JPS62139083A - Two-dimensional linear interpolation circuit - Google Patents

Two-dimensional linear interpolation circuit

Info

Publication number
JPS62139083A
JPS62139083A JP60281622A JP28162285A JPS62139083A JP S62139083 A JPS62139083 A JP S62139083A JP 60281622 A JP60281622 A JP 60281622A JP 28162285 A JP28162285 A JP 28162285A JP S62139083 A JPS62139083 A JP S62139083A
Authority
JP
Japan
Prior art keywords
circuit
linear interpolation
dimensional linear
given
calculates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60281622A
Other languages
Japanese (ja)
Inventor
Naoto Kawamura
尚登 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60281622A priority Critical patent/JPS62139083A/en
Publication of JPS62139083A publication Critical patent/JPS62139083A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To obtain a two-dimensional linear interpolation circuit which eliminates the need for a large capacity of memory and is above to process a multi-gradation picture at a high speed by forming a circuit using three adder circuits. CONSTITUTION:Two picture element data V(A) and V(V) out of four original picture element data and a constant alpha are given to the first adder circuit 1-1. The adder circuit 1-1 calculates V(E) based on equation I. Also, the remaining picture element data V(C) and V(D) and the constant alpha are given to the second adder circuit 1-2, and the circuit calculates V(F) based on equation II. Next, V(E), V(F) and a constant beta are given to the third adder circuit 1-3, and the circuit calculates V(G) based on equation III. Thus, the two-dimensional linear interpolation circuit which eliminates the need for a large capacity of memory, and processes the multi-gradation image at a high speed can be obtained.

Description

【発明の詳細な説明】 く分 野〉 本発明は画像回転−拡大・縮小・移動等の処理を行う場
合の2次元でのデータの補間を実現する2次元線形補間
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a two-dimensional linear interpolation circuit that realizes two-dimensional data interpolation when processing images such as image rotation, enlargement, reduction, and movement.

〈従来技術〉 従来この種の装置は、第2図に示すようにルックアップ
テーブルを用いるものや、乗算器を用いて構成するもの
が考えられていた。しかし、ルックアップテーブル方式
では、入力データのビット数が多い場合にはテーブル(
メモリ)自体が膨大な容量を要するものとなり、また駆
動スピードも大容量メモリの動作時間が論理ゲートの動
作時間に比べて遅く多階調画像を高速に処理するには回
路規模と動作スピードの点で不向きであった。また乗算
器を用いて構成するものも、回路規模が大きくなってし
まうという不具合があった。
<Prior Art> Conventionally, this type of device has been considered to use a look-up table as shown in FIG. 2 or to use a multiplier. However, in the lookup table method, when the number of bits of input data is large, the table (
(memory) itself requires a huge capacity, and the operating speed of large-capacity memory is slower than that of logic gates, so processing multi-gradation images at high speed requires circuit size and operating speed. It was unsuitable. Furthermore, those configured using multipliers also have the problem of increasing the circuit scale.

く目 的〉 本発明は、上述従来例の欠点を除去し、多階調の画像を
高速に処理でき、かつLSI化に向く構成の2次元線形
補間回路を提供することを目的とする。
OBJECTIVES> It is an object of the present invention to provide a two-dimensional linear interpolation circuit that eliminates the drawbacks of the conventional example described above, can process multi-gradation images at high speed, and has a configuration suitable for LSI implementation.

〈実施例〉 第3図は、2次元線形補間の概念を説明するための図で
ある。第1図、第4図〜第6図は本発明の実施例で、1
は1次元線形補間回路、2は分配比k(0≦に≦1)よ
り1−kを算出す6回g、3は801回路、4は4人力
AND回路、5は比例配分した値を算出する掛算回路で
ある。
<Example> FIG. 3 is a diagram for explaining the concept of two-dimensional linear interpolation. 1, 4 to 6 show embodiments of the present invention, 1
is a one-dimensional linear interpolation circuit, 2 is a 6-time g that calculates 1-k from the distribution ratio k (0≦to≦1), 3 is an 801 circuit, 4 is a 4-man AND circuit, and 5 is a proportionally distributed value. This is a multiplication circuit.

以下、第3図に従って2次元線形補間の概念を説明、第
3図のA、B、C,Dの各点はそれぞれ平面との各点を
示しており、それぞれある値をもっている。これらを各
々V(A)、V(B)、V (C)、V (D)と表わ
すことにする。その時、該平面上の1点G(Gは線分A
B、BD、DC,CAに囲まれる図形内の点とスル)ノ
値V (C)を、 V (A)  、V (B) 。
The concept of two-dimensional linear interpolation will be explained below with reference to FIG. 3. Points A, B, C, and D in FIG. 3 each represent a point with respect to a plane, and each has a certain value. These will be expressed as V(A), V(B), V(C), and V(D), respectively. At that time, one point G on the plane (G is the line segment A
The points in the figure surrounded by B, BD, DC, and CA, and the values V (C), V (A), V (B).

