JP2000123834A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000123834A
JP2000123834A JP10288495A JP28849598A JP2000123834A JP 2000123834 A JP2000123834 A JP 2000123834A JP 10288495 A JP10288495 A JP 10288495A JP 28849598 A JP28849598 A JP 28849598A JP 2000123834 A JP2000123834 A JP 2000123834A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
less
electrolyte secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10288495A
Other languages
Japanese (ja)
Inventor
Yuichi Ito
裕一 伊藤
Taku Aoki
卓 青木
Kazuhiro Nakamitsu
和弘 中満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo GS Soft Energy Co Ltd
Original Assignee
GS Melcotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Melcotec Co Ltd filed Critical GS Melcotec Co Ltd
Priority to JP10288495A priority Critical patent/JP2000123834A/en
Publication of JP2000123834A publication Critical patent/JP2000123834A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of maintaining discharge capacity after repeted charge and discharge. SOLUTION: LiCoO2 has a laminated rock-salt structure and Mg or Ca is substituted for Li in LiCoO2, thereby increasing electron conductivity. Thus, a positive electrode active material as a solid solution expressed by Li1-xCoMgxO2 where 0<x<=0.05, or a positive electrode active material as a solid solution expressed by Li1-yCoCayO2 where 0<y<=0.002 is used for a positive electrode. As a result, a nonaqueous electrolyte secondary battery improved in a capacity retention rate and having durability against repeated charge and discharge processes can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は組成を改良した正
極活物質を用いた非水電解液二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery using a positive electrode active material having an improved composition.

【0002】[0002]

【従来の技術】従来、非水電解液二次電池としては、正
極活物質にLiCoOやLiMnを用いたもの
が実用化されており、例えば、コンピュータの移動端末
や、携帯電話等の携帯型電子機器用電源として用いられ
ている。
2. Description of the Related Art Conventionally, as a non-aqueous electrolyte secondary battery, a battery using LiCoO 2 or LiMn 2 O 4 as a positive electrode active material has been put into practical use. As a power source for portable electronic devices.

【0003】[0003]

【発明が解決しようとする課題】携帯型電子機器におい
ては、その電池容量が比較的小さく設定されているた
め、充放電回数は大きい傾向にある。しかし、上述した
従来の非水電解液二次電池においては、多数回の充放電
の繰り返しを行うと放電容量が低下してしまう傾向にあ
り、いわゆるサイクル特性が不十分であるという問題が
あった。
In a portable electronic device, the battery capacity is set to be relatively small, so that the number of times of charging and discharging tends to be large. However, in the above-mentioned conventional nonaqueous electrolyte secondary battery, there is a problem that the discharge capacity tends to decrease when the charge / discharge is repeated many times, and the so-called cycle characteristics are insufficient. .

【0004】本発明は、上記事情に鑑みてなされたもの
で、充放電を多数回繰り返しても放電容量を維持するこ
とが可能な非水電解液二次電池の提供を目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a non-aqueous electrolyte secondary battery capable of maintaining a discharge capacity even when charging and discharging are repeated many times.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、リチウムイオンを可逆的に
吸蔵或いは放出する材料又はリチウム或いはリチウム合
金からなる負極と、Li 1−xCoMgで表され
る固溶体で、0<x≦0.05である正極活物質を使用
した正極と、非水電解液とから構成したところに特徴を
有する。
Means for Solving the Problems To achieve the above object,
Therefore, the invention according to claim 1 reversibly converts lithium ions.
Absorbing or releasing material or lithium or lithium alloy
A negative electrode made of gold and Li 1-xCoMgxO2Represented by
Use positive electrode active material with 0 <x ≦ 0.05
With the positive electrode and non-aqueous electrolyte
Have.

【0006】また、前記請求項1の固溶体にあっては、
変数xの値が0.0005≦x≦0.03であるとより
良い(請求項2に係る発明)。
In the solid solution according to the first aspect,
It is more preferable that the value of the variable x is 0.0005 ≦ x ≦ 0.03 (the invention according to claim 2).

