JPS6355186B2 - - Google Patents

Info

Publication number
JPS6355186B2
JPS6355186B2 JP55119187A JP11918780A JPS6355186B2 JP S6355186 B2 JPS6355186 B2 JP S6355186B2 JP 55119187 A JP55119187 A JP 55119187A JP 11918780 A JP11918780 A JP 11918780A JP S6355186 B2 JPS6355186 B2 JP S6355186B2
Authority
JP
Japan
Prior art keywords
electrode
active material
porous body
porous
sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55119187A
Other languages
Japanese (ja)
Other versions
JPS5743361A (en
Inventor
Nobuyuki Yanagihara
Isao Matsumoto
Shoichi Ikeyama
Tsutomu Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55119187A priority Critical patent/JPS5743361A/en
Publication of JPS5743361A publication Critical patent/JPS5743361A/en
Publication of JPS6355186B2 publication Critical patent/JPS6355186B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、電池用渦巻形電極の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in spiral shaped electrodes for batteries.

各種電子機器の電源としては、極板群を渦巻状
にした円筒形の密閉電池が最も広く使われてお
り、この電池の高容量化と低価格化が強く要望さ
れている。密閉電池の代表的なものが、ニツケル
−カドミウム蓄電池であり、その電極としては、
焼結基板に電解などにより活物質を充填した焼結
式電極と、結着剤を含む活物質ペーストを孔あき
板などに塗着したスペース式電極が一般に用いら
れている。
Cylindrical sealed batteries with coiled electrode plates are most widely used as power sources for various electronic devices, and there is a strong demand for higher capacity and lower costs for these batteries. A typical sealed battery is a nickel-cadmium storage battery, and its electrodes are
Generally used are a sintered electrode in which a sintered substrate is filled with an active material by electrolysis, and a spaced electrode in which an active material paste containing a binder is applied to a perforated plate.

焼結式電極は、性能はすぐれているが、容量、
コストの点ではペースト式電極の方がすぐれてい
る。しかし、ペースト式電極は、特に正極におい
て、寿命、利用率が劣つている。
Sintered electrodes have excellent performance, but their capacity and
Paste electrodes are superior in terms of cost. However, paste-type electrodes are inferior in lifespan and utilization rate, especially in the positive electrode.

この問題を改善する方法として、三次元的構造
を有するスポンジ状金属多孔体を活物質保持体と
する電極が提案されている。この多孔体は、孔径
が数10μm〜500μmの範囲のものを自由に得るこ
とができ、ペースト状にした活物質を直接に、し
かも高密度に充填でき、活物質の脱落も少ないの
で、低コストで高容量の電極が期待できる。
As a method to improve this problem, an electrode using a sponge-like porous metal material having a three-dimensional structure as an active material holder has been proposed. This porous material can be freely obtained with pore diameters in the range of several tens of micrometers to 500 micrometers, and can be filled directly with paste-formed active material at high density, with little active material falling out, resulting in low cost. High capacity electrodes can be expected.

ところが、このスポンジ状多孔体を用いた電極
は、渦巻状に巻回する際、亀裂を発生し、これが
電極の破断につながる可能性がある。特に巻始め
るとき、その巻径が小さいほど亀裂が入り易い。
However, when an electrode using this sponge-like porous material is spirally wound, cracks may occur, which may lead to breakage of the electrode. Especially when starting winding, the smaller the winding diameter, the more likely cracks will occur.

本発明は、このような問題を解消するもので、
スポンジ状金属多孔体の電極巻始め端に相当する
部分を加圧圧縮して他の部分より低多孔度にして
活物質を充填し、つぎに全体を加圧圧縮すること
を特徴とするものである。
The present invention solves these problems,
The material is characterized in that the part of the sponge-like porous metal material corresponding to the electrode winding start end is compressed under pressure to make it have a lower porosity than other parts and filled with an active material, and then the entire part is compressed under pressure. be.

本発明によれば、多孔体の巻始め端に相当する
部分は、低多孔度の状態で活物質が充填されるの
で、多孔体の骨格に対する活物質量が少なくな
り、骨格の伸縮性に余裕ができ、したがつて渦巻
状に巻回する際、亀裂が発生しにくくなる。
According to the present invention, the part corresponding to the winding start end of the porous body is filled with the active material in a state of low porosity, so the amount of active material relative to the skeleton of the porous body is reduced, and the stretchability of the skeleton is increased. Therefore, cracks are less likely to occur during spiral winding.

