JPH0261962A - Lithium type heat battery - Google Patents

Lithium type heat battery

Info

Publication number
JPH0261962A
JPH0261962A JP21281288A JP21281288A JPH0261962A JP H0261962 A JPH0261962 A JP H0261962A JP 21281288 A JP21281288 A JP 21281288A JP 21281288 A JP21281288 A JP 21281288A JP H0261962 A JPH0261962 A JP H0261962A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
battery
heat battery
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21281288A
Other languages
Japanese (ja)
Other versions
JP2643344B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP21281288A priority Critical patent/JP2643344B2/en
Publication of JPH0261962A publication Critical patent/JPH0261962A/en
Application granted granted Critical
Publication of JP2643344B2 publication Critical patent/JP2643344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To enhance the discharge characteristic of a lithium type heat battery using an electrolytic liquid layer, wherein the electrolyte of a mixture of lithium fluoride, lithium chloride, and lithium bromide is mixed with magnesium oxide, by selecting the electrolyte content of the mentioned electrolytic liquid layer so as to lie within a specified range. CONSTITUTION:A positive electrode plate is formed from iron disulfide while an electrolyte is formed by mixing magnesium oxide with a mixture of lithium fluoride, lithium chloride, and lithium bromide, and a negative electrode consists of lithium-aluminum alloy. Such cells thus constituted are laminated and accommodated in a case to accomplish a lithium type heat battery. Therein the electrolyte content of the electrolytic liquid layer shall range between 60 and 85wt.%, which will improve the discharge characteristic remarkably and enhance the energy density of heat battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム系熱電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a lithium-based thermal battery.

従来の技術 リチウム系熱電池は、負極活物として金属リチウム又は
リチウム合金を用い、正極活物質として二硫化鉄又は硫
化鉄を用いた溶融塩型の高温−次電池である。電解液は
、HgO粉末と混合され極間に電解液層を構成している
。従来の熱電池は電解液として塩化カリウムと塩化リチ
ウムとの混合物を用い、電解液層に含まれる電解液の含
有率が後述の理由により80wt%程度であった。
A conventional lithium-based thermal battery is a molten salt type high-temperature secondary battery that uses metallic lithium or a lithium alloy as a negative electrode active material and iron disulfide or iron sulfide as a positive electrode active material. The electrolyte is mixed with HgO powder to form an electrolyte layer between the electrodes. Conventional thermal batteries use a mixture of potassium chloride and lithium chloride as an electrolyte, and the content of the electrolyte in the electrolyte layer is about 80 wt % for reasons described below.

発明が解決しようとする課題 リチウム系fi′@池は、電解液をKgQ粉末と混合し
て極間に固定保持しているため、電解液に電極を浸漬し
たような他の電池に比べ活物質当りの電解液量がきわめ
て少ない、一般に電解液量を少なくすると、電池の放電
電圧や活物質利用率が低下し、電池特性が低下する。こ
のため電解液量は多いほどよい。
Problems to be Solved by the Invention In lithium-based fi'@ cells, the electrolyte is mixed with KgQ powder and held fixed between the electrodes, so compared to other batteries in which the electrodes are immersed in the electrolyte, the active material is The amount of electrolyte per unit is extremely small. Generally, when the amount of electrolyte is reduced, the discharge voltage and active material utilization rate of the battery decrease, and the battery characteristics deteriorate. Therefore, the larger the amount of electrolyte, the better.

しかし熱電池の場合、単セルを数十枚積層して完備電池
を構成しているため、電解液を増加し過ぎて電解液層が
軟弱になり過ぎると、単セルの正極板と負極板とが接触
したり、電解液が極間からあふれて積層セルの共通電解
液になる等の問題があった。
However, in the case of thermal batteries, dozens of single cells are stacked together to form a complete battery, so if the electrolyte layer becomes too soft due to too much electrolyte, the positive and negative electrode plates of the single cell may There were problems such as the electrolyte overflowing from between the electrodes and becoming the common electrolyte for the laminated cells.

そこで従来は、電解液量を電池特性に悪影響の無い範囲
で、できるだけ少なくするものとし、電解液層において
電解液がElOwt%、 )4gOが40wt%という
組成を用いてきた。従来この組成で実用上関題がなかっ
たため、電解液の量を増減させる検討は詳しく行われて
いなかった。
Therefore, in the past, the amount of electrolytic solution was kept as small as possible without adversely affecting the battery characteristics, and a composition was used in which the electrolytic solution was composed of ElOwt% and )4gO was 40wt%. Conventionally, there were no practical problems with this composition, so no detailed studies were conducted on increasing or decreasing the amount of electrolyte.