【0007】さらに、請求項3に係る発明は、リチウム
イオンを可逆的に吸蔵或いは放出する材料又はリチウム
或いはリチウム合金からなる負極と、Li1−yCoC
で表される固溶体で、0<y≦0.002であ
る正極活物質を使用した正極と、非水電解液とから構成
したところに特徴を有する。
[0007] Further, the invention according to claim 3 provides a negative electrode made of a material or a lithium or lithium alloy that reversibly stores or releases lithium ions, and a Li 1-y CoC
It is characterized by comprising a positive electrode using a positive electrode active material satisfying 0 <y ≦ 0.002 in a solid solution represented by a y O 2 and a non-aqueous electrolyte.

【0008】また、前記請求項3の固溶体にあっては変
数yの値が0<x≦0.001であるとより良い(請求
項4に係る発明)。
Further, in the solid solution according to the third aspect, it is more preferable that the value of the variable y is 0 <x ≦ 0.001 (the invention according to the fourth aspect).

【0009】さらに、請求項5に係る発明は上記請求項
1〜請求項4のいずれかに記載の非水電解液二次電池に
おいて、正極活物質の前記固溶体には、重量パーセント
濃度でFeが0.1%以下、Cuが0.1%以下、Na
が0.5%以下、Siが0.5%以下、Niが0.5%
以下となるようにしたところに特徴を有する。
Further, according to a fifth aspect of the present invention, in the non-aqueous electrolyte secondary battery according to any one of the first to fourth aspects, the solid solution of the positive electrode active material contains Fe in a weight percent concentration. 0.1% or less, Cu is 0.1% or less, Na
Is 0.5% or less, Si is 0.5% or less, Ni is 0.5%
The features are as follows.

【0010】さらに、請求項6に係る発明は上記請求項
1〜請求項4のいずれかに記載の非水電解液二次電池に
おいて、正極活物質の前記固溶体には、重量パーセント
濃度でFeが0.03%以下、Cuが0.005%以
下、Naが0.1%以下、Siが0.1%以下、Niが
0.15%以下となるようにしたところに特徴を有す
る。
Further, according to a sixth aspect of the present invention, in the non-aqueous electrolyte secondary battery according to any one of the first to fourth aspects, the solid solution of the positive electrode active material contains Fe in a weight percent concentration. It is characterized in that 0.03% or less, Cu is 0.005% or less, Na is 0.1% or less, Si is 0.1% or less, and Ni is 0.15% or less.

【0011】[0011]

【発明の作用及び効果】LiCoOは層状岩塩構造で
あり、そのうちの一部のLiがMgに置換された構造が
Li1−xCoMgで表される固溶体である。L
iをMgによって置換するとサイクル特性が改善される
理由は明確ではないが、電子伝導性が高まるためと推測
される。実験によれば、Mgの置換量が増えるに従いサ
イクル特性が向上する傾向を示す。しかし、一方で、M
gの置換量が増えるに従い初期容量が低下する。
The operation and effect of the present invention LiCoO 2 has a layered rock salt structure, and a structure in which part of Li is replaced by Mg is a solid solution represented by Li 1-x CoMg x O 2 . L
The reason why the cycle characteristics are improved by substituting i with Mg is not clear, but is presumed to be due to an increase in electron conductivity. According to the experiment, the cycle characteristics tend to be improved as the substitution amount of Mg increases. However, on the other hand, M
The initial capacity decreases as the replacement amount of g increases.

【0012】そのため、サイクル特性の向上を図る点か
らは、xは0を越えて大きな値であることが好ましく、
初期容量の確保の点からはxは小さいことが好ましく。
その適切な範囲は、実験によれば 0<x≦0.05で
あった(請求項1の発明)。
For this reason, from the viewpoint of improving the cycle characteristics, it is preferable that x is a large value exceeding 0,
From the viewpoint of securing the initial capacity, x is preferably small.
According to experiments, the appropriate range was 0 <x ≦ 0.05 (the invention of claim 1).

