JPS5815082A - Manufacture of silicon nitride tip for cutting tool - Google Patents

Manufacture of silicon nitride tip for cutting tool

Info

Publication number
JPS5815082A
JPS5815082A JP56110448A JP11044881A JPS5815082A JP S5815082 A JPS5815082 A JP S5815082A JP 56110448 A JP56110448 A JP 56110448A JP 11044881 A JP11044881 A JP 11044881A JP S5815082 A JPS5815082 A JP S5815082A
Authority
JP
Japan
Prior art keywords
silicon nitride
hip
cutting
sintered body
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56110448A
Other languages
Japanese (ja)
Inventor
克彦 本間
立野 常男
岡田 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56110448A priority Critical patent/JPS5815082A/en
Publication of JPS5815082A publication Critical patent/JPS5815082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は耐摩耗性、耐衝撃性に優れ、かつ切削性能の改
善された切削工具用窒化珪素チップの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silicon nitride tip for a cutting tool, which has excellent wear resistance and impact resistance, and improved cutting performance.

近年、鋼及び鋳鉄などの高速切削を可能とすべく、切削
工具の性能改善に大きな関心が寄せられ種々の開発が試
みられている。
In recent years, in order to enable high-speed cutting of steel, cast iron, etc., there has been a great deal of interest in improving the performance of cutting tools, and various developments have been attempted.

従来、かかるi削工具は一般に耐摩耗性、耐酸化性が要
求されるところからこれら性能に優れたアルミナが通常
使用されて来たが、アルミナは上記の如き優れた特性を
有する反面、熱衝撃性及び高温での機械的特性に劣り、
従来の切削速旋ならばとも角、近時要求される800m
7mを越える高速度切削においては到底、安定した切削
を行なうことは困難な状況である。
Conventionally, such i-cutting tools are generally required to have wear resistance and oxidation resistance, so alumina, which has excellent properties, has been used. However, although alumina has the above-mentioned excellent properties, it is resistant to thermal shock. poor mechanical properties at high temperatures,
Conventional cutting speed turning is 800m, which is required in recent years.
In high-speed cutting over 7 m, it is extremely difficult to perform stable cutting.

そのため、近時、耐熱性、高温強度に富む窒化珪素(以
下Si3N4と略記する。)焼結体の活用が検討され特
開昭55−85481号公報、特開昭55−47276
号公報などにその具体例が提案されている。即ち、前者
はSi3N4に少量の添加物を加えた粉末をホットプレ
スにより成形した焼結体の表面にAj?zO3、Al0
Nのうち少くとも一種の被覆薄膜を形成し耐摩耗性、耐
衝撃性の改善を図ったものであり、後者はSi3N4粉
末にY2031.ZrO2、MgOから選んだ金属酸化
物を混合し、これを850〜455kg/dノ圧力下、
1700〜1750°cで3〜8.5時間熱間圧縮した
後、この熱間圧縮体を圧力をかけないで100°C/h
rの平均冷却速度で冷却させ工具寿命の改善を図ったも
のである。
Therefore, in recent years, the use of silicon nitride (hereinafter abbreviated as Si3N4) sintered bodies, which have high heat resistance and high temperature strength, has been studied and disclosed in JP-A-55-85481 and JP-A-55-47276.
Specific examples have been proposed in publications such as No. That is, in the former case, Aj? zO3, Al0
At least one coating thin film of N is formed to improve wear resistance and impact resistance, and the latter is made of Y2031. Metal oxides selected from ZrO2 and MgO are mixed and heated under a pressure of 850 to 455 kg/d.
After hot compacting at 1700 to 1750°C for 3 to 8.5 hours, the hot compacted body was heated at 100°C/h without applying pressure.
The tool life is improved by cooling at an average cooling rate of r.

しかしながら前者の改良になるものは被覆薄膜を形成す
るとは云え、単に化学的又は物理的蒸着法のみに依存す
るもので接合が充分でなく、高温を伴なう高速切削にお
いて薄膜の剥離が起り、切削寿命、切削効率に難を生じ
折角の母材と薄膜との特性を生かし切れない欠点があり
、また後者は前記の如き剥離の恐れはないものの圧縮体
を実質的に気孔を含まないようにすることが難しく、耐
摩耗性、耐衝撃性が改良されるとは云え限度があって、
未だ十分満足すべきものとは云い得ない。
However, although the former method forms a coating thin film, it relies solely on chemical or physical vapor deposition methods, and the bonding is insufficient, and the thin film peels off during high-speed cutting accompanied by high temperatures. The disadvantage is that it causes difficulties in cutting life and cutting efficiency, and does not take full advantage of the characteristics of the base material and thin film.Also, although there is no risk of peeling as mentioned above, the latter is difficult because the compressed body is made to be substantially free of pores. It is difficult to improve the wear resistance and impact resistance, but there are limits.
I cannot say that I am fully satisfied yet.

