JPS62139268A - Thermal battery - Google Patents

Thermal battery

Info

Publication number
JPS62139268A
JPS62139268A JP27820485A JP27820485A JPS62139268A JP S62139268 A JPS62139268 A JP S62139268A JP 27820485 A JP27820485 A JP 27820485A JP 27820485 A JP27820485 A JP 27820485A JP S62139268 A JPS62139268 A JP S62139268A
Authority
JP
Japan
Prior art keywords
lithium
metal powder
metal
boron alloy
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27820485A
Other languages
Japanese (ja)
Inventor
Kazunori Haraguchi
和典 原口
Hirosuke Yamazaki
博資 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27820485A priority Critical patent/JPS62139268A/en
Publication of JPS62139268A publication Critical patent/JPS62139268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce heat capacity of negative electrode and quicken voltage rising time by using a lithium-boron alloy negative electrode in which lithium- boron alloy is arranged inside a metal cup and the alloy is surrounded with a metal powder molding having electron conductivity and metal cup. CONSTITUTION:A negative active material 1 consists of a lithium-boron alloy sheet and arranged inside a metal cup 3. A metal powder molding 2 consists of metal alone or a mixture of metal powder and the powder mainly comprising electrolyte, and covers the surrounding of the lithium-boron alloy sheet with the metal cup 3. The metal powder used is necessary to be not alloyed of difficult to be alloyed with lithium, and iron nickel, stainless steel, or nichrom, or a mixture of these material is effectively used. The negative electrode is combined with an electrolyte layer 4, a positive mix layer 5, and a positive current collector 6 to form a unit cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱電池用リチウムボロン合金負極体の構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of a lithium boron alloy negative electrode body for thermal batteries.

従来の技術 熱電池は常温では固体である溶融塩を電解質として用い
、これを高温約400〜700″Cに加熱して液体化す
ることによって発電可能とする高温電池の一種である。
A conventional thermal battery is a type of high-temperature battery that uses a molten salt, which is solid at room temperature, as an electrolyte and heats it to a high temperature of about 400-700''C to liquefy it to generate electricity.

従来の熱電池には負極活物質として金属カルシウムや金
属マグネシウムなどが用いられていたが、これらの負極
活物質では近年熱電池に求められている大電流密度放電
、例えば500mA/7で数分間の放電寿命という要求
に対して満足することが不可能であった。近年この様な
問題を解決するために新しくリチウム負極の開発がなさ
れてきた。しかし、金属リチウムは活性である反面、融
点(181℃)が低く、電池作動温度域(通常400〜
700″C)では完全に液3べ一/ 化してしまうので、素電池外への流出をおこしやすくな
って内部短絡を生ずるという難点を有している。そこで
従来では米国特許第4221849号明細書に示される
ような溶融リチウムに金属粉末を添加して均一混合し、
その金属粉表面にリチウムを保持させシート状にしたリ
チウム負極や金属カップと金属粉末成型体でリチウムを
囲み、リチウムの流出を防ぐ構造が提案されている。
Conventional thermal batteries have used metal calcium, metal magnesium, etc. as negative electrode active materials, but these negative electrode active materials can handle the high current density discharge required for thermal batteries in recent years, such as 500 mA/7 for several minutes. It was impossible to satisfy the requirement of discharge life. In recent years, new lithium negative electrodes have been developed to solve these problems. However, although metallic lithium is active, it has a low melting point (181°C) and a battery operating temperature range (usually 400°C to
At 700"C), the liquid is completely converted to a single volume, which has the disadvantage of easily leaking out of the unit cell and causing an internal short circuit. Therefore, in the past, US Pat. No. 4,221,849 Add metal powder to molten lithium and mix uniformly as shown in
A structure has been proposed in which lithium is held on the surface of the metal powder and the lithium is surrounded by a sheet-shaped lithium negative electrode, a metal cup, and a molded metal powder to prevent lithium from flowing out.

発明が解決しようとする問題点 しかし、これらの方法では、リチウムの流出を防ぐ為に
かなりの量の金属粉末が必要となり、(1)負極の熱容
量が大きくなること、および厚みが厚くなるため負極か
らの熱伝導がおくれることで、素電池の加熱に時間がか
かり、所定電圧までの立ち上がり時間が遅れる。
Problems to be Solved by the Invention However, these methods require a considerable amount of metal powder to prevent lithium from flowing out, and (1) the heat capacity of the negative electrode increases and the thickness of the negative electrode increases. Because the heat conduction from the battery is delayed, it takes time to heat up the unit cell, and the rise time to the specified voltage is delayed.