【0013】なお、0.005<x≦0.03とするこ
とにより、一層優れたサイクル特性が、より大きな初期
容量と共に得られる(請求項2の発明)。
By setting 0.005 <x ≦ 0.03, more excellent cycle characteristics can be obtained together with a larger initial capacity (the invention of claim 2).

【0014】また、LiCoOの一部のLiをCaに
よって置換した構造がLi1−yCoCaで表さ
れる固溶体である。LiをCaによって置換するとサイ
クル特性が改善される理由はやはり明確ではない。ま
た、Caはやはり正極活物質に対して不純物として機能
するから、Caの置換量が増えるに従い初期容量が低下
する。yの適切な範囲は、実験によれば 0<y≦0.
002であり(請求項3の発明)、より好ましい範囲は
0<y≦0.001であった(請求項4の発明)。
Further, a structure in which a part of Li of LiCoO 2 is replaced by Ca is a solid solution represented by Li 1-y CoCa y O 2 . The reason why the cycle characteristics are improved when Li is replaced by Ca is still not clear. In addition, since Ca also functions as an impurity for the positive electrode active material, the initial capacity decreases as the replacement amount of Ca increases. An appropriate range for y is experimentally 0 <y ≦ 0.
002 (invention of claim 3), and a more preferable range is 0 <y ≦ 0.001 (invention of claim 4).

【0015】なお、正極活物質の製造時に含有されてし
まう不純物の中でも特に、Fe、Cu、Na、Si、N
iについては、原料の純度を高めることにより、それぞ
れ順に、0.1%以下、0.1%以下、0.5%以下、
0.5%以下、0.5%以下とすることが適切である
(請求項5の発明)。これらの数値を越えると、初期容
量が低下するためである。特に、Feが0.03%以
下、Cuが0.005%以下、Naが0.1%以下、S
iが0.1%以下、Niが0.15%以下とすることが
最も好ましい(請求項6の発明)。
Among the impurities contained during the production of the positive electrode active material, Fe, Cu, Na, Si, N
Regarding i, by increasing the purity of the raw material, 0.1% or less, 0.1% or less, 0.5% or less,
It is appropriate that the content is 0.5% or less, and 0.5% or less (the invention of claim 5). If these values are exceeded, the initial capacity decreases. In particular, Fe is 0.03% or less, Cu is 0.005% or less, Na is 0.1% or less, S
Most preferably, i is 0.1% or less and Ni is 0.15% or less (the invention of claim 6).

【0016】[0016]

【実施例】<実施例1>本実施例に係る、非水電解液二
次電池の製作方法は、以下に記す通りである。まず、L
COとCoとMgCOとの高純度の乾燥
粉末試料をよく混合し、空気中において、はじめに脱炭
酸のために650℃で2時間予備焼成し、その後900
℃で3日間焼成を行った。そして、その後、徐冷するこ
とにより、Li1−xCoMgの固溶体が得られ
た。各実施例1−1〜1−7における固溶体の組成(x
の値)は次の表1に示す通りであり、このようにして得
られた固溶体を正極活物質として用いた。
<Example 1> A method for manufacturing a nonaqueous electrolyte secondary battery according to this example is as described below. First, L
A high-purity dry powder sample of i 2 CO 3 , Co 3 O 4 and MgCO 3 was mixed well and pre-fired in air at 650 ° C. for 2 hours first for decarboxylation and then 900 hours
Calcination was performed at ℃ for 3 days. Thereafter, by slow cooling, a solid solution of Li 1-x CoMg x O 2 was obtained. The composition of solid solution in each of Examples 1-1 to 1-7 (x
Is as shown in Table 1 below. The solid solution thus obtained was used as a positive electrode active material.