かくして本発明は叙上の如き実状に対処し封孔処理が確
実で、かつ剥離の恐れのない、より優れた切削好適性能
をもつ窒化珪素チップを提供することを目的とするもの
であり、窒化珪素粉末に焼結助剤を添加した混合粉末を
予め成形、焼結し予備焼結体となした後、該予備焼結体
表面に適宜蒸着手段を用いてセラミックをコーティング
シ、次いで該セラミックコーティング予備焼結体を窒素
ガス雰囲気下において圧力500〜2000気圧、温度
1500〜2000℃の条件下で5分間以上熱間静水圧
プレス処理し、切削工具用チップに形成することからな
る切削工具用窒化珪素チップの製造法をその特徴とする
Thus, the present invention deals with the above-mentioned actual situation and aims to provide a silicon nitride chip that has a reliable sealing process, no fear of peeling, and has better cutting properties. A mixed powder obtained by adding a sintering aid to silicon powder is pre-shaped and sintered to form a pre-sintered body, and then the surface of the pre-sintered body is coated with ceramic using an appropriate vapor deposition method, and then the ceramic coating is applied. Nitriding for cutting tools, which involves hot isostatic pressing a pre-sintered body in a nitrogen gas atmosphere at a pressure of 500 to 2000 atm and a temperature of 1500 to 2000°C for 5 minutes or more to form a tip for a cutting tool. Its feature is a method of manufacturing silicon chips.

勿論、こ\で切削工具を作るに際し、熱間静水圧プレス
処理(以下HIP処理という)を利用すること自体は新
規なものではなく、本出願人においても既に幾つかは提
案されて来た。
Of course, the use of hot isostatic press treatment (hereinafter referred to as HIP treatment) in producing cutting tools is not new, and the applicant has already proposed several methods.

しかし既知のHIP処理は実際にはArガスを圧力媒体
とするものであり本発明の如き窒素ガスを圧力媒体とす
るものではなかった。
However, the known HIP process actually uses Ar gas as a pressure medium and does not use nitrogen gas as a pressure medium as in the present invention.

ところが、最近、N2ガスを圧力媒体とするHIP処理
に関し注目し、Si3N4を始めセラミックスの処理を
行なったところ、種々の利点のあることを知見するに至
った。
However, recently, attention has been focused on HIP processing using N2 gas as a pressure medium, and when ceramics including Si3N4 were processed, it was discovered that it has various advantages.

即ち、5j3N4の予備焼結体を数種作良し、HIP条
件として圧力100Mpa、処理60分を一定とし、処
理温度を1700°C,1900°Cに変え、又、圧媒
としてArガス、N2ガスを用い夫々密度、重量変化の
測定、組織観察、室温下での3点曲げ試験などを行なっ
たところ、密度に関しては、HIP処理前の予備焼結体
の密度が897cd以下の領域ではAr−HIP材にあ
っては密度の増加する場合と、減少する場合があるが、
N2−HIP材ではI(IP処理前後の密度は殆んど変
らないこと、そして、一方、89/d以−土の領域では
Ar−HIP材の密度は若干減少するに対し、N2HI
P材では増加する傾向があること、しかもこのようなN
2−HIPによる密度の改善効果は1900°Cの方が
1700℃HIP 処理より僅かに大きいこと、また何
れの予備焼結体についてもその程度は若干、異なるもの
のN2−HIPの方が密度の向上には有効であることが
知見された。
That is, several types of pre-sintered bodies of 5j3N4 were made, the HIP conditions were constant at a pressure of 100 Mpa and a constant treatment time of 60 minutes, the treatment temperature was changed to 1700°C and 1900°C, and Ar gas and N2 gas were used as pressure media. We conducted measurements of density and weight changes, microstructural observations, and three-point bending tests at room temperature using Ar-HIP. For materials, the density may increase or decrease, but
In the case of N2-HIP material, the density before and after I(IP treatment hardly changes), and on the other hand, the density of Ar-HIP material slightly decreases in the area of 89/d and above soil, whereas the density of N2-HIP material
In P materials, there is a tendency for N to increase.
The density improvement effect of 2-HIP is slightly greater at 1900°C than 1700°C HIP treatment, and although the degree of improvement is slightly different for all pre-sintered bodies, N2-HIP improves density better. It was found to be effective.

