強度分布にほぼ比例した形状
に注入電流分布形状を制御する手段とを備え、前記制御
手段が前記活性層を挟んで形成されるクラッド層の一部
に設けられた前記共振器軸方向に分布した抵抗率を有す
る半導体層から成ることを特徴とする半導体レーザ。 2、第1導電形の半導体基板上に、活性層と、前記活性
層の上方または下方に隣接し上面あるいは下面が周期状
の凹凸形状を為す回折格子である光ガイド層とを形成し
、さらに前記活性層と前記光ガイド層とから成る積層構
造上に低抵抗層と高抵抗層とから構成されるクラッド層
を形成する工程と、前記クラッド層の高抵抗層の一部に
、拡散あるいはイオン注入法により前記共振器軸方向に
分布した低抵抗層を高抵抗層をつきぬけ低抵抗層に達す
る深さまで形成する工程とを少なくとも含むことを特徴
とする半導体レーザの製造方法。
[Claims] 1. A multilayer laminated structure including at least an active layer and a diffraction grating formed adjacent to the active layer, and an electric field intensity distribution of light in the resonator axis direction within the active layer approximately means for controlling the injection current distribution shape into a proportional shape, the control means having a resistivity distributed in the axial direction of the resonator provided in a part of the cladding layer formed with the active layer sandwiched therebetween. A semiconductor laser characterized by comprising a semiconductor layer. 2. On a semiconductor substrate of a first conductivity type, an active layer and a light guide layer, which is adjacent to the active layer above or below and is a diffraction grating whose upper or lower surface has a periodic uneven shape, and a step of forming a cladding layer consisting of a low resistance layer and a high resistance layer on a laminated structure consisting of the active layer and the optical guide layer; A method for manufacturing a semiconductor laser, comprising at least the step of forming a low resistance layer distributed in the cavity axis direction by an injection method to a depth that penetrates the high resistance layer and reaches the low resistance layer.
JP60280342A 1985-06-10 1985-12-13 Semiconductor laser and manufacture thereof Pending JPS62139377A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60280342A JPS62139377A (en) 1985-12-13 1985-12-13 Semiconductor laser and manufacture thereof
DE8686107823T DE3686785T2 (en) 1985-06-10 1986-06-09 SEMICONDUCTOR LASER DEVICE WITH DISTRIBUTED FEEDBACK.
EP86107823A EP0205139B1 (en) 1985-06-10 1986-06-09 Distributed feedback semiconductor laser device
US06/872,726 US4751719A (en) 1985-06-10 1986-06-10 Distributed feedback semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280342A JPS62139377A (en) 1985-12-13 1985-12-13 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62139377A true JPS62139377A (en) 1987-06-23

Family

ID=17623668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280342A Pending JPS62139377A (en) 1985-06-10 1985-12-13 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62139377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020105095A1 (en) * 2018-11-19 2021-05-13 三菱電機株式会社 Optical semiconductor device and manufacturing method of optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020105095A1 (en) * 2018-11-19 2021-05-13 三菱電機株式会社 Optical semiconductor device and manufacturing method of optical semiconductor device

Similar Documents

Publication Publication Date Title
JPS59205787A (en) Single axial mode semiconductor laser
JPH065975A (en) Semiconductor laser
JPS6332988A (en) Distributed feedback semiconductor laser
US5321716A (en) Distributed Feedback semiconductor laser with controlled phase shift
US20050123018A1 (en) Ridge type distributed feedback semiconductor laser
JPH01319986A (en) Semiconductor laser device
JP2003142773A (en) Semiconductor light emitting device
JPH0548214A (en) Distributed reflection type semiconductor laser
JP3672272B2 (en) Optical semiconductor device
JPS62139377A (en) Semiconductor laser and manufacture thereof
JP3683416B2 (en) Super luminescent diode
JPH0578955B2 (en)
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
CN114465090B (en) Multi-junction distributed feedback laser and preparation method thereof
JP2950297B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
US7551658B2 (en) Buried ridge waveguide laser diode
WO2023281741A1 (en) Semiconductor optical element
JP3295932B2 (en) Semiconductor laser device
JPS59184585A (en) Semiconductor laser of single axial mode
JPH0936479A (en) Semiconductor laser and fabrication thereof
JPH03174793A (en) Semiconductor laser
JPH01186688A (en) Semiconductor laser device
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPH0728093B2 (en) Semiconductor laser device
JP2903322B2 (en) Semiconductor integrated laser