(2)負極自身の重量も増えるが、素電池を加熱するた
めの加熱剤も増加せねばならず、電池の重責増加を招く
(2) The weight of the negative electrode itself increases, but the heating agent for heating the unit cell must also increase, which increases the burden on the battery.

という問題点が発生し、大きな欠点となっていた。This problem arose and became a major drawback.

本発明はこのような問題点を解決するものである。The present invention solves these problems.

問題点を解決するだめの手段 上記のような問題点を解決するために、本発明ではリチ
ウムボロン合金が金属製カップ内面に配置され、かつ電
子伝導性を有する金属粉末成型体と金属製カップにて包
囲さ扛た構造のリチウムボロン合金負極を用いたもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, a lithium boron alloy is disposed on the inner surface of a metal cup, and a metal powder molded body having electronic conductivity and a metal cup are combined. It uses a lithium boron alloy negative electrode with an enclosed structure.

作用 リチウムボロン合金は51重量比42.8%以上の場合
、多孔質のLi、 B6 骨格とその中に保持された金
属リチウムとの2相から成っていることがわかっている
。そのため、Li重量比が42.8%以上のリチウムボ
ロン合金はその中に含まれる金属リチウムが無くなるま
では純リチウムの電位を示すことが報告されており、L
1重量比66〜70%の合金を用いた熱電池の特性も報
告されている( 30 T HPower 5ourc
es SymposiumLithium−Boron
 A11oy Anodes forThermall
y−Activated Batteries )。
It has been found that when the working lithium-boron alloy has a weight ratio of 42.8% or more, it consists of two phases: a porous Li, B6 skeleton and metallic lithium held therein. Therefore, it has been reported that a lithium boron alloy with a Li weight ratio of 42.8% or more exhibits the potential of pure lithium until the metallic lithium contained therein is exhausted.
The characteristics of a thermal battery using an alloy with a weight ratio of 66 to 70% have also been reported (30 T HPower 5ourc
es SymposiumLithium-Boron
A11oy Anodes for Thermal
y-Activated Batteries).

しかし、このような組成のリチウムボロン合−金6 ペ
ージ でもシート状に圧延していくと、Li、B6骨格がくず
され、その中のフリーなリチウムが表面にでてきてリチ
ウムの流出を生ずる。また、Li重量比が7Q%以上の
リチウムボロン合金ではLi、B6骨格が少なくリチウ
ムの保持能力が低いため、やはり流出を生ずる。
However, when a lithium-boron alloy having such a composition is rolled into a sheet, the Li and B6 skeletons are destroyed and free lithium therein comes to the surface, causing lithium to flow out. Furthermore, in a lithium boron alloy with a Li weight ratio of 7Q% or more, there are few Li and B6 skeletons and the lithium retention capacity is low, so leakage still occurs.

そこで本発明の構成によれば、電池が作動したときリチ
ウムボロン合金中から流出してくるリチウムは、それを
包囲している金属粉末成型体と金属製カップとによって
流出を防止できる。金属粉末成型体は微細な空隙を有す
るように製作されており、溶融流出したリチウムはこの
空隙に毛細管現象によって吸い上げられ、そしてリチウ
ムの表面張力によって金属粉末成型体内の細孔内に保持
された状態となる。従って、電池活性時には金属粉末成
型体が溶融リチウムを吸収保持した集電体となり、その
中に取り込壕れたリチウムは順次放電で消耗されていく
。それゆえにこのリチウム負極は集電効率の良い活性な
ものであると共に、リチウムの流出を起こさない安定な
ものである。
Therefore, according to the configuration of the present invention, the lithium that flows out from the lithium boron alloy when the battery is operated can be prevented from flowing out by the metal powder molded body and the metal cup that surround it. The metal powder molded body is manufactured to have minute voids, and the lithium that has melted and flowed out is sucked up by capillary action into these voids, and is held in the pores within the metal powder molded body by the surface tension of the lithium. becomes. Therefore, when the battery is active, the metal powder molded body becomes a current collector that absorbs and holds molten lithium, and the lithium trapped therein is gradually consumed by discharge. Therefore, this lithium negative electrode is an active one with good current collection efficiency, and is also a stable one that does not cause lithium outflow.