又、HIP後の試料表面を観察すると、N’2−HI 
P材では僅かに灰白色化するのに対し、Ar−HIP材
では明らかに緑灰色化しておシ、X線回折により調査し
た結果、SiCの強い回折ピークが認められた。このA
r−HIP材のSiC生成の原因としてはSi3N4→
8 S i + 2N2の反応で示されるSi3N4の
分解により生じたSi  が主にHIP炉の黒鉛ヒータ
あるいは黒鉛ルツボを発生源とするCOガスと反応した
結果と考えられるがN、−HIP材は前述の如く灰白色
化するにすぎず、か\る影響は極めて少ないことが判明
した。次にHIP材の断面を切断し、研摩仕上げ後の組
織を観察したが、肉眼観察によるとAr−HIP材では
表面部は内部に比べて白色化していたが、?’h −H
IP 材では逆に黒色化していることが観察された。そ
こで顕微鏡により更に観察したところ、高密度の予備焼
結体についてはAr−HIP材の表面部に空孔が点在し
ていることが観察されたが、N2−HIP材では表面部
と内部トノ間には明らかな差異は見られなかった。この
現象の説明としては試料表面部の昇温か内部に比べて早
いため表面に液相が濃縮され易いこと、Si3N、の分
解により発生したN2ガスの内圧によることなどが推測
されるが、内部組織のみを観察すると、Ar−HIP材
では部分的には□高密度化は進行しているが試料全体と
してはHIP処理により密度が低下することが認められ
るのに反し、N2−HIP材ではきわめて空孔が少なく
前記密度の場合とよく対応していることが観察された。
Also, when observing the sample surface after HIP, N'2-HI
While the P material turned slightly grayish-white, the Ar-HIP material clearly turned greenish-gray, and as a result of investigation by X-ray diffraction, a strong diffraction peak of SiC was observed. This A
The cause of SiC generation in r-HIP material is Si3N4→
8 This is thought to be the result of Si produced by the decomposition of Si3N4 shown in the reaction of Si + 2N2, reacting with CO gas mainly generated from the graphite heater of the HIP furnace or the graphite crucible; It was found that the effect was extremely small, and the effect was only grayish white. Next, we cut a cross-section of the HIP material and observed the structure after polishing. Visual observation revealed that the surface of the Ar-HIP material was whiter than the inside, but... 'h −H
On the contrary, it was observed that the IP material turned black. Further observation using a microscope revealed that the surface of the Ar-HIP material was dotted with pores in the high-density pre-sintered body, but the surface and internal holes were found in the N2-HIP material. No obvious difference was seen between them. Possible explanations for this phenomenon include the fact that the temperature rises at the surface of the sample is faster than that at the inside, so the liquid phase tends to concentrate on the surface, and that it is due to the internal pressure of N2 gas generated by the decomposition of Si3N. When observing only the □ densification in the Ar-HIP material, it is recognized that the density of the sample as a whole decreases due to HIP treatment, although densification is progressing in some parts, whereas in the N2-HIP material, the density is extremely high. It was observed that the number of pores was small and corresponded well to the case of the above-mentioned density.

更に曲げ強度に関しては、Ar−HIP 材の場合比較
的ばらつきが太き(HIp処理による改善効果は必らず
しも明らかではないが、N2−HIP 材では曲げ強度
は密度との関係において、略ホットプレス材と同等レベ
ルであるが、高密度領域においては、強度のばらつきは
比較的少なく、かっN2−HIP材の強度がAr−HI
P材よりも何れも優れていること、セしてN2−HIP
処理にょシ強度を改善できることが明らかとなっている
。このようにSi3N4予備焼結体をHIP処理するに
際してはHIP処理時の圧力媒体はN2ガスの方がAr
ガスよりすぐれていることが看取されるのである。しか
もN2−ガスはAr−ガスに比しその入手が極めて容易
であシ経済的、工業的に有利である一面も見逃し得々い
0 かくして本発明は前述の如く窒素ガス雰囲気下において
HIP処理を行なうことを必須の要件とするのである。
Furthermore, regarding the bending strength, there is a relatively wide variation in the case of Ar-HIP material (although the improvement effect of HIp treatment is not necessarily clear, the bending strength of N2-HIP material is approximately equal to the density). Although it is on the same level as hot-pressed material, there is relatively little variation in strength in the high-density region, and the strength of N2-HIP material is comparable to that of Ar-HIP material.
N2-HIP is better than P material in all respects.
It has been shown that processing strength can be improved. In this way, when performing HIP treatment on a Si3N4 pre-sintered body, N2 gas is preferable to Ar as the pressure medium during HIP treatment.
It can be seen that it is superior to gas. Moreover, N2-gas is extremely easy to obtain compared to Ar-gas, and the fact that it is economically and industrially advantageous cannot be overlooked.Thus, the present invention performs the HIP treatment in a nitrogen gas atmosphere as described above. This is an essential requirement.