【0017】[0017]

【表1】 [Table 1]

【0018】前記正極活物質に、導電剤としてのアセチ
レンブラックと、結着剤としてのポリフッ化ビニリデン
とを溶剤のN−メチルピロリドンと共に混合してペース
ト状とし、これをアルミニウム箔の集電体に塗布した
後、熱処理して加圧・成形することにより正極板を製造
する。
The above-mentioned positive electrode active material is mixed with acetylene black as a conductive agent and polyvinylidene fluoride as a binder together with N-methylpyrrolidone as a solvent to form a paste, which is used as a current collector of aluminum foil. After the application, a heat treatment is performed, followed by pressing and molding to produce a positive electrode plate.

【0019】前記正極板を正極4としてビーカーセルを
用いて充放電サイクル試験を行った。ビーカーセルは図
1に示すように、ガラス製の容器であるビーカー1の内
部にエチレンカーボネートとジエチルカーボネートの等
量混合溶液に1mol/lのLiClOを溶解した電
解液2が注入されて、ビーカー1の開口部はポリプロピ
レン製の蓋3で覆われている。そして、ビーカー1内の
中心付近の電解液2中に正極4を配置し、所定の間隔を
空けて正極4を挟む位置にリチウム箔を用いた対極5と
リチウム参照極6とを電解液2中に配置する構成であ
る。
A charge / discharge cycle test was performed using a beaker cell with the positive electrode plate as the positive electrode 4. In the beaker cell, as shown in FIG. 1, an electrolytic solution 2 in which 1 mol / l of LiClO 4 is dissolved in a mixed solution of equal amounts of ethylene carbonate and diethyl carbonate is injected into a beaker 1 which is a glass container, The opening 1 is covered with a lid 3 made of polypropylene. Then, the positive electrode 4 is arranged in the electrolytic solution 2 near the center of the beaker 1, and the counter electrode 5 using a lithium foil and the lithium reference electrode 6 are placed in the electrolytic solution 2 at positions that sandwich the positive electrode 4 at a predetermined interval. It is the structure arranged in.

【0020】このようにして製作したビーカーセルを用
い、水分による悪影響を防止するためにアルゴン雰囲気
のドライボックス中で、充放電サイクル試験を行った。
試験は、電流密度1mA/cmの電流で、リチウム電
位に対して4.3Vまで充電した後、2mA/cm
電流密度で3.0Vまで放電するサイクルを1サイクル
として最初の初期容量と50サイクル行った後の容量と
を測定することにより行い、その結果から容量保持率を
得た。
Using the beaker cell manufactured as described above, a charge / discharge cycle test was performed in a dry box in an argon atmosphere in order to prevent adverse effects due to moisture.
The test was conducted at a current density of 1 mA / cm 2 at a current density of 4.3 V with respect to the lithium potential, and then discharged at a current density of 2 mA / cm 2 to 3.0 V as one cycle. The capacity was measured after performing 50 cycles, and the capacity retention was obtained from the results.

【0021】測定結果を図2に、容量保持率を図3に示
した。このように、本実施例に関して、xの値が大きく
なるにつれ、容量保持率が大きくなっているが、その一
方、初期容量はなだらかに低下していく。したがって、
実際に電池として用いるのに適したxの範囲は、0<x
≦0.05の範囲である。そして、0.0005≦x≦
0.03の範囲とすると、より良い容量保持率を有する
とともに、初期容量が大きいので、良好な非水電解液二
次電池を得ることが可能となる。
FIG. 2 shows the measurement results, and FIG. 3 shows the capacity retention. As described above, in the present embodiment, as the value of x increases, the capacity retention rate increases, but on the other hand, the initial capacity gradually decreases. Therefore,
The range of x suitable for actual use as a battery is 0 <x
≦ 0.05. And 0.0005 ≦ x ≦
When it is in the range of 0.03, the battery has a better capacity retention rate and a large initial capacity, so that a good non-aqueous electrolyte secondary battery can be obtained.