6ベー/゛ 本発明者らが先提案したものも同様の作用にてリチウム
の流出を防いでいるが、本発明では、リチウムボロン自
身がある程度リチウムの保持能力を持っているために、
周囲の金属粉末成型体の量を減少できるのである。
6 b/゛Although the device previously proposed by the present inventors prevents lithium from flowing out by a similar effect, in the present invention, since lithium boron itself has a certain degree of lithium retention ability,
This allows the amount of surrounding metal powder compacts to be reduced.

実施例 以下本発明の実施例を図をもって説明する。第1図は本
発明の一実施例であり、負極の縦断面図である。第1図
から明らかなように1はリチウムボロン合金シートから
なる負極活物質で、金属製カップ3の内面に配置されて
いる。そして2は金属粉末のみか金属粉末に電解質を主
成分とした粉末を加えた混合粉末によって構成された金
属粉末成型体で、金属製カップ3と共にリチウムボロン
合金シート1の全周を囲んでいる。ここに用いる金属粉
末はリチウムと合金を作らないか、もしくは作りにくい
ものであり、鉄、ニッケル、ステンレス鋼やニクロムの
単体かまたは複数種から選ばれた混合物もしくはそれら
の合金が有効であった。
EXAMPLES Hereinafter, examples of the present invention will be explained with reference to the drawings. FIG. 1 is an embodiment of the present invention, and is a longitudinal sectional view of a negative electrode. As is clear from FIG. 1, reference numeral 1 denotes a negative electrode active material made of a lithium boron alloy sheet, which is arranged on the inner surface of a metal cup 3. A metal powder molded body 2 is composed of either only metal powder or a mixed powder of metal powder and powder mainly composed of an electrolyte, and it surrounds the entire periphery of the lithium boron alloy sheet 1 together with the metal cup 3. The metal powder used here either does not form an alloy with lithium or is difficult to form, so iron, nickel, stainless steel, nichrome alone or a mixture of several of them or an alloy thereof have been effective.

リチウムと容易に合金を作るような金属粉末、例7ベー
A metal powder that readily alloys with lithium, Example 7B.

えはアルミニウム等を用いると、電池が活性時に直ちに
合金化してし捷い、リチウム本来の高い電位を出さなく
なったり、活性度を失ったり、体積変化を生じたりする
などの整置がおこる。
If aluminum or the like is used, the battery will immediately become alloyed and shattered when activated, resulting in problems such as lithium not producing the high potential inherent to lithium, losing activity, and causing volume changes.

