JPS6213430B2 - - Google Patents

Info

Publication number
JPS6213430B2
JPS6213430B2 JP54091428A JP9142879A JPS6213430B2 JP S6213430 B2 JPS6213430 B2 JP S6213430B2 JP 54091428 A JP54091428 A JP 54091428A JP 9142879 A JP9142879 A JP 9142879A JP S6213430 B2 JPS6213430 B2 JP S6213430B2
Authority
JP
Japan
Prior art keywords
cutting
powder
coating layer
cast iron
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54091428A
Other languages
Japanese (ja)
Other versions
JPS5616665A (en
Inventor
Taijiro Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9142879A priority Critical patent/JPS5616665A/en
Publication of JPS5616665A publication Critical patent/JPS5616665A/en
Publication of JPS6213430B2 publication Critical patent/JPS6213430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐熱衝撃性と高温強度を
有し、かつ鋳鉄との反応性が低く、特にこれらの
特性が要求される鋳鉄の高速切削に使用するのに
適した表面被覆切削工具に関するものである。 近年、鋳鉄の高速切削を可能とすべく種々の研
究開発が試みられ、工作機械の高剛性化と切削工
具材料の改善の両面から、これら材料の高速切削
への移行は着々と達成されつつあり、現時点では
300m/minの切削速度での安定した切削が1つ
の目標とされている。 この切削速度は、高速切削時に発生する熱に対
してすぐれた耐酸化性を示すと共に、鋳鉄との化
学的反応性が低く、かつ摩擦係数の小さなアルミ
ナを主成分として含有するアルミナ基焼結材料を
切削工具として使用するという前提で、高速切削
を可能とすべく工作機械に改良を加えることによ
つて達成できるとして定められたものである。 しかしながら、アルミナは鋳鉄との反応性は低
いものの、耐熱衝撃性および高温強度が十分でな
いために、上記アルミナ基焼結材料製切削工具に
よつて、300m/minの切削速度で安定して鋳鉄
を切削することはきわめて困難であるのが現状で
ある。 そこで、本発明者等は、上述のような観点か
ら、鋳鉄の高速切削に適した切削工具、すなわ
ち、すぐれた耐熱衝撃性と高温強度を有し、かつ
鋳鉄との反応性が低い切削工具を開発すべく研究
を行なつた結果、窒化けい素(以下、Si3N4で示
す)を主成分として含有する焼結基体の表面に、
チタンの窒化物,炭窒化物,および炭窒酸化物の
うちの1種の単層または2種以上の複層、さらに
必要に応じて最上層としてのα―アルミナ(以
下、Al2O3で示す)層からなる被覆層を形成した
ものからなる表面被覆切削工具を、300m/min
以上の高速での鋳鉄の切削に使用すると、前記
Si3N4は、熱膨張係数が小さく、すなわち耐熱衝
撃性にすぐれ、かつ高温強度にもすぐれているほ
か、前記被覆層の形成時に、前記焼結基体を構成
する成分のうち、特に窒素が前記被覆層中に良く
拡散することから、前記被覆層の前記焼結基体表
面への付着強度は著しく向上したものとなつてお
り、さらに前記被覆層は鋳鉄との化学的反応性が
低いことと合まつて、著しくすぐれた切削性能を
長期に亘つて発揮するという知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、90重量%以上のSi3N4を含有する
Si3N4基焼結基体の表面に、チタンの窒化物,炭
窒化物,および炭窒酸化物(以下、それぞれ
TiN,TiCN,およびTiCNOで示す)のうちの1
種の単層または2種以上の複層、さらに必要に応
じて最上層のAl2O3層からなる被覆層を0.5〜10μ
mの層厚で形成してなる鋳鉄の高速切削用表面被
覆切削工具に特徴を有するものである。 なお、この発明の表面被覆切削工具において、
焼結基体のSi3N4含有量を90重量%以上と限定し
たのは、その含有量が90重量%未満では、Si3N4
のもつすぐれた特性、すなわちすぐれた耐熱衝撃
性および高温における機械的強度を確保すること
ができないという理由によるものであり、また、
上記被覆層の層厚を0.5〜10μmと限定したの
は、0.5μm未満の層厚では被削材たる鋳鉄の前
記焼結基体に及ぼす影響を完全に遮断することが
できず、鋳鉄と前記焼結基体とが反応し、前記焼
結基体の摩耗が促進されるようになり、一方10μ
mを越えた層厚にすると工具の靭性が低下するよ
うになるという理由にもとづくものである。 さらに、この発明の表面被覆切削工具における
焼結基体は主成分たるSi3N4のほかに、10重量%
を越えない範囲で結合相形成成分として、酸化マ
グネシウム(MgO),酸化アルミニウム
(Al2O3),酸化イツトリウム(Y2O3),窒化アル
ミニウム(AlN),酸化けい素(SiO2),酸化カル
シウム(CaO),酸化ナトリウム(NaO),Ni,
Co,Fe,Ge化合物,希土類金属の化合物,およ
び遷移金属の化合物などのうちの1種または2種
以上を含有するものであり、また、この焼結基体
は、好ましくは平均粒径約0.5〜4μmをもつた
原料粉末を使用し、ホツトプレスあるいは高温静
水圧プレスによつて製造するのがよく、この結果
理論密度比98%以上をもつたものが得られるた
め、機械的強度が高く、信頼性の高いものとなる
のである。 また、この発明の表面被覆切削工具における被
覆層は、通常の化学蒸着法によつて形成するのが
望ましく、化学蒸着法によつて形成した被覆層
は、前記のとおり化学蒸着時に焼結基体から被覆
層中へ窒素の拡散現象が生じることから、物理蒸
着法によつて形成した被覆層に比して付着強度が
高く、かつ耐摩耗性もすぐれている。 つぎに、この発明の表面被覆切削工具を実施例
により具体的に説明する。 実施例 1 原料粉末として、それぞれ平均粒径1.5μmを
有するSi3N4粉末:98.5重量%,MgO粉末:1重
量%,およびAl2O3粉末:0.5重量%を配合し、湿
式にて混合粉砕し、乾燥した後、温度1700℃,圧
力200Kg/cm2の条件でホツトプレスすることによ
つて焼結素材を製造した。この結果得られた焼結
素材は、理論密度比98.5%,抗折力100Kg/mm2
もつものであつた。 ついで、上記焼結素材よりCIS規格SNGN432型
の焼結基体(切削チツプ)を切り出し、研削した
後、外熱型化学蒸着装置の金属製反応管内に装入
し、温度:1050℃でTiCl4:2容量%,H2:90容
量%,N2:7容量%,Co:1容量%からなる混
合ガスを3時間導入して、前記切削チツプの表面
に、TiC0.2N0.7・O0.1の組成を有する平均層厚:
3μmの被覆層を形成し、ついで、同じ化学蒸着
装置において、温度:1000℃で、AlCl3:2容量
%,H2:95容量%,CO2:3容量%からなる混合
ガスを2時間導入して、前記被覆層の上にさらに
Al2O3からなる平均層厚:2μmの被覆層を形成
することによつて本発明表面被覆切削工具を製造