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

第1図はスポンジ状金属多孔体の概略構成を示
すもので、三次元的に連続した格子1によつて、
同じく三次元的に連続した空間部2を形成してお
り、この空間部内に活物質を保持する。
Figure 1 shows the schematic structure of a sponge-like porous metal body, in which a three-dimensionally continuous lattice 1 provides
Similarly, a three-dimensionally continuous space 2 is formed, and the active material is held within this space.

第2図は連続的に多数の極板を作るための長尺
帯状のスポンジ状金属多孔体を示すもので、この
多孔体3は、長さ方向に沿つて片側に低多孔度の
圧縮部分4を設けている。5は圧縮しない高多孔
度の部分である。圧縮部分4は、第3図のように
両面から圧縮しても、また第4図のように片面か
ら圧縮してもよい。この多孔度は、その長さ方向
に搬送する過程でペースト状活物質を充填した
後、図の一点鎖線で示す位置で所定の大きさの電
極に切断する。
Figure 2 shows a long band-shaped sponge-like porous metal body for continuously manufacturing a large number of electrode plates. has been established. 5 is a highly porous part that is not compressed. The compressed portion 4 may be compressed from both sides as shown in FIG. 3, or from one side as shown in FIG. After this porosity is filled with a paste-like active material during the process of transporting it in its length direction, it is cut into electrodes of a predetermined size at the positions indicated by the dashed lines in the figure.

第5図は上記のようにして作つた電極を示すも
ので、6は上記低多孔度の部分4に相当し、電極
を渦巻状に構成する場合は、この部分から巻始め
る。7は高多孔度の部分5に相当する。8は溶着
によつて結合したリード片である。
FIG. 5 shows the electrode made as described above, where 6 corresponds to the low porosity section 4, and when the electrode is configured in a spiral shape, the winding starts from this section. 7 corresponds to the highly porous portion 5. 8 is a lead piece connected by welding.

第6図は前記のような構成の正極板9に、負極
板10とセパレータ11を組み合わせて渦巻状に
巻始めた状態を示している。
FIG. 6 shows a state in which the positive electrode plate 9 configured as described above, a negative electrode plate 10 and a separator 11 are combined and started to be wound in a spiral shape.

スポンジ状多孔体は、例えば次のようにして製
造することができる。まず、ポリウレタンの連続
した帯状のスポンジ状シートに、導電材を付着さ
せた後、ワツト浴を用いた電解槽を通してニツケ
ルメツキする。この後焙焼して樹脂を除去し、水
素気流中で熱処理する。
A sponge-like porous body can be manufactured, for example, as follows. First, a conductive material is attached to a continuous band-shaped sponge-like sheet of polyurethane, and then the sheet is nickel-plated through an electrolytic bath using a Watt bath. Thereafter, the resin is roasted to remove the resin and heat treated in a hydrogen stream.

以下に具体的実施例を説明する。 Specific examples will be described below.

上記のようにして、厚さ1.5mm、幅150mm、多孔
度約94%のスポンジ状ニツケル多孔体をつくつ
た。次にこの帯状の多孔体の端部を加圧圧縮して
低多孔度の部分を設けた。圧縮部分の多孔度は91
%であつた。
As described above, a sponge-like porous nickel material with a thickness of 1.5 mm, a width of 150 mm, and a porosity of approximately 94% was produced. Next, the end portions of this band-shaped porous body were compressed under pressure to provide a low-porosity portion. The porosity of the compressed part is 91
It was %.

次にこの多孔体の全体に、水酸化ニツケル85重
量部、ニツケル粉末10重量部、コバルト粉末5重
量部の混合物をペースト状にした活物質混合物を
充填し、乾燥後、さらに全体を加圧して、全体の
厚さが約0.9mmとなるようにした。そして、幅38
mm毎に切断し、長さ約150mm、厚さ0.9mmのニツケ
ル正極を得た。これに電極リードを取り付け、汎
用のカドミウム負極とセパレータを介して巻回し
て単2形の円筒アルカリ電池を製作した。
Next, the entire porous body was filled with an active material mixture made into a paste of a mixture of 85 parts by weight of nickel hydroxide, 10 parts by weight of nickel powder, and 5 parts by weight of cobalt powder, and after drying, the whole was further pressurized. , the overall thickness was set to approximately 0.9 mm. and width 38
It was cut into pieces of mm to obtain a nickel positive electrode approximately 150 mm long and 0.9 mm thick. Electrode leads were attached to this, and a general-purpose cadmium negative electrode and a separator were wound between them to create a AA cylindrical alkaline battery.