第2図は第1図に示した負極体に電解質層4と正極合剤
層6、そして正極集電板6を組み合わせて素電池を構成
したものである。電解質層4は電解質、例えばKCe−
LICe共融塩を無機吸着材、例えばMgOに保持させ
た粉末を成型して作られており、正極合剤層5は正極活
物質と電解質および無機吸着材の混合物層である。本実
施例では正極活物質としてFeS2を、電解質として電
解質層4同様にKC(1−LICe 共融塩を、また無
機吸着材としてはSiO2粉末を用いた。負極−電解質
帰一正極合剤層はそれぞれ個別に加圧成型したものを組
み合わせてもよいし、個別に作った負極の上に電解質粉
を成型しその上から更に正極合剤層を成型して3層一体
に成型したものとしてもよい。正極集電板6には鉄板を
用いた。金属粉末のみからなる金属粉末成型体2ではリ
チウムボロン合金からにじみだした溶融リチウムが吸い
上げられ、電解質層4の界面まで達っしないと電池とし
ては働かない。この場合は電池が所定の電圧を発するま
でに多少時間が長くかかる。そこで、この時間を短くす
るために金属粉末成型体2に電解質成分を含有させる手
法を試みた。この場合、電解質粉末そのものを金属粉末
と混合、吸着したり、または電解質を無機吸着材に保持
させた粉末を金属粉末と混入したりする。そうすること
によって、リチウムボロン合金シート1の表面にも電解
質が存在するので、溶融リチウムが金属粉末成型体2に
吸い上げられる以前でも添加した電解質がイオン導伝体
の役をして電池として作動でき、前述の所定電圧までの
立ち上がり時間が短くなるわけである。
FIG. 2 shows a unit cell constructed by combining the negative electrode body shown in FIG. 1 with an electrolyte layer 4, a positive electrode mixture layer 6, and a positive electrode current collector plate 6. The electrolyte layer 4 is an electrolyte, for example, KCe-
It is made by molding a powder in which LICe eutectic salt is held in an inorganic adsorbent such as MgO, and the positive electrode mixture layer 5 is a mixture layer of a positive electrode active material, an electrolyte, and an inorganic adsorbent. In this example, FeS2 was used as the positive electrode active material, KC (1-LICe eutectic salt as in the electrolyte layer 4) was used as the electrolyte, and SiO2 powder was used as the inorganic adsorbent. It is also possible to combine the individual pressure molded products, or to mold the electrolyte powder on top of the separately made negative electrode, and then mold the positive electrode mixture layer on top of that to form a three-layer structure. An iron plate was used as the positive electrode current collector plate 6.In the metal powder molded body 2 made only of metal powder, molten lithium exuded from the lithium boron alloy is sucked up and cannot be used as a battery unless it reaches the interface of the electrolyte layer 4. It does not work. In this case, it takes a long time for the battery to generate the specified voltage. Therefore, in order to shorten this time, we tried a method in which the metal powder molded body 2 contains an electrolyte component. In this case, the electrolyte The powder itself is mixed and adsorbed with the metal powder, or a powder with an electrolyte held in an inorganic adsorbent is mixed with the metal powder.By doing so, the electrolyte is also present on the surface of the lithium boron alloy sheet 1. Therefore, even before the molten lithium is sucked up into the metal powder compact 2, the added electrolyte acts as an ion conductor and can operate as a battery, shortening the rise time to the aforementioned predetermined voltage.

しかしあまり大量に電解質成分が入ると、金属粉末成型
体2の型くずれが生じるため電解質成分を重量比で3層
%以内にすることが好ましい。
However, if too large a quantity of electrolyte component is added, the metal powder molded body 2 will lose its shape, so it is preferable to keep the electrolyte component within 3% by weight.

また、金属粉末成型体2がリチウムボロン合釜1に比べ
あまりに多かったり、逆に少なかったりすると、次のよ
うな問題点が発生する。すなわち9 ペー/゛ 金属粉末成型体2がリチウムボロン合金1に比べ多すぎ
ると流出の防止能力は向上するが、放電寿命が著しく短
くなってし捷い実用性がなくなる。
Furthermore, if the number of metal powder compacts 2 is too large or too small compared to the lithium boron amalgam 1, the following problems will occur. That is, if the amount of the metal powder molded body 2 is too large compared to the lithium boron alloy 1, the outflow prevention ability will be improved, but the discharge life will be significantly shortened and it will become unusable.

一方少なすぎると流出防止能力が低下し、素電池外へリ
チウムが漏れ出し問題となる。従って、本実施例では金
属粉末成型体2とリチウム1との重量比を50 : 6
0〜90:10内に制限している。
On the other hand, if the amount is too low, the leakage prevention ability will be reduced and lithium will leak out of the unit cell, causing a problem. Therefore, in this example, the weight ratio of the metal powder compact 2 and the lithium 1 is 50:6.
It is limited to 0 to 90:10.

リチウムボロン合金の組成は、Li重量比が66%未満
ではフリーなリチウムが少なく(リチウムボロン合金重
量の約0〜26%のLi Lか含まれない)、放電寿命
が著しく短くなってしまう。
In the composition of the lithium boron alloy, if the Li weight ratio is less than 66%, there is little free lithium (approximately 0 to 26% of Li L of the lithium boron alloy weight is not included), and the discharge life is significantly shortened.

また、Liの含有量が90%を超える合金では殆どがリ
チウムばかりで、リチウムの保持能力がなく、従来の純
リチウムを用いて構成するのと同じ様に、多量の金属粉
末成型体が必要で本考案の目的を達成できない。従って
、リチウムボロン合金中のリチウム重量比は66〜90
%に調整することが好ましい。
In addition, alloys with a Li content of over 90% are mostly lithium and do not have the ability to retain lithium, and require a large amount of metal powder compacts, as in the case of conventional structures using pure lithium. The purpose of this invention cannot be achieved. Therefore, the lithium weight ratio in the lithium boron alloy is 66-90
It is preferable to adjust it to %.

