JPS62139254A - Manufacture of nickel electrode for alkaline battery - Google Patents

Manufacture of nickel electrode for alkaline battery

Info

Publication number
JPS62139254A
JPS62139254A JP60279515A JP27951585A JPS62139254A JP S62139254 A JPS62139254 A JP S62139254A JP 60279515 A JP60279515 A JP 60279515A JP 27951585 A JP27951585 A JP 27951585A JP S62139254 A JPS62139254 A JP S62139254A
Authority
JP
Japan
Prior art keywords
nickel
electrode
active material
water content
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60279515A
Other languages
Japanese (ja)
Inventor
Osamu Takahashi
収 高橋
Hideo Kaiya
英男 海谷
Shingo Tsuda
津田 信吾
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60279515A priority Critical patent/JPS62139254A/en
Publication of JPS62139254A publication Critical patent/JPS62139254A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nickel electrode whose peeling off of active material is reduced and life is increased by performing press-molding in a two-step process, after brushing the surface of the electrode, of prepressing in a water content of 10-15% and press-molding in a water content of 0-7%. CONSTITUTION:Press-molding is performed in a two-step process, after brushing the surface of electrode, of prepressing in a water content of 10-15% and press-molding in a water content of 0-7%. For example, paste is prepared by adding water to a mixture of nickel hydroxide serving as main active material, metallic nickel powder, metallic cobalt powder and cadmium hydroxide powder, so as to have a water content of 35%. The paste is impregnated in a spongy, porous nickel, then the active material on pores of the substrate is removed by brushing, and water content is controlled, then prepressing and press-molding are performed to obtain a nickel electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池に用いるニッケル電極の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing nickel electrodes for use in alkaline batteries.

従来の技術 アルカリ電池に用いられているニッケル電極は、通常多
孔性のニッケル溶結基板に、電解法、化学含浸法等の手
段により、活物質となる水酸ニッケル、水酸化コバルト
等を充填したものが用いられている。また、畢近ではス
ポンジ状ニッケル多孔体に、水酸化ニッケルを主体とす
る活物質ペーストを充填した、高容量を有するニッケル
電極も提案されている。
Conventional technology Nickel electrodes used in alkaline batteries are usually made by filling a porous nickel welded substrate with active materials such as nickel hydroxide or cobalt hydroxide using electrolysis or chemical impregnation methods. is used. In addition, a nickel electrode with high capacity has been proposed in which a sponge-like nickel porous body is filled with an active material paste mainly composed of nickel hydroxide.

従来の焼結式ニッケル電極の活物質充填工程は、例えば
化学含浸法のように、含浸、アルカリ処理。
The conventional active material filling process for sintered nickel electrodes includes impregnation and alkali treatment, such as chemical impregnation method.

水洗、乾燥と数多くの工程が必要であり、高容量の電極
を得るためには、これらの工程の数回にも及ぶ繰返しが
必要であり、非常に煩雑なものであった。
A large number of steps such as washing with water and drying are required, and in order to obtain a high-capacity electrode, it is necessary to repeat these steps several times, which is very complicated.

一方、スポンジ状のニッケル多孔体(多孔度:90〜9
5チ)を用いる方法は、孔径の大きいものが選択できる
ことにより、多孔体中にペースト状の活物質が直接充填
でき、しかも充填後、加圧加工を行うだけの簡単な工程
で、高容量を有するニッケル電極の製造が可能である。
On the other hand, a sponge-like porous nickel material (porosity: 90-9
5), by selecting a material with a large pore diameter, the active material in paste form can be directly filled into the porous body, and high capacity can be achieved through a simple process of just performing pressure processing after filling. It is possible to manufacture nickel electrodes with

発明が解決しようとする問題点 しかし、スポンジ状ニッケル多孔体を基板として用いる
方法は、孔径の大きいものが選択でき、3、、。
Problems to be Solved by the Invention However, in the method of using a sponge-like porous nickel material as a substrate, one with a large pore diameter can be selected.