した。 ついで、この結果得られた本発明表面被覆切削
工具、および被覆層の形成がない上記の焼結基体
(以下比較切削工具という)について、 被削材:FC―25(硬さHB:180), 切削速度:350m/min, 送り:0.3mm/rev., 切り込み:2mm, の条件で鋳鉄の高速連続切削試験を行ない、切刃
の逃げ面摩耗幅が0.3mmに至るまでの切削時間を
測定し、これを切削寿命時間とした。 この結果、上記本発明表面被覆切削工具は、20
分の切削寿命時間を示したのに対して、前記比較
切削工具は2分の切削寿命時間しか示さないもの
であつた。 実施例 2 原料粉末として、平均粒径:1μmを有する
Si3N4粉末,同0.5μmのAl2O3粉末,同1.2μmの
Y2O3粉末,同0.7μmのSiO2粉末,同0.5μmの
CaO粉末,同1.2μmのNi粉末,同1.2μmのCo粉
末,同2μmのFe粉末,同2μmのGeO2粉末,
同1.5μmのLa2O5粉末,同1μmのTiN粉末,同
1.2μmのTiC0.5N0.5粉末,同1μmのZrO2
末,同1.2μmのHfN粉末,同1μmのWC粉末,
同1.2μmのTaN粉末,同1.2μmのNbN粉末,同
0.2μmのMgO粉末,同1.0μmのZrN粉末,同0.9
μmのTiO0.8N0.2粉末,および同1.2μmのTiB2
粉末を用意し、これらの原料粉末をそれぞれ第1
表に示される配合組成に配合し、通常の条件で湿
式にて混合粉砕し、乾燥した後、同じく第1表に
示される条件にてホツトプレス処理(H.P.で示
す)するか、あるいは窒素雰囲気中、温度:1700
℃に30分間保持の条件で焼結して理論密度比:95
%以上とした後、同じく第1表に示される条件で
高温静水圧成形処理(HIPで示す)することによ
つて焼結素材を製造し、ついで、これらの焼結素
材をCIS規格SNGN432型の焼結基体(切削チツ
プ)に研削した後、その一部を外熱型化学蒸着装
置の金属製反応管内に装入し、通常の条件にて、
それぞれ
The present invention relates to a surface-coated cutting tool that has excellent thermal shock resistance and high-temperature strength, and has low reactivity with cast iron, and is particularly suitable for use in high-speed cutting of cast iron, which requires these properties. It is. In recent years, various research and development efforts have been made to enable high-speed cutting of cast iron, and the transition to high-speed cutting of these materials is steadily being achieved, both by increasing the rigidity of machine tools and improving cutting tool materials. Yes, at the moment
One of the goals is stable cutting at a cutting speed of 300 m/min. This cutting speed is achieved by using an alumina-based sintered material that exhibits excellent oxidation resistance against the heat generated during high-speed cutting, has low chemical reactivity with cast iron, and contains alumina as a main component and has a small coefficient of friction. It was established that this can be achieved by making improvements to machine tools to enable high-speed cutting, on the premise that the machine is used as a cutting tool. However, although alumina has low reactivity with cast iron, it does not have sufficient thermal shock resistance or high-temperature strength, so cutting tools made of the alumina-based sintered material can stably cut cast iron at a cutting speed of 300 m/min. At present, it is extremely difficult to cut it. Therefore, from the above-mentioned viewpoint, the present inventors developed a cutting tool suitable for high-speed cutting of cast iron, that is, a cutting tool that has excellent thermal shock resistance and high-temperature strength, and has low reactivity with cast iron. As a result of conducting research to develop this, we found that on the surface of a sintered substrate containing silicon nitride (hereinafter referred to as Si 3 N 4 ) as the main component,
A single layer or a multilayer of two or more of titanium nitrides, carbonitrides, and carbonitrides, and if necessary, α-alumina (hereinafter referred to as Al 2 O 3) as the top layer. A surface-coated cutting tool consisting of a coating layer formed with
When used for cutting cast iron at high speeds above,
