JPS62136559A - Manufacture of copper alloy material for electronic equipment - Google Patents

Manufacture of copper alloy material for electronic equipment

Info

Publication number
JPS62136559A
JPS62136559A JP27839585A JP27839585A JPS62136559A JP S62136559 A JPS62136559 A JP S62136559A JP 27839585 A JP27839585 A JP 27839585A JP 27839585 A JP27839585 A JP 27839585A JP S62136559 A JPS62136559 A JP S62136559A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
working
rate
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27839585A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Yoshimasa Ooyama
大山 好正
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27839585A priority Critical patent/JPS62136559A/en
Publication of JPS62136559A publication Critical patent/JPS62136559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve the strength, electric conductivity and workability by hot working and cold working a Cu alloy contg. restricted amounts of Cr, Sn and P under prescribed conditions. CONSTITUTION:A Cu alloy consisting of 0.2-0.85wt% Cr, 0.02-0.35wt% Sn, 0.003-0.15wt% P and the balance Cu is manufactured by refining. The alloy is hot worked at >=600 deg.C, cooled to <=450 deg.C at >=1 deg.C/sec cooling rate and cold worked. During this cold working, heat treatment at 450-650 deg.C is carried out at least once and the total working rate after the 1st heat treatment is regulated to <=90%.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は高い導電性(伝熱性)と強い機械的特性を有す
る電子機器用銅合金材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a copper alloy material for electronic devices having high electrical conductivity (heat conductivity) and strong mechanical properties.

〔従来の技術〕[Conventional technology]

一般にCU金合金電子機器のリードフレーム、リード線
、コネクター、接点、端子、電極用に多用されており、
導電性(伝熱性)と機械的特性の優れた実用材料として
知られている。特にリン青銅は鉄鋼やNi合金に匹敵す
る強度(50〜70Kg/7>を有しているが、導電率
はCU本来の導電性の1710〜115程度(10〜2
5%IAC3)に低下する。そのため導電性と強度を必
要とする用途、例えば半導体リードフレームにはCu−
2,4wt%F e −0,12vt%Zn−P合金(
以下wt%を%と略記)やCu−1,5%Fe−0,8
5%Qr−0.55%5n−P合金が用いられ、導電率
50〜65%lAC3、強度45〜56Kg/Inl7
1の特性を示す。
Generally used for lead frames, lead wires, connectors, contacts, terminals, and electrodes of CU gold alloy electronic devices.
It is known as a practical material with excellent electrical conductivity (heat conductivity) and mechanical properties. In particular, phosphor bronze has a strength comparable to steel or Ni alloy (50 to 70 kg/7), but its electrical conductivity is about 1710 to 115 (10 to 2
5% IAC3). Therefore, for applications that require conductivity and strength, such as semiconductor lead frames, Cu-
2,4wt%Fe-0,12vt%Zn-P alloy (
Hereinafter, wt% is abbreviated as %), Cu-1,5%Fe-0,8
5%Qr-0.55%5n-P alloy is used, conductivity 50-65%lAC3, strength 45-56Kg/Inl7
1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年電子部品の小型化、高密度化、特に半導体ICに代
表される高集積ICでは、より高い導電率が要求され、
更に精密加工に耐え得る加工性が求められている。例え
ば従来多量生産されるDIP型ICに代り、より小型で
高密度なPLCC型ハッケージでは、上記Cu−Fe系
合金は加工時に曲げ割れを起したり、板材として等方性
に欠けるため、一定寸法の仕上げが困難となる。このた
め導電率80%lAC3以上のCu−Zr−Cr系合金
が提案されているが、活性なzrを用いるため、溶解を
特殊な雰囲気、望ましくは真空中で行なわねばならず、
コスト高となるため実用性に乏しい。そこで小型化、高
密度化に応える高い導電率と機械的強度を有し、かつ加
工性、特に板条として等法的に均質な加工性を有する安
価なCU金合金開発が強く望まれている。
In recent years, electronic components have become smaller and more dense, and in particular, highly integrated ICs such as semiconductor ICs require higher conductivity.
Furthermore, it is required to have workability that can withstand precision machining. For example, in place of conventionally mass-produced DIP-type ICs, smaller, higher-density PLCC-type hackses are required, since the Cu-Fe alloy described above causes bending cracks during processing and lacks isotropy as a plate material. Finishing becomes difficult. For this reason, a Cu-Zr-Cr alloy with a conductivity of 80%lAC3 or higher has been proposed, but since active Zr is used, melting must be carried out in a special atmosphere, preferably in a vacuum.
It is not practical due to high cost. Therefore, there is a strong desire to develop an inexpensive CU gold alloy that has high electrical conductivity and mechanical strength to meet the needs of miniaturization and high density, and has workability, especially legally homogeneous workability as a plate and strip. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、導電率70〜90
%lAC3,強度45〜80に91/−を有し、等方均
質な加工性を有する電子機器用銅合材の製造法を開発し
たものである。
In view of this, as a result of various studies, the present invention has an electrical conductivity of 70 to 90.
%lAC3, a strength of 45 to 80 to 91/-, and a method for producing a copper alloy material for electronic devices that has isotropic and homogeneous workability.