以下、更に本発明方法の具体的な態様について順次、詳
述する。
Hereinafter, specific embodiments of the method of the present invention will be described in detail.

先ず本発明窒化珪素チップ製造の第1段階は、51gN
a粉末に焼結助剤を添加した後、仁の混合粉末を所定形
状に成形することである。この場合、添加助剤としては
既知のY2O3粉末、Al2O3粉末、MgO粉末など
が使用され、通常、その何れか、又は混合で前記Si3
N4粉末に対して5〜15重量%添加する。
First, in the first step of manufacturing the silicon nitride chip of the present invention, 51 gN
After adding a sintering aid to the a powder, the mixed powder is molded into a predetermined shape. In this case, known Y2O3 powder, Al2O3 powder, MgO powder, etc. are used as the additive auxiliary agent, and usually any of them or a mixture thereof is used to form the Si3
It is added in an amount of 5 to 15% by weight based on the N4 powder.

一方、混合粉末の成形は射出成型法、抽出成型法、型プ
レス成型法、静水圧成型法など公知の各成形手段が使用
可能であシ、これによって所要の形状の成形体となすが
、この場合は必らずしも完成されたチップ形状である必
要はない。
On the other hand, various well-known molding methods such as injection molding, extraction molding, mold press molding, and isostatic pressing can be used to mold the mixed powder, and a molded product having the desired shape can be used. In this case, it does not necessarily have to be a completed chip shape.

そして、このように第1段階の成形が終ると、次にこの
成形体に対し予備焼結を行なう。この予備焼結は爾後に
おける焼結、こ\ではHIP処理に先立つもので後述の
コーティング及びHIP処理による焼結を考慮し、相対
密度を80%とすることが好適である。
After the first stage of molding is completed, the molded body is then subjected to preliminary sintering. This preliminary sintering is performed prior to the subsequent sintering, in this case the HIP treatment, and in consideration of the later-described coating and sintering by the HIP treatment, it is preferable to set the relative density to 80%.

予備焼結の手段としてはN2ガス雰囲気焼結法、ホット
プレス焼結法等既知の焼結手段を適宜、採用することが
できる。
As the preliminary sintering method, any known sintering method such as N2 gas atmosphere sintering method or hot press sintering method can be used as appropriate.

なお、上記予備焼結にあっては上述の如く相対密度が8
0%以上と比較的低密度であるところから焼結は比較的
簡単となシ複雑形状であっても容易に得ることができる
In addition, in the above-mentioned preliminary sintering, as mentioned above, the relative density is 8.
Since it has a relatively low density of 0% or more, sintering is relatively simple and even complex shapes can be easily obtained.

かくして得られた予備焼結体は次に本発明方法の1つの
特徴をなすセラミックコーティング工程に付され、その
表面にセラミックのコーティング層が形成される。この
コーティングは通常の化学蒸着法(CRD法)あるいは
物理蒸着法(PVD法)など適宜の蒸着手段によって行
なわれ、コーティングするセラミックとしてはAj?z
Oa、AnON、 TiC等各種セラミックが使用可能
であり、就中、TiC又はTiNは高強度ならびに耐摩
耗性向上の面で最も有効である。
The presintered body thus obtained is then subjected to a ceramic coating step, which is one of the characteristics of the method of the present invention, to form a ceramic coating layer on its surface. This coating is performed by a suitable vapor deposition method such as a normal chemical vapor deposition method (CRD method) or a physical vapor deposition method (PVD method), and the ceramic to be coated is Aj? z
Various ceramics such as Oa, AnON, and TiC can be used, and among them, TiC or TiN is the most effective in terms of high strength and improved wear resistance.

なお、コーティング層の厚さは必らずしも特定されない
が、余り厚くなれば5iaN4の特性が生かされないこ
と、又切削時、剥離し易くなることなどから20μ以下
とするのが好適である。
Although the thickness of the coating layer is not necessarily specified, it is preferably 20 μm or less because if it is too thick, the properties of 5iaN4 will not be utilized and it will be easy to peel off during cutting.