この場合、活物質を充填する前に多孔体の低多
孔度の部分に相当する部分から、セパレータを介
してニツケル極と同等の大きさのカドミウム極と
合わせて、渦巻状に巻き始めると、小さい巻径で
も亀裂も少なく、破断することもなく、円滑に巻
くことができた。また、逆に戻してもひび割れの
あとは少し残るが破断することなく、再度渦巻き
が可能であつた。しかし、活物質充填前に低多孔
度の部分を設けない多孔体で作つた従来の電極
は、巻き始めの時から、電極にひび割れが大きく
入り、破断にまで及ぶものがあつた。当然、巻き
戻すと破断して、電極の再生は不可能であつた。
In this case, before filling the active material, if you start winding the porous body from the part corresponding to the low porosity part through a separator together with a cadmium pole of the same size as the nickel pole, the small There were few cracks in the winding diameter, and it could be rolled smoothly without breaking. Further, even if the product was turned back in the opposite direction, a small amount of cracks remained, but it did not break and it was possible to swirl it again. However, with conventional electrodes made from porous materials that do not have low-porosity areas before being filled with active material, cracks often develop in the electrodes from the beginning of winding, leading to breakage. Naturally, when it was rewound, it broke and it was impossible to regenerate the electrode.

次に、本発明によるニツケル極を用いた電池A
と、従来のニツケル極を用いた電池Bについて、
200mAで15時間充填し、400mAで放電する充放
電を繰り返したところ、電池Aは50サイクル後に
おいても初期値と同等の2.5Ahの容量を示した
が、電池Bは50サイクル後には2.0Ahにまで容量
が低下した。この原因は、電極の巻き始め部にお
ける亀裂、崩壊による活物質の脱落、多孔体の骨
格露出などによる内部短絡現象による容量低下と
考えられる。
Next, battery A using nickel electrodes according to the present invention
And regarding battery B using conventional nickel electrodes,
When battery A was repeatedly charged and discharged by charging at 200 mA for 15 hours and discharging at 400 mA, battery A showed a capacity of 2.5 Ah, which was the same as the initial value, even after 50 cycles, but battery B had a capacity of 2.0 Ah after 50 cycles. Capacity decreased to . The cause of this is considered to be a decrease in capacity due to an internal short-circuit phenomenon due to cracks at the winding start of the electrode, falling of the active material due to collapse, and exposure of the skeleton of the porous body.

なお、多孔体を活物質充填前に加圧圧縮する部
分の圧縮度合は多孔体の元の厚さの5〜50%程度
が望ましい。5%より小さい場合は渦巻きの最小
径に対して効果がなく、また50%以上では渦巻き
の最小径に対しては非常に有利に働くが、その部
分での活物質の充填量が減少し、容量が少なくな
る。
Note that the compression degree of the portion where the porous body is compressed under pressure before being filled with the active material is preferably about 5 to 50% of the original thickness of the porous body. When it is less than 5%, it has no effect on the minimum diameter of the spiral, and when it is over 50%, it has a very advantageous effect on the minimum diameter of the spiral, but the amount of active material packed in that part decreases. Capacity decreases.

上記のように、電極の巻き始め端に相当する多
孔体の部分を活物質充填前に加圧圧縮して低多孔
度としておくことにより、この部分への活物質の
充填量が制限されて、スポンジ状金属多孔体から
なる骨格に対して活物質の量が少なくなり、骨格
の伸縮性に余裕ができて、骨格にかかる応力が軽
減される。したがつて、小さい巻き径の時でも、
その巻き強度に十分耐えることができる。また加
圧する境界部に傾斜を設けるとその部分からの亀
裂はなくより効果的である。
As mentioned above, by pressurizing and compressing the part of the porous body corresponding to the winding start end of the electrode to make it have a low porosity before filling the active material, the amount of active material filled into this part is limited. The amount of active material in the skeleton made of the sponge-like porous metal material is reduced, allowing the skeleton to have more flexibility and reducing stress on the skeleton. Therefore, even when the winding diameter is small,
It can sufficiently withstand the winding strength. Moreover, if the boundary part to be pressurized is provided with an inclination, there will be no cracks from that part, making it more effective.