即ら本発明製造法の一つは、Cr0.20〜0.85%
、S n 0.02〜0.35%、P O,003〜0
.15%を含み、残部Cuからなる合金を600℃以上
で熱間加工した後、450℃以下まで1℃/ Sec以
上の速度で冷却し、しかる後少なくとも1回の450〜
650℃の熱処理を含む冷間加工を施し、第1回熱処理
以降の総加工率を90%以下とすることを特徴とするも
のでおる。
That is, one of the manufacturing methods of the present invention is 0.20 to 0.85% Cr.
, S n 0.02-0.35%, P O, 003-0
.. After hot-working an alloy containing 15% Cu and the remainder consisting of Cu at 600°C or higher, it is cooled to 450°C or lower at a rate of 1°C/Sec or higher, and then processed at least once at 450°C or higher.
It is characterized in that cold working including heat treatment at 650° C. is performed, and the total working rate after the first heat treatment is 90% or less.

また本発明製造法の他の一つは、Cr0.20〜0.8
5%、S no、02〜0.35%、P O,003〜
0.15%、Ni又はCoを0.5%以下含み、残部C
LIからなる合金を600℃以上で熱間加工した後、4
50℃以下まで1°C/ sec以上の速度で冷却し、
しかる後少なくとも1回の450〜650℃の熱処理を
含む冷間加工を施し、第1回熱処理以降の総加工率を9
0%以下とすることを特徴とするものである。
Another method of the present invention is Cr0.20-0.8
5%, S no, 02~0.35%, P O, 003~
0.15%, containing 0.5% or less of Ni or Co, the balance being C
After hot working an alloy consisting of LI at 600°C or higher, 4
Cool at a rate of 1°C/sec or more to 50°C or lower,
After that, cold working including at least one heat treatment at 450 to 650°C is performed, and the total working rate after the first heat treatment is 9.
It is characterized by being 0% or less.

本発明において、熱間加工する素材には、例えば溶解鋳
造された上記合金組成の鋳塊を用い、これに600°C
以上通例900〜700 ℃で熱間加工を加える。熱間
加工した素材は直ちに水冷又は空冷により1°C/ S
ec以上の速度で450°C以下まで冷却し、ミーリン
グ等により表面を調整する。これに10〜60%の冷間
加工を施してから450〜650℃で15分〜4時間熱
処理し、再び冷間加工を施し、必要に応じて再熱処理を
加えて所定の寸法に仕上げる。この冷間加工において最
初の熱処理からの総加工率を90%以下とし、冷間加工
俊に必要に応じて250〜400℃の低温焼鈍を付加す
る。
In the present invention, as the material to be hot-processed, for example, an ingot having the above-mentioned alloy composition is melted and cast, and the material is heated to 600°C.
The above is usually subjected to hot working at a temperature of 900 to 700°C. Hot-processed materials are immediately cooled to 1°C/S by water or air cooling.
Cool to 450°C or less at a rate of ec or higher, and adjust the surface by milling or the like. This is subjected to 10 to 60% cold working, then heat treated at 450 to 650°C for 15 minutes to 4 hours, cold worked again, and if necessary, reheated to finish it into predetermined dimensions. In this cold working, the total working rate from the first heat treatment is set to 90% or less, and low-temperature annealing at 250 to 400° C. is added as necessary to the cold working.

