JPS62136760A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPS62136760A
JPS62136760A JP60277151A JP27715185A JPS62136760A JP S62136760 A JPS62136760 A JP S62136760A JP 60277151 A JP60277151 A JP 60277151A JP 27715185 A JP27715185 A JP 27715185A JP S62136760 A JPS62136760 A JP S62136760A
Authority
JP
Japan
Prior art keywords
electrode
battery
winding
active material
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60277151A
Other languages
Japanese (ja)
Inventor
Hideo Kaiya
英男 海谷
Ryoji Tsuboi
良二 坪井
Sadao Shoji
小路 貞夫
Shozo Murata
省三 村田
Shingo Tsuda
津田 信吾
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60277151A priority Critical patent/JPS62136760A/en
Publication of JPS62136760A publication Critical patent/JPS62136760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the flexibility of an electrode as well as to make its winding ever so easy, by letting it pass through a leveler device after pressurizing the electrode filled up with an active material. CONSTITUTION:An active material is filled up in an expandable metal and then pressurizing operation takes place for improving the bulk capacity density. Next, the electrode (a) obtained in this way is passed through a leveler device (b) and leveler treatment takes place. With this constitution, flexibility in the electrode (a) is improved, and its winding comes so easy and, what is more, damage or breakage of the electrode at the time of winding is reducible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニンケルカドミウム蓄電池などの二次電池に
用いる電極の製造法に関し、さらに詳しくは多孔性の金
属支持体中に活物質を充填して構成する電池用電極に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrode used in a secondary battery such as a ninkel cadmium storage battery, and more specifically to a method for manufacturing an electrode for use in a secondary battery such as a nickel cadmium storage battery. The present invention relates to battery electrodes.

従来の技術 二次電池の電極は、金属製の筒状袋状、または格子状支
持体に活物質を充填したり、金属焼結体が大きくできる
という利点があるが、高率の放電特性が悪いという欠点
がある。また、後者の金属焼結体の支持体を使用するも
のは高率放電特性が優れているという利点があるが、充
填容量が小さいという欠点がある。この両者の欠点を改
善するため最近では高多孔度を有する連続した三次元的
な網目構造を持った発泡メタルを支持体に使用する電池
用電極が提案されている。この発泡メタルに活物質を充
填する方法は、高容量、高率放電に適した電極である。
Conventional secondary battery electrodes have the advantage of filling a metal cylindrical bag-like or lattice-like support with an active material, and that the metal sintered body can be made large, but they do not have high discharge characteristics. It has the disadvantage of being bad. In addition, the latter method using a metal sintered body support has the advantage of excellent high rate discharge characteristics, but has the disadvantage of a small filling capacity. In order to improve both of these drawbacks, battery electrodes have recently been proposed in which a metal foam having a continuous three-dimensional network structure with high porosity is used as a support. This method of filling active material into foamed metal produces an electrode suitable for high capacity and high rate discharge.

しかし、発泡メタルを用いるニッケル正極は、発泡メタ
ルの多孔度が高く高容量化が可能である反面、高多孔度
であるため極板としての強度が低いという問題がある。
However, a nickel positive electrode using a foamed metal has a problem in that although the foamed metal has high porosity and can have a high capacity, the high porosity makes the electrode plate low in strength.

発明が解決しようとする問題点 これは電池群構成のための捲回時に特に問題となる。す
なわち、電極強度が低いため捲回時に極板の折れを生じ
やすく、電池容量の低下、あるいは、極板の折れの部分
がセパレータを損傷させ、リーク不良を発生しやすいと
いう欠点がある。これを防止する方法として発泡メタル
内に補強体を入′n(実開昭53−62630号)、極
板の強度を向上させる方法等が提案されているが、発泡
メタルの工程数の増加あるいはコストなどの面で、問題
があった。本発明は、上記の捲回時の電極破損を解決し
ようとするものである。
Problems to be Solved by the Invention This is a particular problem when winding for battery group construction. That is, since the electrode strength is low, the electrode plate is likely to be bent during winding, resulting in a decrease in battery capacity, or the bent portion of the electrode plate may damage the separator, resulting in leakage failure. As a method to prevent this, methods have been proposed such as inserting a reinforcing body into the foam metal (Utility Model Application No. 53-62630) and improving the strength of the electrode plate. There were problems in terms of cost, etc. The present invention aims to solve the problem of electrode damage during winding.