Si 3 N 4 has a small coefficient of thermal expansion, that is, it has excellent thermal shock resistance and high-temperature strength, and when forming the coating layer, nitrogen is especially Since it is well diffused into the coating layer, the adhesion strength of the coating layer to the surface of the sintered substrate is significantly improved, and furthermore, the coating layer has low chemical reactivity with cast iron. Together, they have found that it exhibits extremely superior cutting performance over a long period of time. This invention was made based on the above knowledge, and contains 90% by weight or more of Si 3 N 4 .
Titanium nitride, carbonitride , and carbonitride (hereinafter, respectively
(denoted as TiN, TiCN, and TiCNO)
A single layer of seeds or a multilayer of two or more seeds, and if necessary, a coating layer consisting of 3 layers of Al 2 O as the top layer with a thickness of 0.5 to 10μ
The present invention is characterized by a surface-coated cutting tool for high-speed cutting of cast iron formed with a layer thickness of m. In addition, in the surface-coated cutting tool of this invention,
The reason for limiting the Si 3 N 4 content of the sintered substrate to 90% by weight or more is that if the content is less than 90% by weight, Si 3 N 4
This is due to the fact that it is not possible to secure the excellent properties of , namely excellent thermal shock resistance and mechanical strength at high temperatures, and
The reason why the thickness of the coating layer is limited to 0.5 to 10 μm is because a layer thickness of less than 0.5 μm cannot completely block the effect of cast iron, which is the work material, on the sintered base. The sintered substrate reacts with the sintered substrate, and the wear of the sintered substrate is accelerated.
This is based on the reason that when the layer thickness exceeds m, the toughness of the tool decreases. Furthermore, the sintered substrate in the surface-coated cutting tool of the present invention contains 10% by weight of Si 3 N 4 as a main component.
Magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), aluminum nitride (AlN), silicon oxide (SiO 2 ), oxide Calcium (CaO), sodium oxide (NaO), Ni,
The sintered substrate contains one or more of Co, Fe, Ge compounds, rare earth metal compounds, transition metal compounds, etc., and preferably has an average particle size of about 0.5 to It is best to use raw material powder with a diameter of 4 μm and manufacture it by hot pressing or high-temperature isostatic pressing.As a result, a product with a theoretical density ratio of 98% or more is obtained, so it has high mechanical strength and reliability. This results in a high level of performance. Further, the coating layer in the surface-coated cutting tool of the present invention is preferably formed by a normal chemical vapor deposition method, and the coating layer formed by the chemical vapor deposition method is formed from a sintered substrate during chemical vapor deposition as described above. Since the diffusion phenomenon of nitrogen occurs in the coating layer, the adhesion strength is higher and the wear resistance is higher than that of a coating layer formed by physical vapor deposition. Next, the surface-coated cutting tool of the present invention will be specifically explained using examples. Example 1 As raw material powders, 98.5% by weight of Si 3 N 4 powder, 1% by weight of MgO powder, and 0.5% by weight of Al 2 O 3 powder, each having an average particle size of 1.5 μm, were mixed in a wet method. After pulverizing and drying, a