V (C)  、 V (D)より定める。ここで線分
AB、CDは互いに平行であり、線分AC,BDも互い
に平行である。このとき点Gを通り線分BDに平行な直
線を考え、線分ABと交わる点をE、線分CDと交わる
点をFとする。
Determined from V (C) and V (D). Here, line segments AB and CD are parallel to each other, and line segments AC and BD are also parallel to each other. At this time, consider a straight line that passes through point G and is parallel to line segment BD, and let the point where it intersects with line segment AB be E, and the point where it intersects with line segment CD as F.

とすると。If so.

となる。becomes.

点E(7)値V (E)及び点Fの値V(F)をV (
E) = (1−(X) V (A) +aV (B)
   −−−−−−(1)V (F) −(1−a)V
 (C) +αV (D)   −−−−−−(2)ト
シ、v(c)=(1−β)V(E)+βV(F)   
   −−−−−−(3)、°、y (G) = (1
−a)(1−p)V (A) +a (1−β) V 
(B)+(1−α)βV (C) +a/3V (D)
  −−−−−−(4)としてV (G)を、α、β、
V(A)、V(B)、V (C)、V (D)より定め
ることを2次元線形補間という。
The value V (E) of point E (7) and the value V (F) of point F are expressed as V (
E) = (1-(X) V (A) +aV (B)
-------(1)V (F) -(1-a)V
(C) +αV (D) −−−−−−(2) Toshi, v(c)=(1−β)V(E)+βV(F)
−−−−−−(3), °, y (G) = (1
-a) (1-p)V (A) +a (1-β)V
(B)+(1-α)βV (C) +a/3V (D)
-------(4) Let V (G) be α, β,
Determination from V(A), V(B), V(C), and V(D) is called two-dimensional linear interpolation.

次に、第1図、第4図〜第6図をもって未実施例を説明
する。  。
Next, an unembodied example will be explained with reference to FIGS. 1 and 4 to 6. .

第1図は(4)式を計算する回路のブロック図である。FIG. 1 is a block diagram of a circuit that calculates equation (4).

1−1は(1)式を計算する第1加算回路、1−2は(
2)式を計算する第2加算回路、1−3は(3)式を計
算する第3加算回路である。加算回路1−1.1−2.
1−3は全て同じ構成をしており、これを第5図に示し
ている。加算回路lは、αもしくはβ(ffi称してk
と表記する)と、V (A)もしくはV(C)、もしく
はV(E)(総称してV (X)と表記する)と、V 
(B)もしくはV (D)、もしくはV(F)(総称し
てV (Y)と表記する)を入力、!−1,,(1−k
)V (X)+kV(Y)を出力する。2はkよりl−
kを算出する回路である。5−1はV(Y)、!:によ
り、kv (y)を算出する回路であり、5−2は2の
出力のl−にとV (X)J:す(1−k)V(X)を
算出する回路である。第4図はkより1−kを算出する
回路である。にはOから1まで間の数で、4bitで表
現されるものとする。bitφは、l (=20)の位
であり。
1-1 is the first addition circuit that calculates equation (1), and 1-2 is (
2) a second addition circuit that calculates equation (3); 1-3 is a third addition circuit that calculates equation (3); Addition circuit 1-1.1-2.
1-3 all have the same configuration, which is shown in FIG. The adder circuit l has α or β (referred to as ffi, k
), V (A) or V (C), or V (E) (collectively written as V (X)), and V
Input (B) or V (D) or V (F) (collectively referred to as V (Y)),! -1,,(1-k
)V(X)+kV(Y) is output. 2 is l- than k
This is a circuit that calculates k. 5-1 is V(Y),! : is a circuit that calculates kv (y), and 5-2 is a circuit that calculates V (X) J: (1-k) V (X) for l- of the output of 2. FIG. 4 shows a circuit that calculates 1-k from k. is a number between O and 1 and is expressed in 4 bits. bitφ is the digit l (=20).