このように構成された素電池のリチウム流出状況および
、電圧立ち上がり特性の評価を行った。
The lithium outflow situation and voltage rise characteristics of the unit cell configured as described above were evaluated.

1oペーノ 表1は従来の負極(リチウムと金属粉末成型体との重量
比を85+15としたもの)と本実施例を比較したもの
で、本実施例ではLi重量比が70%のリチウムボロン
合金を用い、金属粉末成型体とリチウムボロン合金との
重量比を60 + 40としたもの(Aと表示)と、4
0 : 60にしたもの(Bと表示)と、95:6にし
たもの(Cと表示)について放電電流密度soomA/
mの放電を行い電圧立ち上がり時間と放電寿命およびリ
チウム流出状況を示すものである。放電試験は各10回
ずつ行った。
Table 1 compares this example with a conventional negative electrode (with a weight ratio of lithium and metal powder compact of 85+15). In this example, a lithium boron alloy with a Li weight ratio of 70% was used. one with a weight ratio of metal powder molded body and lithium boron alloy of 60 + 40 (indicated by A), and 4.
The discharge current density soomA/ for the one with a ratio of 0:60 (indicated as B) and the one with an ratio of 95:6 (indicated as C)
This figure shows the voltage rise time, discharge life, and lithium outflow situation after a discharge of m. The discharge test was performed 10 times each.

表1 11 ぺ−/゛ 表より明らかなように、金属粉末成型体とリチウムボロ
ン合金との重量比を本発明の範囲外にした例B、0では
、40:60とリチウムボロン合金の多い例Bでは流出
が発生し使用できないし、96:5とリチウムボロン合
金の少ない例Cでは流出はないものの同重量では他の例
に比べ容量が少なくなりすぎ、実用的でないことも明白
である。
Table 1 11 As is clear from the table, Examples B and 0, in which the weight ratio of the metal powder molded body and the lithium boron alloy was outside the range of the present invention, were 40:60, an example in which the lithium boron alloy was large. In case B, leakage occurs and it cannot be used, and in example C, which has a ratio of 96:5 and a small amount of lithium boron alloy, although there is no outflow, the capacity is too small compared to other examples at the same weight, and it is obvious that it is not practical.

発明の効果 このように本発明による負極は、 (1)  リチウムボロン合金自身がある程度リチウム
保持能力を有しているため、従来例に比べ溶融流出した
リチウムを保持する金属粉末成型体の童を減らすことが
可能で、負極の熱容量を減らすことができ、電圧立ち上
がり時間を速くすることを実現できる。
Effects of the Invention As described above, the negative electrode according to the present invention has the following advantages: (1) Since the lithium boron alloy itself has a certain degree of lithium retention ability, it reduces the number of particles of the metal powder molded body that retains melted and leaked lithium compared to the conventional example. This makes it possible to reduce the heat capacity of the negative electrode and speed up the voltage rise time.

(2)) 金属粉末成型体の量を減らすことが可能なた
めに負極の重量が減るばかりか、加熱剤量も減らすこと
ができ電池の重量を減少できる。
(2)) Since it is possible to reduce the amount of metal powder molding, not only the weight of the negative electrode is reduced, but also the amount of heating agent can be reduced, resulting in a reduction in the weight of the battery.

などの効果が得られる。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における負極の縦断面図、第2
図はその負極を用いた素電池の縦断面図である。 1 ・・・・リチウムボロン合金、2・・・・・金属粉
末成型体、3・・・・・・金属製カップ、4・・曲電解
質層、6・・・・・・正極合剤層。
FIG. 1 is a vertical cross-sectional view of a negative electrode in an embodiment of the present invention, and FIG.
The figure is a longitudinal cross-sectional view of a unit cell using the negative electrode. 1... Lithium boron alloy, 2... Metal powder molded body, 3... Metal cup, 4... Bent electrolyte layer, 6... Positive electrode mixture layer.

Claims (6)

【特許請求の範囲】[Claims] (1)負極活物質であるリチウムボロン合金が金属製カ
ップの内面に配設され、かつ金属粉末成型体と金属製カ
ップにて包囲された負極構造を有する熱電池。
(1) A thermal battery having a negative electrode structure in which a lithium boron alloy, which is a negative electrode active material, is disposed on the inner surface of a metal cup and is surrounded by a metal powder molded body and a metal cup.
(2)金属粉末がリチウムと合金化しにくい金属である
特許請求の範囲第1項記載の熱電池。
(2) The thermal battery according to claim 1, wherein the metal powder is a metal that is difficult to alloy with lithium.
(3)金属粉末成型体中に電解質成分を含有させた特許
請求の範囲第1項記載の熱電池。
(3) The thermal battery according to claim 1, wherein the metal powder molded body contains an electrolyte component.
(4)金属粉末が鉄、ニッケル、ステンレス鋼およびニ
クロムの群から選ばれた少なくとも一種か、またはそれ
らの合金である特許請求の範囲第1項記載の熱電池。
(4) The thermal battery according to claim 1, wherein the metal powder is at least one selected from the group of iron, nickel, stainless steel, and nichrome, or an alloy thereof.
(5)リチウムボロン合金無いのリチウム重量比が66
〜90%に制限された特許請求の範囲第1項記載の熱電
池。
(5) Lithium weight ratio without lithium boron alloy is 66
Thermal cell according to claim 1, limited to ~90%.
(6)金属粉末成型体とリチウムボロン合金との重量比
が50:50〜90:10に制限された特許請求の範囲
第1項記載の熱電池。
(6) The thermal battery according to claim 1, wherein the weight ratio of the metal powder molded body and the lithium boron alloy is limited to 50:50 to 90:10.
JP27820485A 1985-12-11 1985-12-11 Thermal battery Pending JPS62139268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27820485A JPS62139268A (en) 1985-12-11 1985-12-11 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27820485A JPS62139268A (en) 1985-12-11 1985-12-11 Thermal battery

Publications (1)

Publication Number Publication Date
JPS62139268A true JPS62139268A (en) 1987-06-22

Family

ID=17594044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27820485A Pending JPS62139268A (en) 1985-12-11 1985-12-11 Thermal battery

Country Status (1)

Country Link
JP (1) JPS62139268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784764A (en) * 2016-12-10 2017-05-31 浙江大学 Lithium-oxygen battery with nitrogenous carbon-supported nanometer boron lithium alloy as anode material
CN109817882A (en) * 2018-12-27 2019-05-28 中国电子科技集团公司第十八研究所 Thermal battery lithium boron alloy negative electrode assembly and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784764A (en) * 2016-12-10 2017-05-31 浙江大学 Lithium-oxygen battery with nitrogenous carbon-supported nanometer boron lithium alloy as anode material
CN106784764B (en) * 2016-12-10 2019-04-02 浙江大学 Using nitrogenous carbon-supported nanometer boron lithium alloy as the lithium-oxygen battery of anode material
CN109817882A (en) * 2018-12-27 2019-05-28 中国电子科技集团公司第十八研究所 Thermal battery lithium boron alloy negative electrode assembly and preparation method thereof
CN109817882B (en) * 2018-12-27 2022-03-04 中国电子科技集团公司第十八研究所 Thermal battery lithium boron alloy negative electrode assembly and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS5821783B2 (en) 2 Jiden Kikagakudenchi
CA1077562A (en) Electrode structure for electrical energy storage device
US3891460A (en) Thermal battery and molten metal anode therefore
US4368167A (en) Method of making an electrode
JPS62139268A (en) Thermal battery
JPH0261962A (en) Lithium type heat battery
JPS62139267A (en) Thermal battery
JPS61230262A (en) Thermal battery
JPS61230263A (en) Thermal battery
JPS61168866A (en) Hydrogen occlusion electrode
RU2154326C2 (en) Active material of chemical current source plate
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPS6355857A (en) Enclosed type alkaline storage battery
JPS63195960A (en) Sealed alkaline storage battery
JPH0261963A (en) Lithium type heat battery
JPS6222370A (en) Nickel-hydrogen alkaline storage battery
JPS6077357A (en) Electrode which can absorb hydrogen
JPS6119068A (en) Alkaline zinc battery
JPS59169081A (en) High temperature type battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH02170358A (en) Manufacture of electrolyte layer for heat battery
JPH0773047B2 (en) Negative electrode for sealed alkaline storage battery
JPS5822868B2 (en) nickel zinc alkaline storage battery
JPS58189966A (en) Alkaline battery
JPS6247961A (en) Alkaline battery