〔作用〕[Effect]

本発明において、合金組成を上記の如く限定したのは、
導電率70〜90%lAC3、強度45〜60Kl/r
rrt/rの等方均質な加工性を有するCLI合金材を
得るためである。即ちCrはCUの固溶限以上で析出し
、高い導電率を保ちながら強度を向上させるもので、O
r含有量を0.2〜0.85%と限定したのは、0.2
%未満では充分な強化効果が得られず。0.85%を越
えると過剰の析出Crが加工性を阻害するためである。
In the present invention, the alloy composition is limited as described above.
Conductivity 70-90%lAC3, strength 45-60Kl/r
This is to obtain a CLI alloy material having isotropic and homogeneous workability of rrt/r. That is, Cr precipitates above the solid solubility limit of CU and improves strength while maintaining high electrical conductivity.
The r content was limited to 0.2 to 0.85% because 0.2
If it is less than %, sufficient strengthening effect cannot be obtained. This is because if it exceeds 0.85%, excessive precipitated Cr will inhibit workability.

尚加工性を重視する場合にはCr含有吊を0.45%以
下とすることが望ましい。snは固溶体として強化に対
し、Orの効果を補強すると共に加工性を改善するもの
で、詳細は不明であるが、その第1は熱間加工工程にお
ける粗大Cr粒の析出を抑止し、冷間加工と熱処理によ
り微細なCr粒の析出を増進する。しかして3n含有量
を0.02〜0.35%と限定したのは、0.02%未
満ではその効果が不充分であり、0.35%を越えると
導電率の低下が著しくなるためである。
If workability is important, it is desirable that the Cr content is 0.45% or less. As a solid solution, sn strengthens the effect of Or and improves workability.The details are unknown, but the first effect is to suppress the precipitation of coarse Cr grains during the hot working process, and to strengthen the cold working process. Precipitation of fine Cr grains is promoted by processing and heat treatment. However, the reason why the 3N content was limited to 0.02 to 0.35% was because if it is less than 0.02%, the effect is insufficient, and if it exceeds 0.35%, the conductivity will decrease significantly. be.

PはCLI−3n−Cr合金板条休体有の圧延による析
出物や結晶粒の配向性の原因となる繊維状Crの発達を
抑止するもので、P含有量を0.003〜0.15%と
限定したのは、0.003%未満では上記効果が無く、
0.15%を越えると導電率の低下が著しくなるためで
ある。Ni又はCoはPどの併用によりPの効果を一層
有効なものとするためで、Ni又はCo含有量を0.5
%以下と限定したのは0.5%を越えると導電率の低下
が著しくなるためである。
P suppresses the development of fibrous Cr that causes precipitates and crystal grain orientation during rolling of the CLI-3n-Cr alloy sheet with breakage, and the P content is set to 0.003 to 0.15. %, because if it is less than 0.003%, it will not have the above effect.
This is because if it exceeds 0.15%, the conductivity will decrease significantly. Ni or Co is used in combination with P to make the effect of P more effective, and the Ni or Co content is set to 0.5.
% or less because if it exceeds 0.5%, the conductivity will drop significantly.

次に上記組成の合金を600℃以上で熱間圧延した後、
450℃以下まで1℃/ Sec以上の速度で冷却し、
しかる1麦少なくとも1回の450〜650℃の熱処理
を含む冷間加工を施すのは、上記3n含有による作用が
600℃以上、望ましくは850〜1ooo℃の熱間加
工により得られ、熱間加工後、少なくとも450℃まで
の冷却速度を1℃/sec以上としたときに実現され、
より低い冷却速度では粗大粒の発達となる。次に過飽和
状態で熱間加工した素材を冷間加工歪の作用により、4
50〜650℃の熱処理で微細粒状に析出させる。しか
る後再び冷間加工を付加して所望寸法に仕上げるためで
ある。
Next, after hot rolling the alloy having the above composition at 600°C or higher,
Cool down to 450°C or less at a rate of 1°C/Sec or more,
The reason why such wheat is subjected to cold processing including at least one heat treatment at 450 to 650°C is that the effect of the above 3n content is obtained by hot processing at 600°C or higher, preferably 850 to 100°C, and hot processing is performed. After that, it is realized when the cooling rate to at least 450°C is 1°C/sec or more,
Lower cooling rates result in the development of coarse grains. Next, the hot-worked material in a supersaturated state is subjected to cold working strain to produce 4
It is precipitated into fine particles by heat treatment at 50 to 650°C. This is because cold working is then added again to finish it to the desired dimensions.