【0022】それに加えて、正極活物質が、Fe、C
u、Na、Si、Niの元素を含有してしまうことによ
り、非水電解液二次電池の初期容量が低下する原因とな
るので、本実施例に係る正極活物質は、重量パーセント
濃度でFeが0.1%以下、Cuが0.1%以下、Na
が0.5%以下、Siが0.5%以下、Niが0.5%
以下となるようにするのが望ましい。特に、本実施例で
は、正極活物質が重量パーセント濃度でFeが0.03
%以下、Cuが0.005%以下、Naが0.1%以
下、Siが0.1%以下、Niが0.15%以下とする
ことにより、非水電解液二次電池の初期容量を大きくす
ることが可能となった。
In addition, the positive electrode active material is Fe, C
Since the inclusion of the elements u, Na, Si, and Ni causes the initial capacity of the non-aqueous electrolyte secondary battery to decrease, the positive electrode active material according to the present example has a weight percent concentration of Fe Is 0.1% or less, Cu is 0.1% or less, Na
Is 0.5% or less, Si is 0.5% or less, Ni is 0.5%
It is desirable to be as follows. In particular, in this embodiment, the positive electrode active material contained 0.03% by weight of Fe.
% Or less, Cu is 0.005% or less, Na is 0.1% or less, Si is 0.1% or less, and Ni is 0.15% or less, so that the initial capacity of the nonaqueous electrolyte secondary battery is reduced. It became possible to make it larger.

【0023】上記充放電サイクル試験はビーカーセルを
用いて行ったものであるが、実用的な非水電解液二次電
池としては上記正極板を用いて、例えば以下に示すよう
にして製作することができる。
The above-mentioned charge / discharge cycle test was conducted using a beaker cell. A practical non-aqueous electrolyte secondary battery was produced using the above-mentioned positive electrode plate, for example, as shown below. Can be.

【0024】負極板は、人造黒鉛に、結着剤としてのポ
リフッ化ビニリデンと溶剤のN−メチルピロリドンとを
混合してペースト状とし、これを銅箔の集電体に塗布し
た後、熱処理して加圧・成形することにより製造する。
The negative electrode plate is prepared by mixing artificial graphite with polyvinylidene fluoride as a binder and N-methylpyrrolidone as a solvent to form a paste. The paste is applied to a copper foil current collector and then heat-treated. It is manufactured by pressing and molding.

【0025】これらの正極板及び負極板をセパレータを
挟んで渦巻き状に巻回し、それを電池容器に収容すると
共に周知の電極導出構造を構成して電解液を注入し、密
閉して非水電解液二次電池とする。電解液は、エチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネートを2:2:1で配合した混合溶媒に1mol/l
のLiPFを溶解させたものを用いる。
The positive electrode plate and the negative electrode plate are spirally wound with a separator interposed therebetween, accommodated in a battery container, formed with a well-known electrode lead-out structure, injected with an electrolytic solution, and sealed to form a non-aqueous electrolytic solution. A liquid secondary battery. The electrolytic solution was 1 mol / l in a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a ratio of 2: 2: 1.
Used in which LiPF 6 is dissolved.

【0026】このようにして、非電解液二次電池を製作
することにより、より良い容量保持率を有するととも
に、初期容量が大きい、良好な非水電解液二次電池を得
ることが可能となる。
By manufacturing a non-electrolyte secondary battery in this manner, it is possible to obtain a good non-aqueous electrolyte secondary battery having a better capacity retention rate and a large initial capacity. .

【0027】<実施例2>本実施例は 正極に関して、
LiCOとCoとCaCOとの高純度の乾
燥粉末試料を用いて製作した、Li1−yCoCa
の固溶体を正極活物質とする点において上記実施例1
と相違するが、他の構成に関しては同様であるので説明
を省略する。各実施例2−1〜2−5における組成(y
の値)は次の表2に示す通りであり、これらを用いて上
記実施例1と同様に、ビーカーセルを製作して、充放電
サイクル試験を行った。この測定結果を図4に、容量保
持率を図5に示した。
<Embodiment 2> This embodiment relates to a positive electrode,
Li 1-y CoCa y O manufactured using a high-purity dry powder sample of Li 2 CO 3 , Co 3 O 4 and CaCO 3
Example 1 in that the solid solution of No. 2 was used as the positive electrode active material.
However, since the other configuration is the same, the description is omitted. Composition (y) in each of Examples 2-1 to 2-5
Are as shown in Table 2 below. Using these, a beaker cell was manufactured and a charge / discharge cycle test was performed in the same manner as in Example 1 above. The measurement results are shown in FIG. 4, and the capacity retention is shown in FIG.