sintered material was produced by hot pressing at a temperature of 1700° C. and a pressure of 200 kg/cm 2 . The resulting sintered material had a theoretical density ratio of 98.5% and a transverse rupture strength of 100 Kg/mm 2 . Next, a sintered substrate (cutting chip) of CIS standard SNGN432 type was cut out from the above sintered material, and after grinding, it was charged into a metal reaction tube of an externally heated chemical vapor deposition device, and TiCl 4 was heated at a temperature of 1050°C. A mixed gas consisting of 2% by volume, H 2 : 90% by volume, N 2 : 7% by volume, and 1 % by volume of Co was introduced for 3 hours to form TiC 0.2 N 0.7 on the surface of the cutting chip . Average layer thickness with a composition of O 0.1 :
A coating layer of 3 μm was formed, and then a mixed gas consisting of 2% by volume of AlCl 3 , 95% by volume of H 2 and 3% by volume of CO 2 was introduced in the same chemical vapor deposition apparatus at a temperature of 1000°C for 2 hours. and further on the coating layer.
A surface-coated cutting tool of the present invention was manufactured by forming a coating layer consisting of Al 2 O 3 with an average layer thickness of 2 μm. Next, regarding the surface-coated cutting tool of the present invention obtained as a result, and the above-mentioned sintered substrate without the formation of a coating layer (hereinafter referred to as a comparative cutting tool), the following results were obtained: Work material: FC-25 (Hardness HB : 180) , Cutting speed: 350m/min, Feed: 0.3mm/rev., Depth of cut: 2mm, A high-speed continuous cutting test was conducted on cast iron under the following conditions, and the cutting time until the flank wear width of the cutting edge reached 0.3mm was measured. This was taken as the cutting life time. As a result, the above-mentioned surface-coated cutting tool of the present invention has a
The comparative cutting tool had a cutting life of only 2 minutes, whereas the comparative cutting tool had a cutting life of only 2 minutes. Example 2 Raw material powder has an average particle size of 1 μm
Si 3 N 4 powder, 0.5 μm Al 2 O 3 powder, 1.2 μm
Y 2 O 3 powder, 0.7 μm SiO 2 powder, 0.5 μm
CaO powder, 1.2 μm Ni powder, 1.2 μm Co powder, 2 μm Fe powder, 2 μm GeO 2 powder,
1.5 μm La 2 O 5 powder, 1 μm TiN powder,
1.2 μm TiC 0.5 N 0.5 powder, 1 μm ZrO 2 powder, 1.2 μm HfN powder, 1 μm WC powder,
1.2μm TaN powder, 1.2μm NbN powder,
0.2μm MgO powder, 1.0μm ZrN powder, 0.9μm
μm TiO 0.8 N 0.2 powder and 1.2 μm TiB 2 powder
Prepare powders, and add each of these raw powders to the first
It is blended with the composition shown in the table, mixed and ground under normal conditions in a wet process, dried, and then subjected to hot press treatment (indicated by HP) under the conditions also shown in Table 1, or in a nitrogen atmosphere. Temperature: 1700
Theoretical density ratio by sintering at ℃ for 30 minutes: 95
% or higher, the sintered materials are produced by high temperature isostatic pressing (indicated by HIP) under the conditions shown in Table 1, and then these sintered materials are molded into the CIS standard SNGN432 type. After grinding into a sintered substrate (cutting chip), a part of it is charged into a metal reaction tube of an externally heated chemical vapor deposition device, and under normal conditions,
Each