発明者は熱電池の放を電流密度をさらに増加して電池エ
ネルギー密度を増加させる研究を行った結果、従来の電
解液層の組成では超高率放電で電池特性が著しく低下す
ることを見い出した。すなわち従来の組成は、従来の熱
電池の一般的な放電電流密度である0、3 A/−程度
では問題を生じないが、I A/−以上の超高率放電を
行うと電解液不足の症状を呈し、電池電圧および活物質
利用率が急激に低下することがわかった。
The inventor conducted research on increasing the battery energy density by further increasing the current density of the thermal battery discharge, and found that with the conventional electrolyte layer composition, the battery characteristics deteriorate significantly at ultra-high rate discharge. . In other words, the conventional composition does not cause a problem at a discharge current density of about 0.3 A/-, which is the general discharge current density of conventional thermal batteries, but when ultra-high rate discharge of I A/- or more is carried out, there is a problem of electrolyte shortage. It was found that symptoms occurred and the battery voltage and active material utilization rate decreased rapidly.

課題を解決するための手段 本発明は、弗化リチウムと塩化リチウムと臭化リチウム
との混合物からなる電解液に酸化マグネシウムを混合し
てなる電解液層を用いたリチウム系熱電池であって、外
電解液層中の電解液の含有率が60wt%を越えており
85wt%未溝であることを特徴とする。
Means for Solving the Problems The present invention is a lithium-based thermal battery using an electrolyte layer made of an electrolyte made of a mixture of lithium fluoride, lithium chloride, and lithium bromide mixed with magnesium oxide, comprising: It is characterized in that the content of the electrolyte in the outer electrolyte layer exceeds 60 wt % and 85 wt % is ungrooved.

作用 電解液層の電解液含有率を増加させ、電池特性を向上さ
せる検討を以下の単セル試験により行った。単セル試験
とは、正極板と負極板が各1枚づつからなる単セルを所
定温度に加熱した銅ブロックに挾んでアルゴン雰囲気中
で放電し、電解液量が電池特性におよぼす影響と電解液
層の強度について検討する試験である。このとき電解液
組成は、従来の塩化カリウムと塩化リチウムとの混合物
に代えて、弗化リチウムと塩化リチウムと臭化リチウム
との混合物を用いるものとしな。
The following single cell test was conducted to investigate how to increase the electrolyte content of the working electrolyte layer and improve battery characteristics. A single cell test is a single cell consisting of one positive electrode plate and one negative electrode plate, sandwiched between copper blocks heated to a predetermined temperature, and discharged in an argon atmosphere to determine the effect of the amount of electrolyte on battery characteristics and the electrolyte. This test examines the strength of the layer. At this time, the electrolyte composition is a mixture of lithium fluoride, lithium chloride, and lithium bromide instead of the conventional mixture of potassium chloride and lithium chloride.

この結果を第1図に示す、同図から明らかなように電解
液の含有率が増加するほど電池の放電電圧が向上し、活
物質利用率も向上した。ただし電解液の含有率を85w
t%以上にすると電解液層がきわめて軟弱になるため、
完備電池では前述のような問題が生じるおそれがある。
The results are shown in FIG. 1. As is clear from the figure, as the electrolyte content increased, the discharge voltage of the battery improved and the active material utilization rate also improved. However, the electrolyte content is 85w.
If it exceeds t%, the electrolyte layer becomes extremely weak.
A complete battery may cause the above-mentioned problems.

超高率放電において電解液層中の電解液を増加させると
電池特性が向上する原因は、以下のように考えられる。
The reason why battery characteristics improve when the amount of electrolyte in the electrolyte layer is increased in ultra-high rate discharge is considered to be as follows.

従来の熱電池は、放電とともに内部抵抗が著しく増大す
るが、これは電極内部に溶融限界を越えた放電生成物や
電解液成分が固層析出するためである。このとき電解液
量を増加させると、溶解量が増加するため前記物質の析
出が遅れ電極の内部抵抗の増加が少なくなる。さらに弗
化リチウムと塩化リチウムと臭化リチウムとの混合物と
いう新しい電解液では、従来の電解液と異なり電解液成
分の極板中での固層析出現象が生じないため電解液量を
増加すると放電特性が向上するのは、放電生成物の析出
が遅れるためであると考えられる。
In conventional thermal batteries, the internal resistance increases significantly as the battery discharges, and this is due to solid phase precipitation of discharge products and electrolyte components that exceed the melting limit inside the electrodes. When the amount of electrolyte is increased at this time, the amount of dissolved material increases, which delays the precipitation of the substance and reduces the increase in internal resistance of the electrode. Furthermore, with a new electrolyte that is a mixture of lithium fluoride, lithium chloride, and lithium bromide, unlike conventional electrolytes, solid phase precipitation of electrolyte components does not occur in the electrode plates, so when the amount of electrolyte is increased, It is thought that the reason why the discharge characteristics are improved is that the precipitation of discharge products is delayed.