【0028】[0028]

【表2】 [Table 2]

【0029】図5の結果より、本実施例に関して、yの
値が0.0005のときに容量保持率が最も良い値を示
し、それを超えると下がっていく。一方、図4に示すよ
うに初期容量は、yの値が増えるに従いなだらかに減少
していく。したがって、実際に電池として用いるのに適
したyの範囲は、0<y≦0.002である。そして、
0<y≦0.001の範囲では、大きな容量保持率と初
期容量とを両立させた良好な非水電解液二次電池を得る
ことが可能となる。
From the results shown in FIG. 5, in this embodiment, when the value of y is 0.0005, the capacity retention ratio shows the best value, and when it exceeds that value, it decreases. On the other hand, as shown in FIG. 4, the initial capacity gradually decreases as the value of y increases. Therefore, the range of y suitable for use as a battery is 0 <y ≦ 0.002. And
In the range of 0 <y ≦ 0.001, it is possible to obtain a good non-aqueous electrolyte secondary battery having both a large capacity retention and an initial capacity.

【0030】尚、本実施例においても、上記実施例1と
同様に、正極活物質は重量パーセント濃度でFeが0.
03%以下、Cuが0.005%以下、Naが0.1%
以下、Siが0.1%以下、Niが0.15%以下とす
ることにより、非水電解液二次電池の初期容量を大きく
することが可能となった。
In this embodiment, as in the case of the first embodiment, the positive electrode active material has a weight percent concentration of Fe of 0.1%.
03% or less, Cu is 0.005% or less, Na is 0.1%
Hereinafter, by setting the content of Si to 0.1% or less and the content of Ni to 0.15% or less, the initial capacity of the nonaqueous electrolyte secondary battery can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ビーカーセルの模式図FIG. 1 is a schematic diagram of a beaker cell.

【図2】実施例1に係る正極活物質のxの値に対する非
水電解液二次電池の初期容量とサイクル後容量との関係
を表したグラフ
FIG. 2 is a graph showing the relationship between the initial capacity and the post-cycle capacity of the nonaqueous electrolyte secondary battery with respect to the value of x of the positive electrode active material according to Example 1.

【図3】実施例1に係る正極活物質のxの値に対する非
水電解液二次電池の容量保持率の関係を表したグラフ
FIG. 3 is a graph showing the relationship between the value of x of the positive electrode active material according to Example 1 and the capacity retention of the nonaqueous electrolyte secondary battery.

【図4】実施例2に係る正極活物質のyの値に対する非
水電解液二次電池の初期容量とサイクル後容量との関係
を表したグラフ
FIG. 4 is a graph showing the relationship between the initial capacity and the capacity after cycling of the nonaqueous electrolyte secondary battery with respect to the value of y of the positive electrode active material according to Example 2.