直接ペースト状の活物質が充填できる反面、孔径が大き
いためと、活物質の粒子どうしが結着していないために
、製造工程において活物質が脱落して環境を悪化させた
り、また、充放電の繰返しにより活物質が脱落し、特性
が劣化するという問題があった。これに関して、結着剤
としてCMCを用いる方法や、フン素樹脂のディスパー
ジョン溶液中に極板を浸漬・乾燥して表面をコーティン
グする方法が提案されている。CMCを結着として用い
る方法では製造工程における活物質の脱落に対しては効
果があるものの、充放電の繰返しによる特性の劣化には
ほとんど効果がなかった。一方、フッ素樹脂のディスパ
ージョン溶液に浸漬・乾燥する方法は、上記いづれの問
題に対しても効果があったが、フッ素樹脂が凝集しやす
いためディスパージョン溶液の管理が困難であるという
欠点を有していた。
Although it is possible to directly fill the active material in paste form, because the pores are large and the particles of the active material are not bound together, the active material may fall off during the manufacturing process, worsening the environment, and may cause problems in charging and discharging. There was a problem in that the active material fell off due to repeated steps and the characteristics deteriorated. Regarding this, a method using CMC as a binder and a method of coating the surface by immersing the electrode plate in a dispersion solution of fluorine resin and drying have been proposed. Although the method of using CMC as a binder was effective against shedding of the active material during the manufacturing process, it was hardly effective against deterioration of characteristics due to repeated charging and discharging. On the other hand, the method of immersing and drying a fluororesin dispersion solution was effective for all of the above problems, but it had the disadvantage that it was difficult to manage the dispersion solution because the fluororesin easily aggregated. Was.

問題点を解決するための手段 本発明はCMCなどの結着剤の使用や、フッ素樹脂など
による表面コーティングなしで、加圧成形の前の処理お
よび加圧成形の条件の規制により製造工程における活物
質の脱落や、充放電の繰返しによる特性劣化を防止しよ
うとするものである。
Means for Solving the Problems The present invention can be used in the manufacturing process by regulating the treatment before pressure molding and the conditions of pressure molding without using a binder such as CMC or surface coating with fluororesin or the like. This is intended to prevent material from falling off and property deterioration due to repeated charging and discharging.

即ち、スポンジ状ニッケル多孔体に水酸化ニッケルを主
体とする活物質粉末に、溶媒としての水を加えて練合し
たペーストを充填し、加圧成形してニッケル電極を製造
する方法において、加圧成形を、電極表面をブラッシン
グした後に、含水率10〜15チで予備加圧し、その後
含水率0〜γ俤で加圧成形する2段階の工程で行うもの
である。
That is, in the method of manufacturing a nickel electrode by filling a sponge-like porous nickel body with a paste made by adding active material powder mainly composed of nickel hydroxide and kneading it with water as a solvent, and forming it under pressure. Molding is carried out in two steps: after brushing the electrode surface, preliminary pressure is applied at a moisture content of 10 to 15 degrees, and then pressure molding is performed at a moisture content of 0 to .gamma.

作用 電極よりの活物質の脱落を防止するには、電極表面のニ
ッケル基体の孔径を活物質粉末の粒径よりも十分に小さ
くすればよいわけであるが、スポンジ状ニッケル多孔体
に活物質ペーストを充填し、ただ単に加圧成形した場合
には、電極表面のニッケル基体の孔の中にまで活物質が
充填されているために、電極表面のニッケル基体の孔径
は活物質の粒径より必ず大きくなるものであり、その結
果製造工程における活物質の脱落や、充放電を繰し56
−ジ たときの特性劣化を引き起こすものである。これを防止
するためには、加圧成形前に電極表面のニッケル基体の
孔中よりブラッシングなどの操作によって活物質を除い
ておく必要がある。
In order to prevent the active material from falling off from the working electrode, it is sufficient to make the pore size of the nickel base on the electrode surface sufficiently smaller than the particle size of the active material powder. If the active material is filled into the pores of the nickel base on the electrode surface, the pore size of the nickel base on the electrode surface is always larger than the particle size of the active material. This results in the active material falling off during the manufacturing process and repeated charging and discharging.56
-It causes characteristic deterioration when exposed to heat. In order to prevent this, it is necessary to remove the active material from the pores of the nickel base on the electrode surface by an operation such as brushing before pressure molding.

また、その後にこの電極表面の活物質のない基体層のみ
を選択的に加圧し、電極表面の孔の径を小さくしなけれ
ばならない。電極表面の活物質のないニッケルの基体層
を選択的に加圧するためには、電極内部の活物質の充填
されている層が十分に固くなければならない。電極内部
の層を固くするには、加圧時の含水率を高くする。すな
わち、活物質問のすきまを水で満しておけばいいわけで
あるが、含水率が高すぎると、加圧時に水が活物質のな
い電極表面層に浸透して満たしてしまうため、電極表面
の孔径を十分に小さくすることはできない。したがって
加圧時の含水率は、電極内部の活物質の充填された層が
、電極表面の活物質のない基体層に対して十分に固く、
しかも水の浸透のない適正なものでなければならない。
Furthermore, it is necessary to selectively pressurize only the base layer without active material on the surface of the electrode to reduce the diameter of the pores on the surface of the electrode. In order to selectively apply pressure to the nickel base layer without active material on the electrode surface, the layer filled with active material inside the electrode must be sufficiently hard. To harden the inner layer of the electrode, increase the water content when pressurized. In other words, all you have to do is fill the gaps between the living materials with water, but if the water content is too high, water will permeate and fill the electrode surface layer where there is no active material when pressurized, causing the electrode surface to It is not possible to make the pore size sufficiently small. Therefore, the water content during pressurization is such that the layer filled with active material inside the electrode is sufficiently hard compared to the base layer without active material on the electrode surface.
Moreover, it must be of a proper type that does not allow water to penetrate.