実施例 以下好適な実施例を用いて発明を説明する。Example The invention will be explained below using preferred embodiments.

正極板として二硫化鉄を用い、電解液として弗化リチウ
ムと塩化リチウムと臭化リチウムとの混合物を用い、負
極板としてリチウムアルミニウム合金を用いた単セルを
発熱剤を介して20セル積層して電池ケースに収納して
なるリチウム系熱電池において、電解液層の電解液含有
率を、75wt%とじた本発明の熱電池Aを製作した0
次にat電池と基本的に同一の構成を有し、電解液の含
有率が60wt%及びaswt%の熱電池を製作した。
Iron disulfide was used as the positive electrode plate, a mixture of lithium fluoride, lithium chloride, and lithium bromide was used as the electrolyte, and 20 single cells were stacked with a heat generating agent in between, using a lithium aluminum alloy as the negative electrode plate. In a lithium-based thermal battery housed in a battery case, a thermal battery A of the present invention was manufactured in which the electrolyte content of the electrolyte layer was reduced to 75 wt%.
Next, a thermal battery having basically the same configuration as the AT battery and containing an electrolyte of 60 wt% and aswt% was fabricated.

これらを比較のための熱電池B及びCとする。These are referred to as thermal batteries B and C for comparison.

これらの電池を一40℃で1^/−の放電電流密度で放
電した。その結果を第2図に示す、同図より本発明の熱
電池Aは、比較のための熱電池B、Cに比し放電電圧が
高く、容量が多い等優れた特性を有していることがわか
る。熱電池Bは、電解液量が少なすぎるため、放電生成
物の析出によって内部抵抗が著しく増加し、電池電圧及
び活物質利用率が低下したものである。また熱電池Cは
、電解液量が多すぎて電解液層から電解液があふれだし
共通電解液となったために電池内に短絡電流が流れ電池
電圧が急激に低下したものである。
These cells were discharged at -40°C with a discharge current density of 1^/-. The results are shown in Figure 2, which shows that thermal battery A of the present invention has superior characteristics such as higher discharge voltage and larger capacity than thermal batteries B and C for comparison. I understand. In thermal battery B, since the amount of electrolyte was too small, the internal resistance increased significantly due to the precipitation of discharge products, and the battery voltage and active material utilization rate decreased. In thermal battery C, the amount of electrolyte was too large and the electrolyte overflowed from the electrolyte layer and became a common electrolyte, causing a short-circuit current to flow within the battery and causing a sudden drop in battery voltage.

発明の効果 以上述べたように、本発明によりリチウム系熱電池の超
高率放電性能を著しく改良することができ、これによっ
て熱電池のエネルギー密度を向上させることが可能とな
る。
Effects of the Invention As described above, the present invention can significantly improve the ultra-high rate discharge performance of a lithium-based thermal battery, thereby making it possible to improve the energy density of the thermal battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解液層の電解液含有率が単セル特性に及ぼす
影響を示した図、第2図は本発明による熱電池及び比較
のための熱電池の放電特性を示した図である。 cell Valtant / 7
FIG. 1 is a diagram showing the influence of the electrolyte content of the electrolyte layer on single cell characteristics, and FIG. 2 is a diagram showing the discharge characteristics of a thermal battery according to the present invention and a thermal battery for comparison. cell valtant / 7

Claims (1)

【特許請求の範囲】[Claims] 1、弗化リチウムと塩化リチウムと臭化リチウムとの混
合物からなる電解液に酸化マグネシウムを混合してなる
電解液層を用いたリチウム系熱電池であって、該電解液
層における電解液の含有率が60wt%を越えており8
5wt%未満であることを特徴とするリチウム系熱電池
1. A lithium-based thermal battery using an electrolyte layer formed by mixing magnesium oxide with an electrolyte consisting of a mixture of lithium fluoride, lithium chloride, and lithium bromide, the content of the electrolyte in the electrolyte layer The percentage exceeds 60wt%8
A lithium-based thermal battery characterized in that the content is less than 5 wt%.
JP21281288A 1988-08-26 1988-08-26 Lithium-based thermal battery Expired - Lifetime JP2643344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21281288A JP2643344B2 (en) 1988-08-26 1988-08-26 Lithium-based thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21281288A JP2643344B2 (en) 1988-08-26 1988-08-26 Lithium-based thermal battery

Publications (2)

Publication Number Publication Date
JPH0261962A true JPH0261962A (en) 1990-03-01
JP2643344B2 JP2643344B2 (en) 1997-08-20