【表】【table】

【表】 第1表に示される組成および平均層厚をもつた単
層または複層の被覆層を形成することによつて本
発明表面被覆切削工具1〜18を製造した。なお、
前記本発明表面被覆切削工具1,6,12,および
18の前記被覆層の形成がない焼結基体を比較切削
工具1〜4として示し、また本発明表面被覆切削
工具8の最上層たる第3層だけはイオンプレーテ
イング法により形成した。 ついで、この結果得られた本発明表面被覆切削
工具1〜18および比較切削工具1〜4について、
上記実施例1に示す条件で鋳鉄の高速連続切削試
験を行ない、切削寿命時間を測定した。これらの
測定結果を第1表に合せて示した。 第1表に示される結果から、本発明表面被覆切
削工具1〜18は、いずれも比較切削工具1〜4に
比して相対的に長い切削寿命時間を示すことが明
らかである。 上述のように、この発明の表面被覆切削工具
は、Si3N4のもつすぐれた耐熱衝撃性および高温
強度、被覆層の焼結基体表面に対する高い付着強
度、並びに被覆層の被削材たる鋳鉄に対する低い
化学的反応性によつて、鋳鉄の高速切削にきわめ
てすぐれた切削性能を発揮するのである。
[Table] Surface-coated cutting tools 1 to 18 of the present invention were manufactured by forming single or multilayer coating layers having the compositions and average layer thicknesses shown in Table 1. In addition,
The surface-coated cutting tools 1, 6, 12 of the present invention, and
Comparative cutting tools 1 to 4 are sintered substrates having no coating layer formed thereon, and only the third layer, which is the uppermost layer, of the surface-coated cutting tool 8 of the present invention was formed by the ion plating method. Next, regarding the surface-coated cutting tools 1 to 18 of the present invention and comparative cutting tools 1 to 4 obtained as a result,
A high-speed continuous cutting test of cast iron was conducted under the conditions shown in Example 1 above, and the cutting life time was measured. These measurement results are also shown in Table 1. From the results shown in Table 1, it is clear that the surface-coated cutting tools 1 to 18 of the present invention all exhibit relatively long cutting life times compared to comparative cutting tools 1 to 4. As mentioned above, the surface-coated cutting tool of the present invention has excellent thermal shock resistance and high-temperature strength of Si 3 N 4 , high adhesion strength of the coating layer to the sintered substrate surface, and cast iron as the work material of the coating layer. Due to its low chemical reactivity to the steel, it exhibits excellent cutting performance for high-speed cutting of cast iron.