圧延板条体において、圧延により析出物や結晶粒が配向
するので、圧延方向とその直角方向での機械的特性に方
向性を生じる。Qu−3n−〇r金合金その傾向が著し
く、その主因は01粒が繊維状に変形されてロール方向
に配向するためであることを知り、これを少ff1P又
はPとNiの添加により前記繊維状Crの発達を抑止し
たものである。
In a rolled plate strip, precipitates and crystal grains are oriented by rolling, resulting in directional properties in the mechanical properties in the rolling direction and the direction perpendicular to the rolling direction. Qu-3n-〇r gold alloy This tendency is remarkable, and we learned that the main reason for this is that the 01 grains are deformed into fibers and oriented in the roll direction. This suppresses the growth of Cr.

更に本発明では熱処理後の総冷間加工率を90%以下と
することにより、繊維状発達を抑えて均質な加工性を向
上させることができる。これは加工性のみならず電子部
品加工で広く行なわれているエツチングやメッキにおい
ても有効である。例えばメッキやエツチングを均一化す
る。特に高度な均一性が要求される場合にはcr含有量
を0.5%以下とすることが望ましい。
Further, in the present invention, by controlling the total cold working rate after heat treatment to 90% or less, it is possible to suppress the development of fibers and improve homogeneous workability. This is effective not only in processability but also in etching and plating, which are widely used in electronic component processing. For example, to make plating and etching uniform. In particular, when a high degree of uniformity is required, it is desirable that the cr content be 0.5% or less.

また本発明は合金の大気中溶解においてPの添加が脱酸
作用と鋳造性を向上する。勿論不活性ガス中での溶解も
可能であり、この場合にもTiやZr等の活性元素より
残留酸素濃度がゆるくとれるので、設備上も有利であり
、くず等の転回も可能となるなど経済性に優れた方法と
いえる。
Furthermore, in the present invention, the addition of P improves the deoxidizing effect and castability when the alloy is melted in the atmosphere. Of course, it is also possible to melt in an inert gas, and in this case, the residual oxygen concentration can be maintained more slowly than with active elements such as Ti and Zr, which is advantageous in terms of equipment, and it is also economical, as waste can be turned around. It can be said that this method is excellent in terms of sex.

〔実施例〕〔Example〕

第1表に示す組成の合金を大気中の溶解鋳造により、厚
ざ30.、巾40.、長250mmの鋳塊として水冷し
た。これを約850℃に加熱して厚ざ5a11に熱間圧
延し、600〜690℃で熱間圧延を終了し、直ちに冷
却条件を変えて冷却した。この際450°Cまでの平均
冷却速度を実測した。次にこれを酸洗してスケールを除
去してから厚さ1.2mまで冷間圧延し、続いてAr雰
囲気中で1時間熱処理し、再び冷間圧延を行なって所定
のサイズに仕上げた。尚一部は冷間圧延の間に再熱処理
を施し、一部のものは冷間圧延後に300°Cで0.5
時間の低温焼鈍を加えた。これらの加工条件を第2表に
示す。
An alloy having the composition shown in Table 1 was melted and cast in the atmosphere to a thickness of 30. , width 40. , and water-cooled as an ingot with a length of 250 mm. This was heated to about 850°C and hot rolled to a thickness of 5a11, the hot rolling was finished at 600 to 690°C, and the cooling conditions were immediately changed to cool it. At this time, the average cooling rate up to 450°C was actually measured. Next, this was pickled to remove scale, cold rolled to a thickness of 1.2 m, then heat treated in an Ar atmosphere for 1 hour, and cold rolled again to finish it into a predetermined size. In addition, some are subjected to reheat treatment during cold rolling, and some are heated to 0.5 at 300°C after cold rolling.
Added low temperature annealing for an hour. These processing conditions are shown in Table 2.