Family

ID=16628773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21281288A Expired - Lifetime JP2643344B2 (en) 1988-08-26 1988-08-26 Lithium-based thermal battery

Country Status (1)

Country Link
JP (1) JP2643344B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009933A (en) * 2007-05-25 2009-01-15 Panasonic Corp Molten salt and thermal battery
JP2010015890A (en) * 2008-07-04 2010-01-21 Panasonic Corp Molten salt and thermal battery
WO2010117954A1 (en) * 2009-04-06 2010-10-14 Eaglepicher Technologies, Llc Thermal battery electrolyte compositions, electrode-electrolyte composites, and batteries including the same
US8221912B2 (en) 2007-05-25 2012-07-17 Panasonic Corporation Molten salt and thermal battery
US8440342B2 (en) 2009-04-06 2013-05-14 Eaglepicher Technologies, Llc Thermal battery cathode materials and batteries including same
US8623553B2 (en) 2009-03-18 2014-01-07 Eaglepicher Technologies, Llc Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein
US8652674B2 (en) 2010-06-24 2014-02-18 Eaglepicher Technologies, Llc Thermal battery cathode materials containing nickel disulfide and batteries including same
US8663825B2 (en) 2009-03-05 2014-03-04 Eaglepicher Technologies, Llc End of life indication system and method for non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
US8669007B2 (en) 2008-11-07 2014-03-11 Eaglepicher Technologies, LLC. Non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
RU2768250C1 (en) * 2021-06-30 2022-03-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Electrolyte for chemical current source

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450005B2 (en) 2007-05-25 2013-05-28 Panasonic Corporation Molten salt and thermal battery
US8697271B2 (en) 2007-05-25 2014-04-15 Panasonic Corporation Molten salt and thermal battery
US8221912B2 (en) 2007-05-25 2012-07-17 Panasonic Corporation Molten salt and thermal battery
JP2013239449A (en) * 2007-05-25 2013-11-28 Panasonic Corp Molten salt and thermal battery
JP2009009933A (en) * 2007-05-25 2009-01-15 Panasonic Corp Molten salt and thermal battery
JP2010015890A (en) * 2008-07-04 2010-01-21 Panasonic Corp Molten salt and thermal battery
US8669007B2 (en) 2008-11-07 2014-03-11 Eaglepicher Technologies, LLC. Non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
US8663825B2 (en) 2009-03-05 2014-03-04 Eaglepicher Technologies, Llc End of life indication system and method for non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
US8623553B2 (en) 2009-03-18 2014-01-07 Eaglepicher Technologies, Llc Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein
US8440342B2 (en) 2009-04-06 2013-05-14 Eaglepicher Technologies, Llc Thermal battery cathode materials and batteries including same
US8394520B2 (en) 2009-04-06 2013-03-12 Eaglepicher Technologies, Llc Thermal battery electrolyte materials, electrode-electrolyte composites, and batteries including same
WO2010117954A1 (en) * 2009-04-06 2010-10-14 Eaglepicher Technologies, Llc Thermal battery electrolyte compositions, electrode-electrolyte composites, and batteries including the same
US8652674B2 (en) 2010-06-24 2014-02-18 Eaglepicher Technologies, Llc Thermal battery cathode materials containing nickel disulfide and batteries including same
RU2768250C1 (en) * 2021-06-30 2022-03-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Electrolyte for chemical current source

Also Published As

Publication number Publication date
JP2643344B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US3898096A (en) Lithium-molten salt cell with transition metal chalcogenide positive electrode
Seefurth et al. Investigation of lithium utilization from a lithium‐silicon electrode
US3445288A (en) Aluminum anode electrical energy storage device
JPH0261962A (en) Lithium type heat battery
US6265109B1 (en) Magnesium alloy battery
JPH0261963A (en) Lithium type heat battery
JPH10302776A (en) Totally solid lithium secondary battery
JPS6191865A (en) Nonaqueous electrolyte secondary battery
JPH08321302A (en) Hydrogen storage electrode
CN117535572A (en) Gallium-based alloy and preparation method and application thereof
JP3082341B2 (en) Hydrogen storage electrode
JPH01200565A (en) Lithium thermo cell
JPH0212771A (en) Lithium thermobattery
JPH0441471B2 (en)
JPS599864A (en) Solid electrolyte battery
JPH0554894A (en) Thermal cell
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JPS63285869A (en) Alkaline battery
JPS634554A (en) Organic electrolyte secondary battery
JPS6396869A (en) Aluminum alloy for negative electrode material of lithium secondary battery
JPS6155867A (en) Nonaqueous cell
JPH0568070B2 (en)
JPS6174258A (en) Lithium organic secondary battery
JPH0520862B2 (en)
JPS62154563A (en) Solid electrolyte secondary battery