問題点を解決するだめの手段 本発明は、以上のような問題点を解決するために、活物
質を充填した電極を加圧加工を行った後レベラー装置を
通過させ、電極の柔軟性を向上させたものであり、これ
により捲回を容易にし、捲回時の電極の破損や折れを低
減させることにより、電池特性の向上をはかるものであ
る。
Means to Solve the Problems In order to solve the above problems, the present invention improves the flexibility of the electrode by pressurizing the electrode filled with the active material and then passing it through a leveler device. This facilitates winding and reduces damage and bending of the electrode during winding, thereby improving battery characteristics.

作   用 発泡メタルに活物質を充填する電極においては、その充
填智度を増加させるために、一般に活物質充填後に加圧
加工を行なう。しかし、充填密度を増加させることによ
り、一般に極板の柔軟性は低下する。発泡メタルを使用
して高容量化を指向する場合、発泡メタルの多孔度を高
くする必要があるが、先に述べた通り、電極の強度が低
下する。
Function: In an electrode in which a foamed metal is filled with an active material, pressure processing is generally performed after filling the active material in order to increase the filling degree. However, increasing the packing density generally reduces the flexibility of the plate. When aiming at high capacity using foamed metal, it is necessary to increase the porosity of the foamed metal, but as described above, the strength of the electrode decreases.

このような柔軟性が低く、強度の低い電極をセパレータ
、負極とともに捲回し、群構成する場合、電極の折れ、
あるいは破損という問題が生じやすい。しかし、加圧後
の電極をレベラー装置を通過させることにより、電極の
柔軟性が向上し、捲回が容易となり、以上のような問題
が発生しにくくなる。
When such electrodes with low flexibility and strength are wound together with a separator and a negative electrode to form a group, bending of the electrodes,
Otherwise, the problem of breakage is likely to occur. However, by passing the pressurized electrode through a leveler device, the flexibility of the electrode is improved, winding becomes easier, and the above-mentioned problems are less likely to occur.

実施例 以下、本発明の一実施例を図面と共に説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

厚さ約2鵡多孔度約96%の発泡メタルに、水酸化ニッ
ケルを主体とする活物質を充填し、その後に3oOKP
/cJの圧力で加圧加工を行った。次に従来通りの方法
でレベラー処理をしない電極Aと、加圧後の電極aを第
1図のような多数の蛇行ロールを備えたレベラー装置す
を通過させた電極Bとを用い、SCサイズの密閉型ニッ
ケルカドミウム蓄電池を構成し、電池特性の比較を行っ
た。電池特性は、電極の折れを検出するために、標準容
量の比較と高率放電特性の比較を行った。高率放電は、
0.20相当の放電容量と、3C相当の放電容量の比率
で比較した。電極に折れを発生しているものは、その程
度により、0.20容量も少ないものと、3C容量程度
の高率放電容量が低下するものがある。第2図は、従来
の方法で製造した電池Aと本発明の電池Bとの標準容量
(0,2G放電容量)の比較である。第2図Aでは、電
極の折れによる容量低下が見ら扛るのに対し、Bでは設
計通りの範囲に入っている。また第3図は、同様に30
放電容量比率の比較を示した図である。第3図Aの従来
のものは、電極の折れによると思われる放電容量比率の
低下が見られるのに対し、本発明の電池Bでは、それが
見られない。
A foamed metal with a thickness of about 2mm and a porosity of about 96% is filled with an active material mainly composed of nickel hydroxide, and then 3oOKP
Pressure processing was performed at a pressure of /cJ. Next, using an electrode A which is not leveled by the conventional method and an electrode B in which the electrode A after pressurization is passed through a leveler device equipped with a large number of meandering rolls as shown in Fig. 1, the SC size is determined. A sealed nickel-cadmium storage battery was constructed and the battery characteristics were compared. Regarding battery characteristics, a comparison of standard capacity and high rate discharge characteristics was performed to detect electrode bending. High rate discharge is
A comparison was made using the ratio of the discharge capacity equivalent to 0.20 and the discharge capacity equivalent to 3C. Depending on the degree of bending in the electrodes, some have a capacity as low as 0.20, while others have a high rate discharge capacity of about 3C capacity. FIG. 2 is a comparison of standard capacity (0.2G discharge capacity) between Battery A manufactured by a conventional method and Battery B of the present invention. In FIG. 2A, there is no visible decrease in capacity due to the bending of the electrode, while in B, the capacitance is within the designed range. Figure 3 also shows 30
FIG. 3 is a diagram showing a comparison of discharge capacity ratios. In the conventional battery shown in FIG. 3A, a decrease in the discharge capacity ratio is observed, which is thought to be due to the bending of the electrodes, whereas in the battery B of the present invention, this is not observed.

