JPH0568066B2 - - Google Patents

Info

Publication number
JPH0568066B2
JPH0568066B2 JP58235071A JP23507183A JPH0568066B2 JP H0568066 B2 JPH0568066 B2 JP H0568066B2 JP 58235071 A JP58235071 A JP 58235071A JP 23507183 A JP23507183 A JP 23507183A JP H0568066 B2 JPH0568066 B2 JP H0568066B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
current collector
hydrogen storage
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58235071A
Other languages
Japanese (ja)
Other versions
JPS60130053A (en
Inventor
Motoi Kanda
Juji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58235071A priority Critical patent/JPS60130053A/en
Publication of JPS60130053A publication Critical patent/JPS60130053A/en
Publication of JPH0568066B2 publication Critical patent/JPH0568066B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素吸蔵合金電極を使用する密閉型二
次電池に係わり、さらに詳しくは、水素吸蔵合金
と結着剤とからなるいわゆる結着方式の水素吸蔵
合金電極による負極を有する密閉型二次電池の改
良についてものもである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a sealed secondary battery using a hydrogen storage alloy electrode, and more specifically to a so-called binding type secondary battery that uses a hydrogen storage alloy and a binder. It also concerns the improvement of a sealed secondary battery having a negative electrode using a hydrogen storage alloy electrode.

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

水素吸蔵合金は水素を吸蔵すると微粉化するた
め、これを水素電極として電池負極に摘用する場
合には、あらかじめ粉末状にした合金と結着剤と
を混合してペースト状あるいはシート状混練体と
し、これを集電体に加圧着接して一体化したいわ
ゆる結着方式の電極体として使用する。この方法
は簡便である反面いくつかの欠点もある。その一
つは、水素吸蔵合金電極を密閉型電池の負極とし
て使用する場合、酸素(O2)ガス吸収速度がお
そいということである。密閉型電池では電池充電
の末期に正極から発生する酸素(O2)ガスを負
極が吸収する必要があるが、このとき結着方式の
負極は焼結体基板の負極よりもその吸収速度がお
そいことがあげられる。その理由は、結着方式の
負極は焼結体基板の負極に比較し柔軟性に富んで
いるために、セパレータを介して正極と密着させ
た場合にセパレータと負極の間に微小な空間が生
じにくいこと、および焼結体基板による負極より
も多孔度が小さいことという二つの原因により
O2ガスが負極全面に到達しにくいためである。
そのために結着方式の水素吸蔵合金負極を有する
電池では電池内圧が上昇し、ないしはそれによる
電池のふくれ、または漏液がおこりやすかつた。
Hydrogen storage alloys become pulverized when they absorb hydrogen, so if they are to be used as hydrogen electrodes in battery negative electrodes, they must be mixed with a binder and a paste-like or sheet-like kneaded product. This is used as a so-called bonding type electrode body which is integrated with a current collector by pressure bonding. Although this method is simple, it also has some drawbacks. One of them is that when a hydrogen storage alloy electrode is used as a negative electrode of a sealed battery, the oxygen (O 2 ) gas absorption rate is slow. In a sealed battery, the negative electrode must absorb oxygen (O 2 ) gas generated from the positive electrode at the end of battery charging, but the absorption rate of a bonded negative electrode is slower than that of a negative electrode with a sintered substrate. There are many things that can be mentioned. The reason for this is that bonded negative electrodes are more flexible than negative electrodes made of sintered substrates, so when they are brought into close contact with the positive electrode through a separator, a small space is created between the separator and the negative electrode. This is due to two reasons: the negative electrode is difficult to use, and the porosity is smaller than that of the negative electrode made of a sintered substrate.
This is because it is difficult for O 2 gas to reach the entire surface of the negative electrode.
For this reason, in batteries having a bonding type hydrogen storage alloy negative electrode, the internal pressure of the battery increases, and this tends to cause the battery to swell or leak.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を解決するものであり、い
わゆる結着方式の水素吸蔵合金電極による負極を
有する密閉型の二次電池において、負極の酸素吸
収速度を速くして電池内圧の上昇、ないしはそれ
による電池のふくれ、または漏液を防止すること
を目的とする。
The present invention solves the above-mentioned drawbacks, and is intended to increase the oxygen absorption rate of the negative electrode in a sealed secondary battery having a negative electrode using a so-called binding type hydrogen storage alloy electrode, thereby increasing the internal pressure of the battery, or increasing the oxygen absorption rate of the negative electrode. The purpose is to prevent battery swelling or leakage due to

〔発明の概要〕[Summary of the invention]