Claims (1)

【特許請求の範囲】 1 90重量%以上の窒化けい素を含有する焼結基
体の表面に、チタンの窒化物,炭窒化物,および
炭窒酸化物のうちの1種の単層または2種以上の
複層からなる被覆層を0.5〜10μmの層厚で形成
してなる鋳鉄の高速切削用表面被覆切削工具。 2 90重量%以上の窒化けい素を含有する焼結基
体の表面に、チタンの窒化物,炭窒化物,および
炭窒酸化物のうちの1種の単層または2種以上の
複層と、最上層のα―アルミナ層からなる被覆層
を0.5〜10μmの層厚で形成してなる鋳鉄の高速
切削用表面被覆切削工具。
[Claims] 1. A single layer or two types of titanium nitrides, carbonitrides, and carbonitrides on the surface of a sintered substrate containing 90% by weight or more of silicon nitride. A surface-coated cutting tool for high-speed cutting of cast iron, which is formed by forming the above multilayer coating layer with a layer thickness of 0.5 to 10 μm. 2. A single layer or a multilayer of two or more of titanium nitrides, carbonitrides, and carbonitrides on the surface of a sintered substrate containing 90% by weight or more of silicon nitride, A surface-coated cutting tool for high-speed cutting of cast iron, which has a coating layer consisting of the uppermost α-alumina layer with a layer thickness of 0.5 to 10 μm.
JP9142879A 1979-07-18 1979-07-18 Surface coated sintered member for cutting tool Granted JPS5616665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9142879A JPS5616665A (en) 1979-07-18 1979-07-18 Surface coated sintered member for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9142879A JPS5616665A (en) 1979-07-18 1979-07-18 Surface coated sintered member for cutting tool

Publications (2)

Publication Number Publication Date
JPS5616665A JPS5616665A (en) 1981-02-17
JPS6213430B2 true JPS6213430B2 (en) 1987-03-26

Family

ID=14026095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9142879A Granted JPS5616665A (en) 1979-07-18 1979-07-18 Surface coated sintered member for cutting tool

Country Status (1)

Country Link
JP (1) JPS5616665A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100197A (en) * 1978-01-24 1979-08-07 Medekusu Kk Device for fractioning* separating and purifying blood
JPS6039001A (en) * 1983-08-12 1985-02-28 Nippon Tungsten Co Ltd Cutting tool material and its manufacturing method
US4441894A (en) * 1983-09-26 1984-04-10 Gte Laboratories Incorporated Coated composite silicon nitride cutting tools
US4449989A (en) * 1983-09-26 1984-05-22 Gte Laboratories Incorporated Coated silicon nitride cutting tools
JPS60108204A (en) * 1983-11-18 1985-06-13 Ngk Spark Plug Co Ltd Ceramic tool for high-speed cutting
DE4209975A1 (en) * 1992-03-27 1993-09-30 Krupp Widia Gmbh Composite body and its use
EP2143819A1 (en) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft Coating method and corrosion protection coating for turbine components

Also Published As

Publication number Publication date
JPS5616665A (en) 1981-02-17

Similar Documents

Publication Publication Date Title
JPS6348836B2 (en)
US4578087A (en) Nitride based cutting tool and method for producing the same
JPS6227033B2 (en)
US4409003A (en) Carbonitride coated silicon nitride cutting tools
JPS5913475B2 (en) Ceramic throw-away chips and their manufacturing method
US4440547A (en) Alumina coated silicon nitride cutting tools
JPS6213430B2 (en)
JPH055782B2 (en)
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JPS5927303B2 (en) Sintered material for cutting tools with toughness and wear resistance
JPS6240319B2 (en)
JPS6135159B2 (en)
JPS6152102B2 (en)
JPH09262705A (en) Surface coated tungsten carbide group super hard alloy cutting tool having excellent toughness in hard coating layer thereof
US4640693A (en) Coated silicon nitride cutting tool and process for making
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JPH01212290A (en) Cutting tool material
JPH0135041B2 (en)
JPS6256106B2 (en)
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JP3107168B2 (en) Coated silicon nitride sintered body for tools
JPS5815082A (en) Manufacture of silicon nitride tip for cutting tool
JPS6257597B2 (en)
JPS6039001A (en) Cutting tool material and its manufacturing method
JP2564898B2 (en) Manufacturing method for surface coated tungsten carbide based cemented carbide cutting tools