次に得られた板材について。導電率、引張強さ、伸びを
求めると同時に、板材の成形加工性を調べるため、エツ
ジ角度(半径R)を種々に変えたダイスを用いて90’
プレス曲げ試験を行ない、曲げ部の割れの有無を顕微鏡
により判定し、割れない限界のR/l (t=板厚)を
求めた。測定は板の圧延方向と圧延と直角方向について
行なった。またメッキ性を見るためHz SO+ −H
20z混液で厚1μ溶解してからホウフッ化物溶(6原
薬品製光沢剤を使用)を用いて光沢5n−10%Pb合
金メッキを5μの厚さに行ない、光沢度を比較した。こ
れ等の結果を従来のCu−2,4%l”e−0,12%
Zn−2合金材及びCu−1,5%Fe−0,85%C
r−〇、55%5n−P合金と比較して第3表に示す。
Next, let's talk about the plate material obtained. In order to determine the electrical conductivity, tensile strength, and elongation, and at the same time examine the formability of the plate material, we used dies with various edge angles (radius R) to
A press bending test was conducted, and the presence or absence of cracks in the bent portion was determined using a microscope, and the limit R/l (t=plate thickness) without cracking was determined. Measurements were made in the rolling direction of the plate and in the direction perpendicular to rolling. Also, to check plating properties, Hz SO+ -H
After melting with a 20z mixture to a thickness of 1μ, a 5n-10% Pb alloy plating with a gloss of 5μ was performed using a borofluoride solution (using a brightener manufactured by 6 Genryaku Co., Ltd.), and the glossiness was compared. These results were compared to the conventional Cu-2,4%l”e-0,12%
Zn-2 alloy material and Cu-1,5%Fe-0,85%C
A comparison with r-〇, 55% 5n-P alloy is shown in Table 3.

第1表〜第3表から明らかなように、本発明法N011
〜6によれば導電率90%以上で強度及び伸も充分にあ
り、曲げ加工性も極めて良好で、従来材N 0.19〜
20と比較し、はるかに優れていることが判る。また本
発明法N0.1とNo、6を比較すればP、!=N i
の併用による効果が判り、本発明法N0.2とNo、3
を比較すれば仕上げ圧延後の低温焼鈍の効果が判る。
As is clear from Tables 1 to 3, the method of the present invention N011
According to ~6, the conductivity is 90% or more, the strength and elongation are sufficient, the bending workability is also extremely good, and the conventional material N0.19 ~
It can be seen that it is much better than 20. Also, if you compare the present invention method No. 1 and No. 6, P! =N i
The effect of the combined use of the present invention method No. 2 and No. 3 was found.
The effect of low-temperature annealing after finish rolling can be seen by comparing.

これに対し本発明法で規定する合金組成範囲より外れる
比較法NO,7〜13及び本発明法で規定する合金組成
範囲内でも加工条件が外れる比較法N o、 14〜1
7ではいずれも導電率、強度及び曲げ加工性のいずれか
1つ以上が劣ることが判る。即ちCr含有量の少ない比
較法NO,7、Sn含有量の少ない比較法No、9及び
P含有量が少ない比較法N0.11では何れも強度の劣
化が著しく、Cr含有量の多い比較法NO,8、Sn含
有量の多い比較法NO,10,P含有量の多い比較法及
びNi含有量の多い比較法では何れも導電率の低下が著
しいばかりか、加工性が悪くなっている。また本発明で
規定する合金組成範囲の合金であっても、熱間圧延後の
冷却速度が遅い比較法N O,14では粗大結晶が発達
し、導電率、強度及び曲げ加工性が劣ることが判る。
On the other hand, comparative methods Nos. 7 to 13, which fall outside the alloy composition range specified by the method of the present invention, and comparative methods No. 14 to 1, whose processing conditions deviate from the alloy composition range specified by the method of the present invention.
It can be seen that all samples No. 7 are inferior in one or more of electrical conductivity, strength, and bending workability. That is, Comparative Method No. 7 with a low Cr content, Comparative Method No. 9 with a low Sn content, and Comparative Method No. 0.11 with a low P content all showed significant deterioration in strength, while Comparative Method No. 7 with a high Cr content , 8, Comparative method with high Sn content NO. 10, Comparative method with high P content and Comparative method with high Ni content, not only did the conductivity decrease significantly, but also the workability deteriorated. Furthermore, even with alloys within the alloy composition range specified in the present invention, coarse crystals develop in Comparative Method No. 14, which has a slow cooling rate after hot rolling, resulting in poor conductivity, strength, and bending workability. I understand.