本発明は、水素吸蔵合金と結着剤とからなるシ
ート混練体を集電体の両側から着接一体化した水
素吸蔵合金電極を負極に使用する密閉型二次電池
において、この負極がセパレータを介して正極と
互いに渦巻状に捲回されて、その最外周を占める
ように構成されており、かつその最外周における
外側のシート状混練体が捲回方向とは異なつた方
向に複数の溝状の欠落部を有し、その欠落部では
集電体の一部が露出するような状態で円筒形金属
缶に収納されていることを特徴とする。すなわ
ち、最外周を占める負極電極体と金属缶の間に気
体が十分に拡散できるような溝状の欠落部を設け
るようにするものである。
The present invention provides a sealed secondary battery that uses a hydrogen storage alloy electrode as a negative electrode, in which a kneaded sheet consisting of a hydrogen storage alloy and a binder is bonded and integrated from both sides of a current collector, in which the negative electrode has a separator. It is configured to be wound spirally with the positive electrode through the coil and occupy the outermost periphery, and the outer sheet-like kneaded body on the outermost periphery has a plurality of groove-like grooves in a direction different from the winding direction. The current collector is housed in a cylindrical metal can in such a manner that a part of the current collector is exposed in the missing part. That is, a groove-shaped cutout is provided between the negative electrode body occupying the outermost periphery and the metal can so that gas can be sufficiently diffused.

従来の結着方式の負極は、第1図に斜視的に示
すように集電体の両側からシート状混練体が全面
に着接されている。したがつてこれがセパレータ
を介して正極と渦巻状に捲回されて、最外周に負
極が露出した状態でその全体を金属缶に入れた状
態では、最外周のシート状混練体と金属缶とが密
着し、空間がほとんど生じない。これに対して、
本発明の場合は、例えば第2図のように捲回の最
外周に相当する部分の外側のシート状混練体を、
捲回方向とは異なる方向に複数の個所において欠
落させ溝を生じさせる(この図ではA→Bへ捲回
し、Dが外側となる。溝の方向はE←→→F方向に
設けてある)。そしてこの溝には集電体が露出す
るようにしてある。よつてこれをセパレータを介
して正極と捲回したものを金属缶に収納すれば、
金属缶と負極の間に気体の拡散する通路ができる
ことになり、酸素ガスの吸収は促進される。さら
にその部分には集電体が露出しているのでその付
近には気/液/固体の三相界面が生じやすくこの
ガス吸収は速められることになる。
In the conventional binding type negative electrode, as shown in perspective in FIG. 1, sheet-like kneaded bodies are adhered to the entire surface of the current collector from both sides. Therefore, if this is spirally wound with the positive electrode through a separator and the whole is placed in a metal can with the negative electrode exposed on the outermost periphery, the sheet-like kneaded body on the outermost periphery and the metal can will be separated. They fit closely together, leaving almost no space. On the contrary,
In the case of the present invention, for example, as shown in FIG.
Grooves are created by cutting out at multiple locations in a direction different from the winding direction (in this figure, it is wound from A to B, with D being the outside. The direction of the grooves is in the E←→→F direction). . The current collector is exposed in this groove. Therefore, if this is wound together with the positive electrode through a separator and stored in a metal can,
A passage for gas diffusion is created between the metal can and the negative electrode, and absorption of oxygen gas is promoted. Furthermore, since the current collector is exposed in that area, a gas/liquid/solid three-phase interface tends to occur in the vicinity, and this gas absorption is accelerated.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を実施例にて説明する。負極には
LaNi5を用い正極ニツケル酸化物を使うNi/H2
電池を例にとる。
Next, the present invention will be explained using examples. For the negative electrode
Ni/H 2 using LaNi 5 and cathode nickel oxide
Take batteries as an example.

まず、負極電極体は次のようにして作成した。
50μm程度の粒径のLaNi5の粉末を重量で90%と
り、次に結着剤としてポリテトラフルオロエチレ
ン(PIFE)の分散液を選び、これが固形分のみ
で重量が10部になるようにとり、この両者を混
合、混練して厚さ0.4mmのシート状混練体を作成
した。次に集電体として厚さ0.25mm、開口が40メ
ツシユで、大きさ80mm×40mmのニツケルネツトを
用意する。これにシート状混練体を両側からプレ
ス機で圧着し、集電体から外部へはみだした混練
体を切りおとして電極体を作成した。次に捲回の
最外周に相当する部分(80mmの長さのうちの後半
の30mm)のところに第2図に示されるものと同様
に、混練体の一部をはがしとり集電体を欠落させ
た。すなわち第3図の断面図に示すように切りと
る巾は1mmとし、残す巾は2mmとし、計10本の溝
をつけた。溝の深さは約0.3mmある。
First, a negative electrode body was created as follows.
Take 90% by weight of LaNi 5 powder with a particle size of about 50 μm, then select a dispersion of polytetrafluoroethylene (PIFE) as a binder, take it so that the solid content is 10 parts by weight, Both were mixed and kneaded to create a sheet-like kneaded body with a thickness of 0.4 mm. Next, prepare a nickel net with a thickness of 0.25 mm, an opening of 40 meshes, and a size of 80 mm x 40 mm as a current collector. A sheet-like kneaded body was pressed onto this from both sides using a press machine, and the kneaded body protruding from the current collector was cut off to prepare an electrode body. Next, at the part corresponding to the outermost circumference of the winding (the latter 30 mm of the length of 80 mm), a part of the kneaded body is peeled off and a current collector is placed in the same way as shown in Figure 2. Made it missing. That is, as shown in the cross-sectional view of Figure 3, the width to be cut out was 1 mm, and the remaining width was 2 mm, making a total of 10 grooves. The depth of the groove is approximately 0.3mm.