ところで、加圧成形の主たる目的は、電極を電池を構成
する6、−ノ のに適切な厚みにすることにあるが、電極表面の基体の
孔径を十分に小さくするのに適した含水率で1段階で加
圧を行なった場合には、電極にクラックが生じたり、歪
みを生じるというような不都合を生じることがある。し
たがって、電極表面の活物質のない基体の孔を小さくす
る予備加圧を行なったあとで、含水率を調制し、最終の
厚みにする加圧を行う2段階にする必要が生じてくるも
のである。
By the way, the main purpose of pressure molding is to make the electrode an appropriate thickness for the battery. If pressure is applied in one step, problems such as cracks or distortions may occur in the electrodes. Therefore, it becomes necessary to carry out two steps: pre-pressurizing to reduce the pores of the substrate without active material on the electrode surface, and then applying pressure to adjust the moisture content and achieve the final thickness. be.

実施例 以下実施例によって本発明の詳細な説明する。Example The present invention will be explained in detail below with reference to Examples.

スポンジ状ニッケル多孔体に、主活物質となる水酸化ニ
ッケルと金属ニッケル粉末、金属コバルト粉末、水酸化
カドミウム粉末を混合した活物質粉末に水を加えて含水
率35チとしたペーストを充填した。この後、ブラッシ
ングにより電極表面の基体の孔中の活物質を除去し、各
種の含水率に調制し、予備加圧およびその後の加圧成形
を行なってニッケル電極を得た。
A sponge-like porous nickel body was filled with a paste containing a mixture of nickel hydroxide as the main active material, metallic nickel powder, metallic cobalt powder, and cadmium hydroxide powder, and water added to the active material powder to give a water content of 35%. Thereafter, the active material in the pores of the substrate on the surface of the electrode was removed by brushing, the moisture content was adjusted to various levels, and preliminary pressing and subsequent pressure molding were performed to obtain a nickel electrode.

表1にこの際のニッケル電極のクラックや歪みの生じた
具合を示す。
Table 1 shows the extent to which cracks and distortions occurred in the nickel electrode at this time.

表1 表中で0印は、クラック、歪みが生じなかったことを示
し、X印はクラック、歪みが生じたことを示す。最終の
加圧成形時の含水率が、7チ以上では電極にクランクや
歪みが生ずることがわかる。
Table 1 In the table, a 0 mark indicates that no crack or distortion occurred, and an X mark indicates that a crack or distortion occurred. It can be seen that when the moisture content at the time of final pressure molding is 7 degrees or more, cranks and distortions occur in the electrode.

次に第1図に最終(2段目)加圧成形時の含水率と、工
程での活物質脱落量との関係を示す。図より、予備加圧
時の含水率が10〜15ヂでは活物質脱落量が少なくな
ることがわかる。第2図は、充放電を繰返したときの寿
命までの充放電回数と、加圧時の含中率との関係を示し
た図である。図中の数字は、予備加圧時の含水率を表す
。寿命の評価は、20’Cの水酸化リチウムを2of/
l加えた比重1.30の水酸化カリウム水溶中で、1C
相当の電流で1.5時間充電した後、1C相当の電流で
終止電圧がHg/HgO電極に対し、OVとなるまで放
電して行なった。また、寿命の判定は、初期の容量を1
ooとし、容量が初期の80%となったところを寿命に
達したものとした。予備加圧時の含水率が10%未満お
よび15v+よりも高いニッケル電極では、寿命に達す
るまでの充放電回数が約1oo○サイクル以下であり十
分ではない。また、予備加圧時の含水率が10〜16係
の場合でも、最終加圧時の含水率が、7チを超えると寿
命特性が悪くなる。これは表1にみられるように信終加
圧時にクラック等が生じるためである。なお、従来の加
圧成形後、フッ素樹脂のディスパージョン溶液に浸漬・
乾燥したニッケル電極の寿命は185oサイクルであっ
た。
Next, FIG. 1 shows the relationship between the moisture content during final (second stage) pressure molding and the amount of active material falling off during the process. From the figure, it can be seen that when the water content at the time of pre-pressurization is 10 to 15 degrees, the amount of active material falling off decreases. FIG. 2 is a diagram showing the relationship between the number of times of charging and discharging until the life of the battery when charging and discharging is repeated, and the content percentage during pressurization. The numbers in the figure represent the moisture content at the time of pre-pressurization. The lifespan is evaluated using 20'C lithium hydroxide.
In an aqueous solution of potassium hydroxide with a specific gravity of 1.30, 1C
After charging with a corresponding current for 1.5 hours, the battery was discharged with a current corresponding to 1 C until the final voltage reached OV with respect to the Hg/HgO electrode. In addition, to determine the lifespan, the initial capacity is
oo, and the life was reached when the capacity became 80% of the initial capacity. A nickel electrode with a moisture content of less than 10% and higher than 15V+ at the time of pre-pressurization has a charging/discharging frequency of about 1ooo cycles or less before reaching the end of its life, which is not sufficient. Further, even if the water content during preliminary pressurization is 10 to 16 inches, if the water content during final pressurization exceeds 7 inches, the life characteristics will deteriorate. This is because, as shown in Table 1, cracks occur during the final pressurization. In addition, after conventional pressure molding, immersion in a fluororesin dispersion solution
The life of the dried nickel electrode was 185o cycles.