このコーティングは、これによって予備焼結体表面の封
孔を完全にし、爾後のHIP処理による高密度を可能と
すると共に切削工具としての耐摩耗性向上に大きな役割
を有する。
This coating completely seals the pores on the surface of the pre-sintered body, enables high density through subsequent HIP treatment, and plays a major role in improving wear resistance as a cutting tool.

以上のようにしてコーティングを施した予備焼結体に対
し、その後、第2次焼結としてHIP処理に付すが、こ
のHIP処理は特に前述したN2ガス雰囲気下のHIP
処理の効果を活用し、N2ガス雰囲気下で行なうことが
要求される。
The pre-sintered body coated as described above is then subjected to HIP treatment as secondary sintering.
It is required to take advantage of the effects of the treatment and conduct it under an N2 gas atmosphere.

この場合、HIP処理における条件は、高密度化を達成
すること、Si3N40分解反応を抑止することなどか
ら選定され、圧力は500〜2000気圧、温度は15
00〜2000℃範囲が好適条件である。
In this case, the conditions for the HIP treatment were selected from the viewpoint of achieving high density and suppressing the Si3N40 decomposition reaction, and the pressure was 500 to 2000 atm and the temperature was 15
A preferable temperature range is 00 to 2000°C.

通常、圧力が50幌圧以下ではHIP処理に要する時間
が長くなると共に高密度達成が難しくなシ又、余り圧力
が高すぎると、分解反応の抑止、高密度化の面ではよい
としても昇圧に長時間を要し、I(IP装置が大型化す
るので実用的ではない。
Normally, if the pressure is less than 50 ton pressure, the time required for HIP treatment will be longer and it will be difficult to achieve high density.If the pressure is too high, the pressure will increase even if it is good in terms of suppressing the decomposition reaction and increasing the density. It is not practical because it takes a long time and increases the size of the IP device.

一方、HIP温度は低すぎると、焼結速度が遅く、逆に
高すぎると、5isN4の分解反応が大きくなる傾向を
もつため前記範囲内で処理することが好適である。
On the other hand, if the HIP temperature is too low, the sintering rate will be slow, and if it is too high, the decomposition reaction of 5isN4 tends to increase, so it is preferable to carry out the treatment within the above range.

とは云え、勿論HIP温度は、圧力など他の条件と関連
があり、Si3N4の分解温度以下でなければならない
が、この分解温度もHIP圧力の上昇と共に高くなり、
従って少くともそのHIP圧力における分解温度よりも
100°C程度低い温度内で行なうことが好ましい。
However, the HIP temperature is of course related to other conditions such as pressure, and must be below the decomposition temperature of Si3N4, but this decomposition temperature also increases as the HIP pressure increases.
Therefore, it is preferable to carry out the reaction at a temperature that is at least about 100°C lower than the decomposition temperature at the HIP pressure.

このようにして処理された焼結体はかくしてHIPによ
りコーテイング材が母材であるSi3N4に強固に結合
され両者の間に存する隙間は全く消失して耐摩耗性の優
れたチップ材となる。
In the sintered body treated in this manner, the coating material is firmly bonded to the base material Si3N4 by HIP, and the gap existing between the two completely disappears, resulting in a chip material with excellent wear resistance.

この、チップ材は、その後、随時、所定の切削工具用チ
ップに成形仕上げされ工具本体にクランプ機構などによ
り着脱自在に取り付けられるが、使用に際しては、直方
体形状のチップの場合、1つの角部が摩耗すれば他の角
部を用いるようにして8個所の角部を順次使用するのが
得策である。
This chip material is then molded into a predetermined cutting tool chip and removably attached to the tool body using a clamp mechanism or the like. It is a good idea to use the eight corners in sequence, so that if they wear out, use other corners.

以上、述べたように本発明方法は、Si3N4粉末に焼
結助剤を添加した混合粉末を成形し、一旦予備焼結した
後、′予備焼結体の表面にTiC又はTiNの如きセラ
ミックをコーティングし、その後、HIP処理を施すこ
とによりSi3N4チップを作る方法であるから、Ti
C,TiNの如きセラミックのコーティング層がSi3
N4からなる母材の表面に形成され、耐摩耗性の向上に
著しい効果を奏すると共に、母材のSi3N、が高密度
で、耐熱衝撃抵抗性が大きいことX相俟って高速度切削
に優れた性能を発、揮するチップを提供することができ
る。
As described above, the method of the present invention involves forming a mixed powder of Si3N4 powder with a sintering aid added, pre-sintering it, and then coating the surface of the pre-sintered body with ceramic such as TiC or TiN. Then, since the method is to make a Si3N4 chip by performing HIP treatment, Ti
Ceramic coating layer such as C, TiN is Si3
Formed on the surface of a base material made of N4, it has a remarkable effect on improving wear resistance, and the base material Si3N has a high density and high thermal shock resistance, making it excellent for high-speed cutting. It is possible to provide a chip that exhibits and exhibits excellent performance.