この負極電極体と別に用意したニツケル正極を
セパレータを介して捲回し渦巻状になし、これを
単3形金属電池ケースに入れた。8N−KOHをこ
れに注入後、封口して本発明に係わる電池とし
た。このようにして作成した電池の公称容量は
450mAhであつた。なお、このとき負極の理論容
量は720mAhである。
This negative electrode body and a separately prepared nickel positive electrode were wound into a spiral shape with a separator interposed therebetween, and this was placed in an AA metal battery case. After injecting 8N-KOH into this, it was sealed to obtain a battery according to the present invention. The nominal capacity of the battery created in this way is
It was 450mAh. Note that the theoretical capacity of the negative electrode at this time is 720mAh.

比較例として、従来方法による負極すなわち混
練体に切り込みのないものによつて、本発明例と
同様に電池を作成した。すなわち、本発明の実施
例の負極で使用したものと同一材料、同一形状の
集電体の両側から、第1図と同じように全面的に
混練体を着接した負極を有する電池である。電池
の公称容量は450mAh負極の理論容量は750mAh
である。
As a comparative example, a battery was prepared in the same manner as the inventive example using a conventional negative electrode, that is, one in which the kneaded body had no incisions. That is, the battery has a negative electrode in which a kneaded body is adhered to the entire surface of the current collector made of the same material and in the same shape as that used in the negative electrode of the embodiment of the present invention, as shown in FIG. 1, from both sides. The nominal capacity of the battery is 450mAh, and the theoretical capacity of the negative electrode is 750mAh.
It is.

これらの電池を225mAh(1/2.C)で3時間充
電し、その後電池を開回路に保つたときの電池内
圧の変化を第4図に示す。曲線Aは本発明による
実施例、曲線Bは比較例の結果である。図に示す
ように電池内圧が上昇しはじめる時点はほぼ同一
であるが、実施例の方が比較例に対して、その後
の圧力の最大値が小さく、また休止時での圧力の
低下の速度が速いことがわかる。
Figure 4 shows the change in battery internal pressure when these batteries were charged at 225mAh (1/2.C) for 3 hours and then kept in open circuit. Curve A is the result of the example according to the present invention, and curve B is the result of the comparative example. As shown in the figure, the point at which the battery internal pressure starts to rise is almost the same, but the maximum value of the pressure thereafter is smaller in the example than in the comparative example, and the rate of pressure drop during rest is faster. I know it's fast.

以上の実施例では集電体上に混練体が着接され
ない溝の部分すなわち集電体の露出部分は、捲回
方向と直交しているが、その方向は斜交してもよ
い。また混練体を欠落させる場合、実施例では一
度集電体に着接した後ハク離させたが、はじめか
ら欠落部には混練体を着接させないようにして電
極体を作成してもよい。この混練体の欠落による
溝の数については負極の容量が必要量だけ確保さ
れるなら、多いほど効果がある。またその巾につ
いては0.2mm以上で効果があり、それ以下では、
電解液がそこを覆つてしまつて気体が通らなくな
るので好ましくない。また上限はないが、実質的
に2mm以上では効果はそれ以下の場合と差異がな
い。
In the above embodiments, the groove portion where the kneaded body is not adhered onto the current collector, that is, the exposed portion of the current collector, is perpendicular to the winding direction, but the direction may be oblique to the winding direction. In addition, when the kneaded body is to be removed, in the example, it was once attached to the current collector and then peeled off, but the electrode body may be created without adhering the kneaded body to the missing part from the beginning. Regarding the number of grooves caused by the missing kneaded material, the larger the number, the more effective it is, as long as the required capacity of the negative electrode is secured. Regarding the width, it is effective if it is 0.2mm or more, and if it is less than that,
This is not preferable because the electrolyte will cover it and gas will not be able to pass through. Although there is no upper limit, there is virtually no difference in the effect at 2 mm or more than at 2 mm or less.