発明の効果 96−ジ 以上のように本発明法によれば、活物質の脱落の少ない
寿命特性の良好なニッケル電極が得られる0
Effects of the Invention 96- As described above, according to the method of the present invention, a nickel electrode with good life characteristics and less shedding of the active material can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加圧成形時の含水率と、活物質の脱落量との関
係を示す図、第2図は最終の加圧成形時の含水率と、寿
命に達するまでの充放電回数との関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 o   s   to   /S   21:)濃終加
圧吟つ含水率(2う
Figure 1 shows the relationship between the moisture content during pressure molding and the amount of active material falling off, and Figure 2 shows the relationship between the moisture content during final pressure molding and the number of charges and discharges until the end of the life. It is a figure showing a relationship. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure o s to /S 21:) Concentrated final pressure gintsu moisture content (2)

Claims (1)

【特許請求の範囲】[Claims] スポンジ状ニッケル多孔体に水酸化ニッケルを主体とす
る活物質粉末に溶媒としての水を加えて練合したペース
トを充填した後、加圧成形するニッケル電極の製造法で
あって、前記加圧成形を、電極表面をブラッシングした
後に含水率10〜15%で予備加圧する工程、含水率0
〜7%で加圧成形する工程の2段階で行うことを特徴と
するアルカリ電池用ニッケル電極の製造法。
A method for manufacturing a nickel electrode in which a sponge-like porous nickel body is filled with a paste prepared by kneading an active material powder mainly composed of nickel hydroxide with water as a solvent, and then pressure molded. A step of pre-pressurizing at a moisture content of 10 to 15% after brushing the electrode surface, a step of pre-pressurizing at a moisture content of 0
A method for producing a nickel electrode for alkaline batteries, characterized in that it is carried out in two steps: pressure molding at ~7%.
JP60279515A 1985-12-12 1985-12-12 Manufacture of nickel electrode for alkaline battery Pending JPS62139254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279515A JPS62139254A (en) 1985-12-12 1985-12-12 Manufacture of nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279515A JPS62139254A (en) 1985-12-12 1985-12-12 Manufacture of nickel electrode for alkaline battery

Publications (1)

Publication Number Publication Date
JPS62139254A true JPS62139254A (en) 1987-06-22

Family

ID=17612108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279515A Pending JPS62139254A (en) 1985-12-12 1985-12-12 Manufacture of nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPS62139254A (en)

Similar Documents

Publication Publication Date Title
JPS62139254A (en) Manufacture of nickel electrode for alkaline battery
JP2546638B2 (en) Manufacturing method of battery plate
JP2902751B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS62136761A (en) Manufacture of nickel electrode for alkaline battery
JPS5887764A (en) Manufacture of electrode plate for battery
JPH0239064B2 (en)
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3653441B2 (en) Method for producing negative electrode for alkaline storage battery
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPS60143569A (en) Positive plate for alkaline battery
JPS58161252A (en) Manufacture of cell electrode
JPS607060A (en) Manufacture of positive plate for nickel cadmium storage battery
JP3524748B2 (en) Method for producing sintered cadmium negative electrode
JPS58201253A (en) Manufacture of plate for alkaline storage battery
JPH0410181B2 (en)
JPH01313851A (en) Manufacture of cadmium electrode
JPH08162104A (en) Manufacture of electrode
JP2000106178A (en) Manufacture of sintered cadmium negative electrode
JPH076760A (en) Sintered cathode plate for alkaline storage battery and manufacture thereof
JPS61110962A (en) Manufacture of positive nickel plate for alkaline storage battery
JPH05225971A (en) Manufacture of nickel electrode
JPH10144310A (en) Filling method of active material for electrode, and its device
JPH05151962A (en) Positive electrode plate for alkaline storage battery
JPS5983343A (en) Manufacture of nickel electrode
JPH04160755A (en) Paste type nickel positive electrode