また、従来の方法による電池Aと本発明による電池Bの
リーク発生率を調査したところ、Aのリーク発生率は0
.5%程度であるのに対し、本発明による市電Bは、0
.08%であり、リーク発生率の大巾な低下がみられた
Furthermore, when we investigated the leakage rate of battery A made by the conventional method and battery B made by the present invention, we found that the leakage rate of A was 0.
.. While it is about 5%, the streetcar B according to the present invention has a
.. 08%, indicating a significant reduction in the leakage rate.

発明の効果 以上のように、本発明によれば、発泡メタルを使用した
電極の群構成捲回時の問題点が改善され、安定した電池
特性が得られる。
Effects of the Invention As described above, according to the present invention, the problems encountered when winding a group of electrodes using foamed metal are improved, and stable battery characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用したレベラー装置の概略図、第2
図A、Bは従来の方法で構成した電池と容量比率の分布
を示した図である。 a・・・・・・電極、b・・・・・・レベラー装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図             α−1喬b−pτレ
ー象、1 第2図 (ハ)(8) 第3図
Figure 1 is a schematic diagram of the leveler device used in the present invention, Figure 2 is a schematic diagram of the leveler device used in the present invention.
Figures A and B are diagrams showing batteries constructed using a conventional method and the distribution of capacity ratios. a... Electrode, b... Leveler device. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure α-1qiao b-pτ Ray elephant, 1 Figure 2 (c) (8) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 連続した三次元網目構造の発泡メタルに活物質を充填し
た電池用電極の製造法であって、発泡メタルに活物質を
充填した後、充填容量密度を向上させるための電極加圧
工程と、電極加圧工程後に電極を柔軟にするためレベラ
ー装置を通過させる工程を有することを特徴とする電池
用電極の製造法。
A method for manufacturing a battery electrode in which a foamed metal with a continuous three-dimensional network structure is filled with an active material. A method for producing a battery electrode, comprising the step of passing the electrode through a leveler device to make it flexible after the pressurizing step.
JP60277151A 1985-12-10 1985-12-10 Manufacture of electrode for battery Pending JPS62136760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277151A JPS62136760A (en) 1985-12-10 1985-12-10 Manufacture of electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277151A JPS62136760A (en) 1985-12-10 1985-12-10 Manufacture of electrode for battery

Publications (1)

Publication Number Publication Date
JPS62136760A true JPS62136760A (en) 1987-06-19

Family

ID=17579509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277151A Pending JPS62136760A (en) 1985-12-10 1985-12-10 Manufacture of electrode for battery

Country Status (1)

Country Link
JP (1) JPS62136760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682848B1 (en) 1999-09-30 2004-01-27 Sanyo Electric Co., Ltd. Alkaline storage battery and process for the production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532345A (en) * 1978-08-28 1980-03-07 Hitachi Maxell Ltd Manganese dioxide electrode
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPS60246561A (en) * 1984-05-18 1985-12-06 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532345A (en) * 1978-08-28 1980-03-07 Hitachi Maxell Ltd Manganese dioxide electrode
JPS5539179A (en) * 1978-09-13 1980-03-18 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for cell
JPS60246561A (en) * 1984-05-18 1985-12-06 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682848B1 (en) 1999-09-30 2004-01-27 Sanyo Electric Co., Ltd. Alkaline storage battery and process for the production thereof

Similar Documents

Publication Publication Date Title
JP3653425B2 (en) Alkaline storage battery and method for manufacturing the same
JP2637949B2 (en) Battery
JPS62136760A (en) Manufacture of electrode for battery
US8236448B2 (en) Battery electrode substrate, and electrode employing the same
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPS62136759A (en) Manufacture of electrode for battery
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JPS62139256A (en) Sealed nickel-cadmium storage battery
EP1265306B1 (en) Production method of wound electrodes for batteries
JPS59207560A (en) Manufacture of electrode for battery
JP2680642B2 (en) Method for manufacturing zinc electrode for alkaline storage battery
JPH07320771A (en) Sealed lead-acid battery
JP3680350B2 (en) Lead acid battery
JP3253162B2 (en) Nickel hydride rechargeable battery
JPH02220365A (en) Manufacture of spiral electrode group for alkaline battery
JPH0568066B2 (en)
JP2002025548A (en) Square alkaline storage battery
JP2563332Y2 (en) Rolled electrode group for cylindrical batteries
JPS6355186B2 (en)
JP3606089B2 (en) Method for producing alkaline storage battery
JPH04296454A (en) Electrode for battery and manufacture thereof
US6537699B1 (en) Positive electrode plate for nickel-hydrogen cell
JPH10154526A (en) Rectangular alkaline storage battery
JPS63124361A (en) Plate for battery
JP2691533B2 (en) Sealed alkaline storage battery