【図5】実施例2に係る正極活物質のyの値に対する非
水電解液二次電池の容量保持率の関係を表したグラフ
FIG. 5 is a graph showing the relationship between the value of y of the positive electrode active material according to Example 2 and the capacity retention of the nonaqueous electrolyte secondary battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中満 和弘 京都市南区吉祥院新田壱ノ段町5番地 ジ ーエス・メルコテック株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL12 AM03 AM05 AM07 BJ02 BJ14 HJ01 HJ02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuhiro Nakamitsu F-term (reference) 5G029 AJ03 AJ05 AK03 AL12 AM03 AM05 AM07 BJ02 in 5 Kichijoin Nitta Ichidandan-cho, Minami-ku, Kyoto-shi BJ14 HJ01 HJ02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを可逆的に吸蔵或いは放
出する材料又はリチウム或いはリチウム合金からなる負
極と、Li1−xCoMgで表される固溶体で、
0<x≦0.05である正極活物質を使用した正極と、
非水電解液とから構成したことを特徴とする非水電解液
二次電池。
1. A negative electrode made of a material or a lithium or lithium alloy that reversibly stores or releases lithium ions, and a solid solution represented by Li 1-x CoMg x O 2 ,
A positive electrode using a positive electrode active material satisfying 0 <x ≦ 0.05;
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte.
【請求項2】 上記請求項1に記載の非水電解液二次電
池において、前記固溶体が0.0005≦x≦0.03
である正極活物質を使用した正極であることを特徴とす
る非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the solid solution is 0.0005 ≦ x ≦ 0.03.
A non-aqueous electrolyte secondary battery characterized by being a positive electrode using the positive electrode active material.
【請求項3】 リチウムイオンを可逆的に吸蔵或いは放
出する材料又はリチウム或いはリチウム合金からなる負
極と、Li1−yCoCaで表される固溶体で、
0<y≦0.002である正極活物質を使用した正極
と、非水電解液とから構成したことを特徴とする非水電
解液二次電池。
3. A negative electrode made of a material or a lithium or lithium alloy that reversibly stores or releases lithium ions, and a solid solution represented by Li 1-y CoCa y O 2 ,
A non-aqueous electrolyte secondary battery comprising a positive electrode using a positive electrode active material satisfying 0 <y ≦ 0.002, and a non-aqueous electrolyte.
【請求項4】 上記請求項3に記載の非水電解液二次電
池において、前記固溶体が0<y≦0.001である正
極活物質を使用した正極であることを特徴とする非水電
解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the solid solution is a positive electrode using a positive electrode active material satisfying 0 <y ≦ 0.001. Liquid secondary battery.
【請求項5】 上記請求項1〜請求項4に記載の非水電
解液二次電池において、前記正極活物質の前記固溶体に
おける次の各元素の含有量が、重量パーセント濃度でF
eが0.1%以下、Cuが0.1%以下、Naが0.5
%以下、Siが0.5%以下、Niが0.5%以下であ
ることを特徴とする非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of each of the following elements in the solid solution of the positive electrode active material is F in weight percent concentration.
e is 0.1% or less, Cu is 0.1% or less, and Na is 0.5% or less.
% Or less, 0.5% or less of Si, and 0.5% or less of Ni.
【請求項6】 上記請求項1〜請求項4に記載の非水電
解液二次電池において、前記正極活物質の前記固溶体に
おける次の元素の含有量が、重量パーセント濃度でFe
が0.03%以下、Cuが0.005%以下、Naが
0.1%以下、Siが0.1%以下、Niが0.15%
以下であることを特徴とする非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the following elements in the solid solution of the positive electrode active material is Fe in weight percent concentration.
Is 0.03% or less, Cu is 0.005% or less, Na is 0.1% or less, Si is 0.1% or less, and Ni is 0.15%.
A non-aqueous electrolyte secondary battery characterized by the following.
JP10288495A 1998-10-09 1998-10-09 Nonaqueous electrolyte secondary battery Pending JP2000123834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10288495A JP2000123834A (en) 1998-10-09 1998-10-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10288495A JP2000123834A (en) 1998-10-09 1998-10-09 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000123834A true JP2000123834A (en) 2000-04-28