しかも上記本発明方法ではコーティング層のセラミック
と、母材のSi3N4とはHIP処理によって接合され
るため、従来の被覆と異なシ、その接合が強固で切削時
における剥離の問題はなく両者の特長を活かしつつ切削
寿命の増大を図り得るのみならず前記コーティングによ
り予備焼結体の封孔処理が完全となりHIP処理による
高密度の可能化、切削性能の改善をもたらし、N2ガス
雰囲気下における前記HIP処理のArガスのそれに対
する優位さ共々切削加工用チップ製造法として現下の高
速度化に適した顕著な効果を発揮し、その実用性、有用
性の頗る期待できる方法である。
Moreover, in the above-mentioned method of the present invention, the ceramic of the coating layer and the Si3N4 base material are bonded by HIP processing, which is different from conventional coatings. Not only can the cutting life be increased while making full use of the coating, but also the coating completes the sealing treatment of the pre-sintered body, making it possible to achieve high density through HIP treatment and improving cutting performance. This method, together with its superiority over that of Ar gas, exhibits a remarkable effect suitable for the current high-speed manufacturing method for cutting chips, and is a method that can be expected to have great practicality and usefulness.

以下、更に本発明方法を実施例により具体的に説明する
Hereinafter, the method of the present invention will be further specifically explained with reference to Examples.

実施例1 市販のSi3N4粉末に焼結助剤としてY2O3粉末6
%、A l t O3粉末2%、MgO粉末3%を添加
、混合し、この混合粉末を500にり菟で冷間成形した
後、N!ガス中で1600°C1100分間予備焼結を
行い、相対密度97%の予備焼結体を作製した。次に、
この予備焼結体の表面に物理蒸着法により TiN及び
TiCを夫々約5μの厚さでコーティングした。
Example 1 Y2O3 powder 6 was added as a sintering aid to commercially available Si3N4 powder.
%, Al t O3 powder 2%, and MgO powder 3% were added and mixed, and this mixed powder was cold-formed in a 500 mm mill, and then N! Preliminary sintering was performed in gas at 1600° C. for 1100 minutes to produce a pre-sintered body with a relative density of 97%. next,
The surface of this pre-sintered body was coated with TiN and TiC to a thickness of about 5 μm each by physical vapor deposition.

次いでこれらのコーティング層を形成した予備焼結体を
第1表に示す如きHIP処理条件でHIP処理を行い、
5iaN4焼結体を作製した。更に比較のために上記コ
ーティング層を有しない5isNa焼結体及びコーティ
ング層を形成した予備焼結体をArガス雰囲気下でHI
P処理して5isN4焼結体を作った。そしてこれらの
5iaN4焼結体について1、被削材: 鋳鉄(FC2
5) 切削速度:  100m/sm 送  リ      :     0.3fl/rev
切り込み:  2.01111 工具形状:  5NGN 482 の条件で切削試験を行なったところ、第1表に示す如き
結果を得た。
Next, the pre-sintered body on which these coating layers were formed was subjected to HIP treatment under the HIP treatment conditions shown in Table 1.
A 5iaN4 sintered body was produced. Furthermore, for comparison, the 5isNa sintered body without the coating layer and the preliminary sintered body with the coating layer were subjected to HI in an Ar gas atmosphere.
A 5isN4 sintered body was prepared by P treatment. Regarding these 5iaN4 sintered bodies, 1. Work material: Cast iron (FC2
5) Cutting speed: 100m/sm Feed rate: 0.3fl/rev
A cutting test was conducted under the following conditions: depth of cut: 2.01111 tool shape: 5NGN 482, and the results shown in Table 1 were obtained.

なお、切削性能は工具の逃げ面磨耗巾が0.3Mとなる
切削時間により評価した。
The cutting performance was evaluated based on the cutting time at which the flank wear width of the tool was 0.3M.