以上のように、本発明によれば、スポンジ状金
属多孔体を用いる渦巻形電極の亀裂や破断による
寿命低下を防止し、長寿命で、高容量の電極を得
ることができる。
As described above, according to the present invention, it is possible to prevent a decrease in the life of a spiral electrode using a sponge-like porous metal material due to cracking or breakage, and to obtain an electrode with a long life and high capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスポンジ状金属多孔体の概略構成を示
す模式図、第2図は多数の電極を作るためのスポ
ンジ状金属多孔体の連続するシートの平面図、第
3図および第4図はその横断面の構成例を示す
図、第5図は本発明による電極の実施例を示す正
面図、第6図は渦巻状に巻き始めた極板群の横断
面図である。 1……格子、2……空間部、3……スポンジ状
多孔体のシート、4……低多孔度の部分、5……
高多孔度の部分。
Fig. 1 is a schematic diagram showing the general structure of a sponge-like porous metal material, Fig. 2 is a plan view of a continuous sheet of a sponge-like porous metal material for making a large number of electrodes, and Figs. 3 and 4 are the same. FIG. 5 is a front view showing an example of the electrode according to the present invention, and FIG. 6 is a cross-sectional view of a group of electrode plates that have started to be spirally wound. 1... Lattice, 2... Space, 3... Sponge-like porous sheet, 4... Low porosity part, 5...
Highly porous areas.

Claims (1)

【特許請求の範囲】[Claims] 1 三次元的構造を有するスポンジ状金属多孔体
を活物質の保持体としこれに活物質を保持させて
渦巻状の巻回する電極の製造法において、電極の
巻始め端部に相当する多孔体部分を、多孔体の元
の厚さの5〜50%の圧縮度合で加圧圧縮して他の
部分より低多孔度にする工程と、次にこの多孔体
全体に活物質を充填する工程と、電極全体を所望
とする電極厚さに加圧圧縮する工程とを有するこ
とを特徴とする電池用渦巻形電極の製造法。
1 In a method for manufacturing an electrode in which a spongy metal porous body having a three-dimensional structure is used as a holder for an active material and the active material is held on this and spirally wound, the porous body corresponding to the winding start end of the electrode is a step of pressurizing the portion to a degree of compression of 5 to 50% of the original thickness of the porous body to make it have a lower porosity than other portions, and then filling the entire porous body with an active material. 1. A method for manufacturing a spiral electrode for a battery, comprising the steps of compressing the entire electrode under pressure to a desired electrode thickness.
JP55119187A 1980-08-28 1980-08-28 Manufacture of swirled type battery electrode Granted JPS5743361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55119187A JPS5743361A (en) 1980-08-28 1980-08-28 Manufacture of swirled type battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55119187A JPS5743361A (en) 1980-08-28 1980-08-28 Manufacture of swirled type battery electrode

Publications (2)

Publication Number Publication Date
JPS5743361A JPS5743361A (en) 1982-03-11
JPS6355186B2 true JPS6355186B2 (en) 1988-11-01

Family

ID=14755060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55119187A Granted JPS5743361A (en) 1980-08-28 1980-08-28 Manufacture of swirled type battery electrode

Country Status (1)

Country Link
JP (1) JPS5743361A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256584A (en) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd Electrochemical element

Also Published As

Publication number Publication date
JPS5743361A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
US4783384A (en) Electrochemical cell
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
US6551737B1 (en) Cylindrical alkaline storage battery
JPS6355186B2 (en)
JPS63314777A (en) Sealed type ni-h accumulator
JPS62136759A (en) Manufacture of electrode for battery
JPS6242448Y2 (en)
US6946222B2 (en) Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery
JP2984806B2 (en) Sealed nickel-hydrogen secondary battery
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2680642B2 (en) Method for manufacturing zinc electrode for alkaline storage battery
JPS5834902B2 (en) battery electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JPS5832210Y2 (en) Cylindrical alkaline storage battery
JPS5931830B2 (en) Manufacturing method of cylindrical electrode
JP4567990B2 (en) Secondary battery
JPS63261672A (en) Electrode for alkaline storage battery and its manufacture
JP3015455B2 (en) Electrode plate for battery
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP2558587B2 (en) Negative electrode for nickel-hydrogen secondary battery
JPH06295727A (en) Sealed alkaline storage battery