bitは0.5= (2−1) 、 b i t 2は
0.25 =(2−2)、bit3は0.125−(2
−3)の位を各々示している。1−にも同様に4bit
で出力されている。出力のbitφは、入力がφのとき
のみ1になる。すなわち、入力の各ビットがすべてφの
ときlとなるので、各々の入力ビットの否定の論理積と
して与えられる。また出力のbitl〜bit3は、入
力のbitl〜bit3の補数として与えられる。よっ
て入力のbitl−bit3の各々の否定にbit3と
同じ位の値を加えることにより与えられる。
bit is 0.5 = (2-1), bit 2 is 0.25 = (2-2), bit 3 is 0.125-(2
-3) digits are shown respectively. 4 bits for 1- as well
It is output as . The output bit φ becomes 1 only when the input is φ. That is, when each bit of the input is all φ, it becomes l, so it is given as the logical product of the negation of each input bit. Further, output bitl to bit3 are given as complements of input bitl to bit3. Therefore, it is given by adding the same value as bit3 to the negation of each bitl-bit3 of the input.

第6図は5を詳細に描いたものであり、V(X)もしく
は、v (y)が8bitデータとして与えられ、この
うち上位7bit、上位6bit、上位5bitがそれ
ぞれ別々のゲートに入力されている。またkもしくはl
−kが4bitデータとし手えられbitlが前記1位
7bitのゲートへ、bit2が前記上位6bitのゲ
ートに、bit3が前記上位5bitのゲートに、各ゲ
ートのゲート信号として与えられている。まだ各ゲート
はゲート信号がφのときはφをlのときは、入力データ
を出力するものである。また、kもしくは1−にのbi
tφは5への入力データ自身か前記各ゲートの出力を全
て加えた値かのいずれを選択するかを決める選択信号と
して用いる。これにより選択された信号を出力として、
(1−k)V(X)もしくは、kV(Y)を与える。
Figure 6 depicts 5 in detail, where V(X) or v(y) is given as 8-bit data, of which the upper 7 bits, upper 6 bits, and upper 5 bits are input to separate gates. There is. Also k or l
-k is treated as 4-bit data, bitl is given to the gate of the first 7 bits, bit2 is given to the gate of the upper 6 bits, and bit3 is given to the gate of the upper 5 bits as a gate signal for each gate. Each gate outputs input data when the gate signal is φ and when φ is l. Also, bi on k or 1-
tφ is used as a selection signal to determine whether to select either the input data itself to 5 or the sum of all the outputs of the respective gates. This allows the selected signal to be output,
(1-k) Give V(X) or kV(Y).

前記実施例中、kを与えられると、1−には構成回路中
で生成するようにしであるが、これはk及びl−kをと
もに外部よりデータとして与えられるように構成しても
もちろんよい。
In the above embodiment, when k is given, 1- is generated in the constituent circuit, but it is of course possible to configure so that both k and l-k are given as data from outside. .

また、第1図で1−1.1−2に与えるαをそれぞれ異
なる値として与えて使用してもよいことはもちろんであ
る。この場合は第7図に示すように補間を実行すること
ができる。すなわち、EFはBDとは平行ではないもの
である。
Furthermore, it goes without saying that α given to 1-1, 1-2 in FIG. 1 may be given as different values. In this case, interpolation can be performed as shown in FIG. That is, EF is not parallel to BD.

また第8図に示すように、A、B、C,Dの作る図形が
前述のように平行四辺形でなくとも使用可能である。
Furthermore, as shown in FIG. 8, the figure formed by A, B, C, and D can be used even if it is not a parallelogram as described above.