本発明は、負極に使用する水素吸蔵合金は実施
例でのLaNi5の他の全てのものに摘用できる。ま
た正極はニツケル電極(NiOOH)以外に銀電極
(AgOまたはAg2O)等でもよい。
In the present invention, the hydrogen storage alloy used for the negative electrode can be applied to all other hydrogen storage alloys other than LaNi 5 in the examples. Further, the positive electrode may be a silver electrode (AgO or Ag 2 O) in addition to a nickel electrode (NiOOH).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の負極電極体の斜視図、第2図は
本発明に係わる負極電極体の斜視図、第3図は本
発明に係る負極電極体の断面図である。第4図は
本発明に係る密閉型二次電池の特性を示す曲線図
である。 1……混練体、2……集電体、3……リード。
FIG. 1 is a perspective view of a conventional negative electrode body, FIG. 2 is a perspective view of a negative electrode body according to the present invention, and FIG. 3 is a sectional view of the negative electrode body according to the present invention. FIG. 4 is a curve diagram showing the characteristics of the sealed secondary battery according to the present invention. 1... Kneaded body, 2... Current collector, 3... Lead.

Claims (1)

【特許請求の範囲】 1 水素吸蔵合金と結着剤からなるシート状混練
体を集電体の両側から着接一体化した水素吸蔵合
金電極を負極とする密閉型二次電池において、 前記負極がセパレータを介して正極と渦巻状に
捲回されて最外周を占めるように構成されてお
り、かつ該最外周における負極の外側のシート状
混練体が、捲回方向とは異なつた方向に複数の溝
状の欠落部を有し、該欠落部は集電体の一部が露
出するような状態で円筒形金属缶に収納されてい
ることを特徴とする水素吸蔵合金電極を負極とす
る密閉型二次電池。
[Scope of Claims] 1. A sealed secondary battery whose negative electrode is a hydrogen storage alloy electrode in which a sheet-like kneaded body of a hydrogen storage alloy and a binder is integrally bonded from both sides of a current collector, wherein the negative electrode is It is configured to be spirally wound with the positive electrode through a separator and occupy the outermost periphery, and the sheet-like kneaded body outside the negative electrode in the outermost periphery has a plurality of sheets in a direction different from the winding direction. A closed type using a hydrogen storage alloy electrode as a negative electrode, which has a groove-shaped cutout and is housed in a cylindrical metal can with the cutout exposing a part of the current collector. Secondary battery.
JP58235071A 1983-12-15 1983-12-15 Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode Granted JPS60130053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235071A JPS60130053A (en) 1983-12-15 1983-12-15 Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235071A JPS60130053A (en) 1983-12-15 1983-12-15 Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Publications (2)

Publication Number Publication Date
JPS60130053A JPS60130053A (en) 1985-07-11
JPH0568066B2 true JPH0568066B2 (en) 1993-09-28

Family

ID=16980633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235071A Granted JPS60130053A (en) 1983-12-15 1983-12-15 Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Country Status (1)

Country Link
JP (1) JPS60130053A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598891B2 (en) * 1984-10-18 1997-04-09 三洋電機株式会社 Metal-hydrogen alkaline storage battery
JPH07107842B2 (en) * 1985-02-20 1995-11-15 株式会社東芝 Hydrogen storage battery
JPH0636362B2 (en) * 1985-11-12 1994-05-11 三洋電機株式会社 Metal-hydrogen alkaline storage battery
NL8701778A (en) * 1987-07-28 1989-02-16 Philips Nv ELECTROCHEMICAL CELL.
JPH08339821A (en) * 1996-07-30 1996-12-24 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery

Also Published As

Publication number Publication date
JPS60130053A (en) 1985-07-11

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2000021435A (en) Battery
US3871921A (en) Flat alkaline cell construction and method for assembling the same
US3923544A (en) Zinc electrode and method of making same
JP2762782B2 (en) Sealed battery
JP2001023681A (en) Battery having winding structure electrode body
JPH0568066B2 (en)
US3075032A (en) Electrode assembly for electric batteries or accumulators
JPH0570263B2 (en)
JP3168623B2 (en) Prismatic metal hydride storage battery
JP4017212B2 (en) Alkaline secondary battery having a wound structure electrode body
JPH05283071A (en) Activation of metal hydride storage battery
JP3973115B2 (en) Battery having an electrode body with a wound structure
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2001176541A (en) Alkaline storage battery
JPH0676857A (en) Nickel-hydrogen battery
JPH06267583A (en) Spiral-shaped cell
JP3268013B2 (en) Hydrogen storage alloy electrode
JP2983135B2 (en) Alkaline secondary battery
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2908896B2 (en) Electrodes for spiral-wound batteries
JPH10116626A (en) Manufacture of nickel hydrogen secondary battery
JPH0630251B2 (en) Nickel-hydrogen secondary battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH03266371A (en) Cylindrical sealed type nickel storage battery