第1表から明らかな如く、TiN或いはTiCをコーテ
ィングし、引続きN2ガス雰囲気下で所定条件によりH
IP処理を施した本発明方法による工具の切削性能は、
本発明方法によらず、Arガス雰囲気下でHIP処理を
施した工具に比して極めて良好であり、コーティングに
よる切削性能改善の効果は顕著であった。なお、Arガ
ス雰囲気下でHIP処理を施した工具(試験!’h2、
L8 )はコーティング層を有しない工具(試験凪7)
よシもその切削性能が低いが、これは母材のSi3N4
とコーティング層との密着が不完全であったためと考え
られる。
As is clear from Table 1, TiN or TiC is coated and then H is applied under specified conditions in an N2 gas atmosphere.
The cutting performance of the tool subjected to IP treatment by the method of the present invention is as follows:
Regardless of the method of the present invention, the results were extremely good compared to tools subjected to HIP treatment in an Ar gas atmosphere, and the cutting performance improvement effect of the coating was remarkable. In addition, tools subjected to HIP treatment in an Ar gas atmosphere (test! 'h2,
L8) is a tool without a coating layer (test calm 7)
Yoshi also has low cutting performance, but this is due to the base material Si3N4.
This is thought to be due to incomplete adhesion between the film and the coating layer.

実施例2 市販のSi3N、粉末に焼結助剤としてY2O3粉末6
%、Al2O3粉末3%、MgO粉末1%を添加混合し
、この混合粉末を実施例1と同様の方法によシ相対密度
86%の予備焼結体を作製した。
Example 2 Commercially available Si3N powder and Y2O3 powder 6 as a sintering aid
%, 3% Al2O3 powder, and 1% MgO powder were added and mixed, and this mixed powder was used in the same manner as in Example 1 to produce a preliminary sintered body having a relative density of 86%.

この予備焼結体の表面に化学蒸着法によりTiC或いは
TiNを夫々的8μの厚さでコーティングし、実施例1
と同様にしてHIP処理を施し、これらのSi3N4焼
槓休について切削試験を行なったところ、第2表に示す
如き結果を得た。
The surface of this pre-sintered body was coated with TiC or TiN to a thickness of 8 μm each by chemical vapor deposition.
When HIP treatment was carried out in the same manner as above and a cutting test was conducted on these Si3N4 sintered pieces, the results shown in Table 2 were obtained.

(シス 7:7づ宇ミ (1ン 上記第2表の結果からみて、N2ガス雰囲気下でHIP
処理ケ施した本発明方法による工具の切削性能は本発明
方法によらないAr  ガス雰囲気下でHIP処理を施
した工具のそれに比して著しく優れており、第1表と同
様の傾向を示すことが明らかに看取された。
(7:7) (1) From the results in Table 2 above, HIP is performed under N2 gas atmosphere.
The cutting performance of the tool treated by the method of the present invention is significantly superior to that of the tool treated by the HIP treatment in an Ar gas atmosphere that is not treated by the method of the present invention, and shows the same tendency as shown in Table 1. was clearly observed.

特許出願人  株式会社神戸製鋼所Patent applicant: Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 1、窒化珪素粉末に焼勢助剤を添加した混合粉末を成形
、予備焼結し、次いでこの予備焼結体の表面にセラミッ
クを適宜蒸着手段を用いてコーティングした後、該セラ
ミックコーティング層生成予備焼結体を窒素ガス雰囲気
下において圧力500〜2000気圧、lIl&x56
o 〜2ooo℃の条件下”r5分間以上熱間静水圧プ
レス処理を行ない、切削工具用チップに形成することを
特徴とする切削工具用窒化珪素チップの製造1法 2、予備焼結体の相対密度が80%以上である特許請求
の範囲第1項記載の切削工具用窒化珪素チップの製造法 8、コーティングするセラミックがチタンの炭化物又は
チタンの窒化物である特許請求の範囲第1項又は第2項
記載の切削工具用窒化珪素≠ツブの製造法 4、コーティング層が20μ以下の厚さである特許請求
の範囲第1項、第2項又は第3項記載の切削工具用窒化
珪素チップの製造法
[Claims] 1. After molding and pre-sintering a mixed powder of silicon nitride powder and adding an energizing agent, and then coating the surface of this pre-sintered body with ceramic using an appropriate vapor deposition method, The ceramic coating layer forming pre-sintered body was heated under a nitrogen gas atmosphere at a pressure of 500 to 2000 atm, lIl&x56
Manufacturing method 1 of a silicon nitride chip for a cutting tool, characterized in that the silicon nitride chip is formed into a cutting tool chip by performing hot isostatic pressing treatment for 5 minutes or more under conditions of o ~ 2ooo ° C. 2. Relative of pre-sintered body A method 8 for producing a silicon nitride tip for a cutting tool according to claim 1, wherein the density is 80% or more, and claim 1 or 8, wherein the ceramic to be coated is titanium carbide or titanium nitride. Silicon nitride for cutting tools≠Production method 4 for cutting tools according to claim 2, wherein the coating layer has a thickness of 20μ or less Silicon nitride chips for cutting tools according to claim 1, 2 or 3 Manufacturing method
JP56110448A 1981-07-14 1981-07-14 Manufacture of silicon nitride tip for cutting tool Pending JPS5815082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110448A JPS5815082A (en) 1981-07-14 1981-07-14 Manufacture of silicon nitride tip for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110448A JPS5815082A (en) 1981-07-14 1981-07-14 Manufacture of silicon nitride tip for cutting tool