Family

ID=17730963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10288495A Pending JP2000123834A (en) 1998-10-09 1998-10-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000123834A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
JP2002203553A (en) * 2000-12-28 2002-07-19 Sony Corp Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2004288579A (en) * 2003-03-25 2004-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, positive electrode active material, and its manufacturing method
US7381395B2 (en) 2003-09-30 2008-06-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
US7462421B2 (en) 2003-02-12 2008-12-09 Panasonic Corporation Lithium ion secondary battery
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
CN103259016A (en) * 2013-05-10 2013-08-21 东南大学 Preparation method of lithium-site-doped positive material for lithium ion battery
JP2015156363A (en) * 2014-01-20 2015-08-27 日立マクセル株式会社 Lithium/cobalt-containing composite oxide, method for producing the same, nonaqueous secondary battery electrode using the lithium/cobalt-containing composite oxide, and nonaqueous secondary battery using the electrode
WO2015136881A1 (en) * 2014-03-11 2015-09-17 三洋電機株式会社 Nonaqueous-electrolyte secondary battery
CN107428559A (en) * 2015-05-22 2017-12-01 国立研究开发法人产业技术总合研究所 Positive electrode and the lithium secondary battery for using it for positive pole
KR101831019B1 (en) * 2014-10-02 2018-02-21 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054511A1 (en) * 2000-12-27 2002-07-11 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell and cell using the same
US6991752B2 (en) 2000-12-27 2006-01-31 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell and cell using the same
JP2002203553A (en) * 2000-12-28 2002-07-19 Sony Corp Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
US7462421B2 (en) 2003-02-12 2008-12-09 Panasonic Corporation Lithium ion secondary battery
US7709151B2 (en) 2003-03-25 2010-05-04 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery, positive electrode active material and method of manufacturing the same
CN1297022C (en) * 2003-03-25 2007-01-24 三洋电机株式会社 Non-aqueous electrolyte secondary cell, positive pole active matter and its producing method
JP2004288579A (en) * 2003-03-25 2004-10-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, positive electrode active material, and its manufacturing method
KR101076501B1 (en) 2003-03-25 2011-10-24 산요덴키가부시키가이샤 Method of Manufacturing Positive Electrode Active Material
US7381395B2 (en) 2003-09-30 2008-06-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
CN103259016A (en) * 2013-05-10 2013-08-21 东南大学 Preparation method of lithium-site-doped positive material for lithium ion battery
JP2015156363A (en) * 2014-01-20 2015-08-27 日立マクセル株式会社 Lithium/cobalt-containing composite oxide, method for producing the same, nonaqueous secondary battery electrode using the lithium/cobalt-containing composite oxide, and nonaqueous secondary battery using the electrode
WO2015136881A1 (en) * 2014-03-11 2015-09-17 三洋電機株式会社 Nonaqueous-electrolyte secondary battery
JPWO2015136881A1 (en) * 2014-03-11 2017-04-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US9923244B2 (en) 2014-03-11 2018-03-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
KR101831019B1 (en) * 2014-10-02 2018-02-21 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
CN107428559A (en) * 2015-05-22 2017-12-01 国立研究开发法人产业技术总合研究所 Positive electrode and the lithium secondary battery for using it for positive pole
US10505189B2 (en) 2015-05-22 2019-12-10 National Institute Of Advanced Industrial Science And Technology Cathode material and lithium secondary battery using same as cathode
CN107428559B (en) * 2015-05-22 2020-02-28 国立研究开发法人产业技术总合研究所 Positive electrode material and lithium secondary battery using same for positive electrode

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US10516159B2 (en) Positive electrode active material for nonaqueous secondary battery
US20110171530A1 (en) Cathode active material, and nonaqueous secondary battery having cathode including cathode active material
JP2007087909A (en) Battery pack and automobile
JP2000353526A (en) Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
US20070072081A1 (en) Non-aqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
US20120052391A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2001243943A (en) Non-aqueous electrolyte secondary battery
KR20120051779A (en) Nonaqueous electrolyte secondary battery
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
CN116031380A (en) Polycrystalline sodium ion-like positive electrode material, and preparation method and application thereof
JP2000123834A (en) Nonaqueous electrolyte secondary battery
JP7143855B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder
JP2002124257A (en) Nonaqueous electrolyte secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP2000348722A (en) Nonaqueous electrolyte battery
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JPH07147158A (en) Negative electrode for lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JPH06267539A (en) Lithium secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery