JPH0261963A - Lithium type heat battery - Google Patents

Lithium type heat battery

Info

Publication number
JPH0261963A
JPH0261963A JP21281388A JP21281388A JPH0261963A JP H0261963 A JPH0261963 A JP H0261963A JP 21281388 A JP21281388 A JP 21281388A JP 21281388 A JP21281388 A JP 21281388A JP H0261963 A JPH0261963 A JP H0261963A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
battery
chloride
heat battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21281388A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP21281388A priority Critical patent/JPH0261963A/en
Publication of JPH0261963A publication Critical patent/JPH0261963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To enhance the discharge characteristic of a lithium type heat battery using an electrolytic liquid layer, wherein the electrolyte of a mixture of kalium chloride and lithium chloride is mixed with magnesium oxide, by selecting the electrolyte content of the mentioned electrolytic liquid layer so as to lie within a specified range. CONSTITUTION:A positive electrode plate is formed from iron disulfide while an electrolyte is formed by mixing magnesium oxide with a mixture of kalium chloride and lithium chloride, and a negative electrode consists of lithium- aluminum alloy. Such cells thus constituted are laminated and accommodated in a case to accomplish a lithium type heat battery. Therein the electrolyte content of the electrolytic liquid layer shall range between 60 and 80wt.% which will improve the discharge characteristic remarkably and enhance the energy density of heat battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム系熱電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a lithium-based thermal battery.

従来の技術 リチウム系熱電池は、負極活物として金属リチウム又は
リチウム合金を用い、電解液として塩化カリウムと塩化
リチウムとの混合物を用い、正極活物質として二硫化鉄
又は硫化鉄を用いた溶融塩型の高温−次電池である。電
解液は、HgO粉末と混合され電解液層を構成し、極間
に固定保持されている。従来の熱電池は電解液層に含ま
れる電解液の含有率が後述の理由により60wt%程度
であった。
Conventional technology Lithium-based thermal batteries use metallic lithium or lithium alloy as the negative electrode active material, a mixture of potassium chloride and lithium chloride as the electrolyte, and a molten salt using iron disulfide or iron sulfide as the positive electrode active material. It is a type of high-temperature secondary battery. The electrolytic solution is mixed with HgO powder to form an electrolytic solution layer, and is fixedly held between the electrodes. In conventional thermal batteries, the content of the electrolytic solution contained in the electrolytic solution layer was about 60 wt% for reasons described later.

発明が解決しようとする課題 リチウム系熱電池は、電解液をhgo粉末と混合して極
間に固定保持しているため、電解液に1極を浸漬したよ
うな他の電池に比べ活物質当りの電解液量がきわめて少
ない。一般に電解液量を少なくすると、電池の放電電圧
や活物質利用率が低下し、電池特性が低下する。このな
め電解液量は多いほどよい。
Problems to be Solved by the Invention In lithium-based thermal batteries, the electrolyte is mixed with HGO powder and fixedly held between the electrodes, so the amount of active material used in lithium thermal batteries is lower than that of other batteries in which one electrode is immersed in the electrolyte. The amount of electrolyte is extremely small. Generally, when the amount of electrolyte is reduced, the discharge voltage and active material utilization rate of the battery decrease, and the battery characteristics deteriorate. The larger the amount of this lick electrolyte, the better.

しかし熱電池の場合、単セルを数十枚積層して完備電池
を構成しているため、電解液を増加し過ぎて電解液層が
軟弱になり過ぎると、単セルの正極板と負極板とが接触
したり、電解液が極間からあふれて積層セルの共通電解
液になる等の問題があった。
However, in the case of thermal batteries, dozens of single cells are stacked together to form a complete battery, so if the electrolyte layer becomes too soft due to too much electrolyte, the positive and negative electrode plates of the single cell may There were problems such as the electrolyte overflowing from between the electrodes and becoming the common electrolyte for the laminated cells.

そこで従来は、電解液量を電池特性に悪影響の無い範囲
で、できるだけ少なくするものとし、電解液層中におい
て電解液が60wtχ、 HgQが4(1wt%という
組成を用いてきた。従来この組、成で実用上問題がなか
ったため、電解液の量を増減させる検討は詳しく行われ
ていなかった。
Therefore, in the past, the amount of electrolyte was reduced as much as possible without adversely affecting the battery characteristics, and a composition of 60 wt χ of electrolyte and 4 (1 wt %) of HgQ in the electrolyte layer was used. Since there were no practical problems with the electrolyte, no detailed studies were conducted on increasing or decreasing the amount of electrolyte.

発明者は熱電池の放電電流密度をさらに増加して電池エ
ネルギー密度を増加させる研究を行った結果、従来の電
解液層の組成では超高率放電で電池特性が著しく低下す
ることを見い出した。すなわち従来の組成は、従来の熱
電池の一蝦的な放電電流密度である0、3 A/−程度
では問題を生じないが、I A/aa以上の超高率放電
を行うと電解液不足の症状を呈し、電池電圧および活物
質利用率が急激(こ低下することがわかった。
The inventor conducted research on increasing the battery energy density by further increasing the discharge current density of thermal batteries, and as a result found that with the conventional electrolyte layer composition, the battery characteristics deteriorate significantly at ultra-high rate discharge. In other words, the conventional composition does not cause a problem at a discharge current density of about 0.3 A/-, which is the typical discharge current density of a conventional thermal battery, but when ultra-high rate discharge of I A/aa or more is carried out, the electrolyte becomes insufficient. It was found that the battery voltage and active material utilization rate suddenly decreased.

課題を解決するための手段 本発明は、塩化カリウムと塩化リチウムとの混合物から
なる電解液に酸化マグネシウムを混合してなる電解液層
を用いたリチウム系熱電池であって、外電解法層中の電
解液の含有率が60wt%を越えており80wt%未満
であることを特徴とする。
Means for Solving the Problems The present invention is a lithium-based thermal battery using an electrolyte layer made of an electrolyte made of a mixture of potassium chloride and lithium chloride mixed with magnesium oxide. It is characterized in that the content of the electrolyte is more than 60 wt% and less than 80 wt%.

作用 電解液層の電解液含有率を増加させ、電池特性を向上さ
せる検討を以下の単セル試験により行った。単セル試験
とは、正極板と負極板が各1枚づつからなる単セルを所
定温度に加熱した銅ブロックに挾んでアルゴン雰囲気中
で放電し、電解液量が電池特性におよぼす影響と電解液
層の強度について検討する試験である。
The following single cell test was conducted to investigate how to increase the electrolyte content of the working electrolyte layer and improve battery characteristics. A single cell test is a single cell consisting of one positive electrode plate and one negative electrode plate, sandwiched between copper blocks heated to a predetermined temperature, and discharged in an argon atmosphere to determine the effect of the amount of electrolyte on battery characteristics and the electrolyte. This test examines the strength of the layer.

この結果を第1図に示す。同図から明らかなように電解
液の含有率が増加するほど電池の放電電圧が向上し、活
物質利用率も向上した。ただし電解液の含有率を80w
t%以上にすると電解液層がきわめて軟弱になるため、
完備電池では前述のような問題が生じるおそれがある。
The results are shown in FIG. As is clear from the figure, as the content of the electrolyte solution increased, the discharge voltage of the battery improved and the active material utilization rate also improved. However, the electrolyte content is 80w.
If it exceeds t%, the electrolyte layer becomes extremely weak.
A complete battery may cause the above-mentioned problems.

超高率放電において電解液層中の電解液を増加させると
電池特性が向上する原因は、以下のように考えられる。
The reason why battery characteristics improve when the amount of electrolyte in the electrolyte layer is increased in ultra-high rate discharge is considered to be as follows.

従来の熱電池は、放電とともに内部抵抗が著しく増大す
るが、これは電極内部に溶融限界を越えた放電生成物や
電解液成分が固層析出するためである。このとき電解液
量を増加させると、溶解量が増加するため前記物質の析
出が遅れ電極の内部抵抗の増加が少なくなり、放電特性
が向上するものと考えられる。
In conventional thermal batteries, the internal resistance increases significantly as the battery discharges, and this is due to solid phase precipitation of discharge products and electrolyte components that exceed the melting limit inside the electrodes. It is believed that when the amount of electrolyte is increased at this time, the amount of dissolved material increases, thereby delaying the precipitation of the substance and reducing the increase in internal resistance of the electrode, thereby improving the discharge characteristics.

実施例 以下好適な実施例を用いて発明を説明する。Example The invention will be explained below using preferred embodiments.

正極板として二硫化鉄を用い、電解液として塩化カリウ
ムと塩化リチウムとの混合物を用い、負極板としてリチ
ウムアルミニウム合金を用いた単セルを発熱剤を介して
20セル積層して電池ケースに収納してなるリチウム系
熱電池において、電解液層の電解液含有率を7owt%
とじた本発明の熱電池Aを製作した。次に熱電池Aと基
本的に同一の構成を有し、電解液の含有率が60wt%
及び80WtXの熱電池を製作した。これらを比較のた
めの熱電池B及びCとする。
Iron disulfide was used as the positive electrode plate, a mixture of potassium chloride and lithium chloride was used as the electrolyte, and lithium aluminum alloy was used as the negative electrode plate. Twenty single cells were stacked together via a heat generating agent and housed in a battery case. In the lithium-based thermal battery, the electrolyte content of the electrolyte layer is set to 7wt%.
A closed thermal battery A of the present invention was manufactured. Next, it has basically the same configuration as thermal battery A, and the electrolyte content is 60 wt%.
And a thermal battery of 80WtX was manufactured. These will be referred to as thermal batteries B and C for comparison.

これらの熱電池を一40℃でIA/−の放電電流密度で
放電した。その結果を第2図に示す、同図より本発明の
熱電池Aは、比較のための熱電池B。
These thermal cells were discharged at -40°C with a discharge current density of IA/-. The results are shown in FIG. 2, which shows that thermal battery A of the present invention is thermal battery B for comparison.

Cに比し放電電圧が高く、容量が多い等優れた特性を有
していることがわかる。熱電池Bは、電解液量が少なす
ぎるため、放電生成物の析出によって内部抵抗が著しく
増加し、電池電圧及び活物質利用率が低下したものであ
る。また熱電池Cは、電解液量が多すぎて電解液層から
電解液があふれだし共通電解液となったために電池内に
短絡電流が流れ電池電圧が急激に低下したものである。
It can be seen that it has superior characteristics such as higher discharge voltage and larger capacity than C. In thermal battery B, since the amount of electrolyte was too small, the internal resistance increased significantly due to the precipitation of discharge products, and the battery voltage and active material utilization rate decreased. In thermal battery C, the amount of electrolyte was too large and the electrolyte overflowed from the electrolyte layer and became a common electrolyte, causing a short-circuit current to flow within the battery and causing a sudden drop in battery voltage.

発明の効果 以上述べたように、本発明によりリチウム系熱電池の超
高率放電性能を著しく改良することができ、これによっ
て熱電池のエネルギー密度を向上させることが可能とな
る。
Effects of the Invention As described above, the present invention can significantly improve the ultra-high rate discharge performance of a lithium-based thermal battery, thereby making it possible to improve the energy density of the thermal battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解液層の電解液含有率が単セル特性に及ぼす
影響を示した図、第2図は本発明による熱電池および比
較のための熱電池の放電特性を示した図である。 α/1 Voltage / v 坪 Σ 時 聞 / 杖
FIG. 1 is a diagram showing the influence of the electrolyte content of the electrolyte layer on single cell characteristics, and FIG. 2 is a diagram showing the discharge characteristics of a thermal battery according to the present invention and a thermal battery for comparison. α/1 Voltage / v Tsubo Σ Time / Cane

Claims (1)

【特許請求の範囲】[Claims] 1、塩化カリウムと塩化リチウムとの混合物からなる電
解液に酸化マグネシウムを混合してなる電解液層を用い
たリチウム系熱電池であって、該電解液層における電解
液の含有率が60wt%を越えており80wt%未満で
あることを特徴とするリチウム系熱電池。
1. A lithium-based thermal battery using an electrolyte layer formed by mixing magnesium oxide with an electrolyte consisting of a mixture of potassium chloride and lithium chloride, wherein the content of the electrolyte in the electrolyte layer is 60 wt% or less. A lithium-based thermal battery characterized in that the content of the lithium-based thermal battery exceeds 80 wt%.
JP21281388A 1988-08-26 1988-08-26 Lithium type heat battery Pending JPH0261963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21281388A JPH0261963A (en) 1988-08-26 1988-08-26 Lithium type heat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21281388A JPH0261963A (en) 1988-08-26 1988-08-26 Lithium type heat battery

Publications (1)

Publication Number Publication Date
JPH0261963A true JPH0261963A (en) 1990-03-01

Family

ID=16628787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21281388A Pending JPH0261963A (en) 1988-08-26 1988-08-26 Lithium type heat battery

Country Status (1)

Country Link
JP (1) JPH0261963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069011A1 (en) * 2004-12-22 2006-06-29 Eveready Battery Company, Inc. High discharge capacity lithium battery
JP2008525966A (en) * 2004-12-22 2008-07-17 エバレデイ バツテリ カンパニー インコーポレーテツド High discharge capacity lithium battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124274B2 (en) 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
WO2006069011A1 (en) * 2004-12-22 2006-06-29 Eveready Battery Company, Inc. High discharge capacity lithium battery
JP2008525966A (en) * 2004-12-22 2008-07-17 エバレデイ バツテリ カンパニー インコーポレーテツド High discharge capacity lithium battery
KR101135738B1 (en) * 2004-12-22 2012-04-24 에버레디 배터리 컴파니, 인크. High discharge capacity lithium battery
JP2012151123A (en) * 2004-12-22 2012-08-09 Eveready Battery Co Inc High discharge capacity lithium battery

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
JPH0261962A (en) Lithium type heat battery
JPS61208750A (en) Lithium organic secondary battery
US6265109B1 (en) Magnesium alloy battery
JP2000123834A (en) Nonaqueous electrolyte secondary battery
JPH0261963A (en) Lithium type heat battery
JPS6191865A (en) Nonaqueous electrolyte secondary battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JPS62165880A (en) Solid-electrolyte secondary cell
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPH01200565A (en) Lithium thermo cell
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JP3443655B2 (en) Lithium secondary battery
JPH0568070B2 (en)
JPS634554A (en) Organic electrolyte secondary battery
JPH06203844A (en) Thermo battery
JPS6174258A (en) Lithium organic secondary battery
JPS5820106B2 (en) Yuuki Denkai Shitsudenchi
JPH0212771A (en) Lithium thermobattery
JPS61107661A (en) Nonaqueous electrolyte battery
JPH0665032B2 (en) Zinc alkaline battery
JPH07101612B2 (en) Thermal battery
JPS599864A (en) Solid electrolyte battery
JPS6155867A (en) Nonaqueous cell