Publications (1)

Publication Number Publication Date
JPS5815082A true JPS5815082A (en) 1983-01-28

Family

ID=14535968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110448A Pending JPS5815082A (en) 1981-07-14 1981-07-14 Manufacture of silicon nitride tip for cutting tool

Country Status (1)

Country Link
JP (1) JPS5815082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164682A (en) * 1983-03-11 1984-09-17 三井造船株式会社 Porous ceramic reinforcement
JPS6039001A (en) * 1983-08-12 1985-02-28 Nippon Tungsten Co Ltd Cutting tool material and its manufacturing method
JPH03500639A (en) * 1987-09-02 1991-02-14 ケンナメタル インコーポレイテツド Whisker-reinforced ceramics and cladding/hot isostatic press forming method for the same
CN101850502A (en) * 2010-05-07 2010-10-06 宁波高新区春昌陶冶材料科技有限公司 Preparation method of silicon nitride ceramic blade
JP2014012615A (en) * 2012-07-04 2014-01-23 Tosoh Corp Manufacturing method of ceramic jointed body, and decoration member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427812A (en) * 1977-08-01 1979-03-02 Citizen Watch Co Ltd Serial wire type dot printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427812A (en) * 1977-08-01 1979-03-02 Citizen Watch Co Ltd Serial wire type dot printer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164682A (en) * 1983-03-11 1984-09-17 三井造船株式会社 Porous ceramic reinforcement
JPS6039001A (en) * 1983-08-12 1985-02-28 Nippon Tungsten Co Ltd Cutting tool material and its manufacturing method
JPH0358844B2 (en) * 1983-08-12 1991-09-06 Nippon Tungsten
JPH03500639A (en) * 1987-09-02 1991-02-14 ケンナメタル インコーポレイテツド Whisker-reinforced ceramics and cladding/hot isostatic press forming method for the same
CN101850502A (en) * 2010-05-07 2010-10-06 宁波高新区春昌陶冶材料科技有限公司 Preparation method of silicon nitride ceramic blade
JP2014012615A (en) * 2012-07-04 2014-01-23 Tosoh Corp Manufacturing method of ceramic jointed body, and decoration member

Similar Documents

Publication Publication Date Title
JPH013065A (en) Oxide-based ceramic cutting inserts
JPS6011288A (en) Surface coated sialon-base ceramic tool member
JPH07242466A (en) Production of polycrystalline cubic boron nitride
JPS5913475B2 (en) Ceramic throw-away chips and their manufacturing method
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JPH07188803A (en) Highly tough ceramic/metal composite material and its production
JPH055782B2 (en)
JP4731645B2 (en) Cemented carbide and coated cemented carbide and method for producing the same
JPS5815082A (en) Manufacture of silicon nitride tip for cutting tool
US4900700A (en) Silicon nitride-titanium nitride based ceramic composites and methods of preparing the same
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPS5928628B2 (en) Surface coated cemented carbide tools
JPS5940898B2 (en) Cemented carbide and its manufacturing method
JPS6213430B2 (en)
JPS5874585A (en) Surface clad silicon nitride base sintered member for high speed cutting
JPS5891072A (en) Manufacture of silicon nitride sintered body
JPS60176973A (en) Manufacture of cubic boron nitride base super high pressure sintering material for cutting tool
JP2803379B2 (en) Manufacturing method of gas-phase synthetic diamond coated cutting tool
JPH02190403A (en) Production of cutting tool made of surface-coated tungsten carbide-based sintered hard alloy
JPS6111724B2 (en)
JP3422029B2 (en) Boron nitride coated hard material and method for producing the same
JPS62148367A (en) Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPH0456791B2 (en)
JPH0349681B2 (en)