く効 果〉 以E説明したように、本発明に依れば大吉にのメモリを
要さず、しかも高速に演算可能な2次元線形補間回路が
構成できる。またLSI化にも適し、回路規模を従来よ
り小さくできる効果ももつ。
Effects> As explained below, according to the present invention, a two-dimensional linear interpolation circuit that does not require a large amount of memory and can perform high-speed calculations can be constructed. It is also suitable for LSI integration, and has the effect of making the circuit size smaller than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例の回路ブロック図、第2図は従来例を
示す図、第3図は2次元線形補間の概念を示す説明図、
第4図は分配比により1−kを求める回路の概念図、第
5図は1次線形補間回路のブロック図、第6図は1次線
形補間を行う回路のうち分配比と入力データの一方との
積を出力する掛算回路図、第7図及び第8図は本発明の
他の実施例を示す図である0図において1.1−1.1
−2.1−3は加算回路、5−1.5−2は掛算回路を
示す。
FIG. 1 is a circuit block diagram of this embodiment, FIG. 2 is a diagram showing a conventional example, and FIG. 3 is an explanatory diagram showing the concept of two-dimensional linear interpolation.
Figure 4 is a conceptual diagram of a circuit that calculates 1-k using a distribution ratio, Figure 5 is a block diagram of a first-order linear interpolation circuit, and Figure 6 is a circuit that performs first-order linear interpolation, one of which is the distribution ratio and input data. 7 and 8 are diagrams showing other embodiments of the present invention.
-2.1-3 indicates an addition circuit, and 5-1.5-2 indicates a multiplication circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)4つの元画素データの2つずつのデータの各々に
対してそのデータ値自身もしくはシフトしたデータ値を
加算する第1、第2加算手段、第1、第2の加算手段の
出力を加算する第3加算手段より成ることを特徴とする
2次元線形補間回路
(1) First and second addition means that add the data value itself or a shifted data value to each of two pieces of data of the four original pixel data; outputs of the first and second addition means; A two-dimensional linear interpolation circuit characterized by comprising a third addition means for adding.
(2)第1項においてシフトしたデータ値とは、データ
値の上位ビットのみを取り出した値であることを特徴と
する2次元線形補間回路
(2) A two-dimensional linear interpolation circuit characterized in that the shifted data value in the first term is a value obtained by extracting only the upper bits of the data value.
JP60281622A 1985-12-13 1985-12-13 Two-dimensional linear interpolation circuit Pending JPS62139083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60281622A JPS62139083A (en) 1985-12-13 1985-12-13 Two-dimensional linear interpolation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281622A JPS62139083A (en) 1985-12-13 1985-12-13 Two-dimensional linear interpolation circuit

Publications (1)

Publication Number Publication Date
JPS62139083A true JPS62139083A (en) 1987-06-22

Family

ID=17641690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281622A Pending JPS62139083A (en) 1985-12-13 1985-12-13 Two-dimensional linear interpolation circuit

Country Status (1)

Country Link
JP (1) JPS62139083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528264A (en) * 1991-07-18 1993-02-05 Kubota Corp Picture processor
KR100436635B1 (en) * 1996-06-27 2004-09-01 스위치드 릴럭턴스 드라이브즈 리미티드 Matrix interpolation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585973A (en) * 1978-12-21 1980-06-28 Fujitsu Ltd Picture processor
JPS5884358A (en) * 1981-11-13 1983-05-20 Toshiba Corp Picture enlargement processor
JPS60218168A (en) * 1984-04-13 1985-10-31 Fujitsu Ltd Space filter circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585973A (en) * 1978-12-21 1980-06-28 Fujitsu Ltd Picture processor
JPS5884358A (en) * 1981-11-13 1983-05-20 Toshiba Corp Picture enlargement processor
JPS60218168A (en) * 1984-04-13 1985-10-31 Fujitsu Ltd Space filter circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528264A (en) * 1991-07-18 1993-02-05 Kubota Corp Picture processor
KR100436635B1 (en) * 1996-06-27 2004-09-01 스위치드 릴럭턴스 드라이브즈 리미티드 Matrix interpolation

Similar Documents

Publication Publication Date Title
US5202670A (en) Image processing apparatus
US10102181B2 (en) Efficient Catmull-Rom interpolation
JP2000196907A (en) Method for selecting color to be assigned to pixel and method for encoding and storing picture
JPS62139083A (en) Two-dimensional linear interpolation circuit
US5463573A (en) Multivalued subtracter having capability of sharing plural multivalued signals
JPH01288974A (en) Picture processing method
CN115775196A (en) Hardware implementation method of bilinear interpolation
US6161120A (en) Apparatus for performing a division operation, especially for three-dimensional graphics
EP0404397B1 (en) Image processing system
CN116227507B (en) Arithmetic device for performing bilinear interpolation processing
EP0189524A2 (en) Memory unit having arithmetic and logic functions, in particular for graphic processing
TWI799265B (en) Super resolution device and method
Ishikawa et al. Multi-Resolutional Image Format Using Stochastic Numbers and Its Hardware Implementation
JPS63102467A (en) Converting device for resolution of picture data
JPH0687265B2 (en) Spatial filter circuit
JP3740705B2 (en) Color conversion device
US5550648A (en) System for filling outlines by addition and subtraction according to start and end positions of the outlines
JPH06214754A (en) Rounding arithmetic circuit and picture processor having it
JP2515534B2 (en) Signal filtering device
JPS61105640A (en) Parallel complement circuit
JPS62221076A (en) Picture processor
JPS61206364A (en) Picture magnifying and reducing circuit
JPH0457112A (en) Arithmetic unit
JPH0423083A (en) Enlarging interpolation processing circuit
JPS60235274A (en) Picture signal processing device