熱処理温度が低い比較法N O,15及び熱処理温度が
高い比較法N o、 16では析出が不充分で導電率等
不充分である。総和工率最大の比較法N 0.17は方
向性が発達してしまい加工性が均質でない、(発明の効
果) このようにcu−cr−sn合金にP又はPとNiを添
加し、特定条件で加工する本発明法にJ:れば電子部品
用銅合金材、特に小型化、高密度化された半導体リード
フレームとして好適な強度、導電性(伝熱性)を有し、
かつ等法的高度の加工を可能にするもので、高集積化さ
れる電子機器に応答し得る顕著な効果を秦するものであ
る。
Comparative method No. 15, in which the heat treatment temperature is low, and Comparative method No. 16, in which the heat treatment temperature is high, result in insufficient precipitation and insufficient electrical conductivity. Comparative method N 0.17, which has the highest total work rate, develops directionality and the workability is not uniform. (Effect of the invention) In this way, by adding P or P and Ni to the cu-cr-sn alloy, J: If the method of the present invention is processed under the following conditions, it has strength and conductivity (thermal conductivity) suitable for use as a copper alloy material for electronic components, especially for miniaturized and high-density semiconductor lead frames,
Moreover, it enables high-level processing, and has a remarkable effect that can respond to highly integrated electronic devices.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr0.20〜0.85wt%、Sn0.02〜
0.35wt%、P0.003〜0.15wt%を含み
、残部Cuからなる合金を600℃以上で熱間加工した
後、450℃以下まで1℃/sec以上の速度で冷却し
、しかる後少なくとも1回の450〜650℃の熱処理
を含む冷間加工を施し、第1回熱処理以降の総加工率を
90%以下とすることを特徴とする電子機器用銅合金材
の製造法。
(1) Cr0.20~0.85wt%, Sn0.02~
After hot working an alloy containing 0.35 wt%, P0.003 to 0.15 wt%, and the balance consisting of Cu at 600°C or higher, it is cooled to 450°C or lower at a rate of 1°C/sec or higher, and then at least A method for manufacturing a copper alloy material for electronic devices, characterized by subjecting the material to cold working including one heat treatment at 450 to 650°C, and making the total working rate after the first heat treatment 90% or less.
(2)Cr0.20〜0.85wt%、Sn0.02〜
0.35wt%、P0.003〜0.15wt%、Ni
又はCoを0.5wt%以下含み、残部Cuからなる合
金を600℃以上で熱間加工した後、450℃以下まで
1℃/sec以上の速度で冷却し、しかる後少なくとも
1回の450〜650℃の熱処理を含む冷間加工を施し
第1回熱処理以降の総加工率を90%以下とすることを
特徴とする電子機器用銅合金材の製造法。
(2) Cr0.20~0.85wt%, Sn0.02~
0.35wt%, P0.003-0.15wt%, Ni
Alternatively, an alloy containing 0.5 wt% or less of Co and the balance consisting of Cu is hot worked at 600°C or higher, then cooled to 450°C or lower at a rate of 1°C/sec or higher, and then processed at least once at 450-650°C. 1. A method for producing a copper alloy material for electronic devices, which comprises performing cold working including heat treatment at a temperature of 0.degree.
JP27839585A 1985-12-10 1985-12-10 Manufacture of copper alloy material for electronic equipment Pending JPS62136559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27839585A JPS62136559A (en) 1985-12-10 1985-12-10 Manufacture of copper alloy material for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27839585A JPS62136559A (en) 1985-12-10 1985-12-10 Manufacture of copper alloy material for electronic equipment

Publications (1)

Publication Number Publication Date
JPS62136559A true JPS62136559A (en) 1987-06-19

Family

ID=17596741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27839585A Pending JPS62136559A (en) 1985-12-10 1985-12-10 Manufacture of copper alloy material for electronic equipment

Country Status (1)

Country Link
JP (1) JPS62136559A (en)

Similar Documents

Publication Publication Date Title
KR100515804B1 (en) Titanium copper alloy having high strength and method for producing the same, and terminal?connector using the titanium copper alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
CN102112641B (en) Copper alloy material for electrical/electronic component
JPH0841612A (en) Copper alloy and its preparation
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JP2006152392A (en) High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
KR100525024B1 (en) Copper alloy having excellent bendability and manufacturing method therefor
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
CN115652134B (en) High-strength high-bending copper-nickel-silicon alloy and preparation method thereof
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH0617209A (en) Manufacture of copper alloy for electrical and electronic apparatus
JP2000038647A (en) Method for working copper alloy
JPS62136559A (en) Manufacture of copper alloy material for electronic equipment
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPS62185847A (en) High strength copper alloy for high thermal and electric conductivity use and its production
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JP3519888B2 (en) Copper alloy for electronic equipment and method for producing the same
JP2000129376A (en) Reinforced brass and its manufacture