JPS62148367A - Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture - Google Patents

Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture

Info

Publication number
JPS62148367A
JPS62148367A JP60291770A JP29177085A JPS62148367A JP S62148367 A JPS62148367 A JP S62148367A JP 60291770 A JP60291770 A JP 60291770A JP 29177085 A JP29177085 A JP 29177085A JP S62148367 A JPS62148367 A JP S62148367A
Authority
JP
Japan
Prior art keywords
zirconium oxide
sintered body
toughness
strength
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291770A
Other languages
Japanese (ja)
Inventor
岡田 広
守賀 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60291770A priority Critical patent/JPS62148367A/en
Publication of JPS62148367A publication Critical patent/JPS62148367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐摩耗性にすくれる高強度高靭性高硬度セラ
ミックス焼結体及びその製造方法に関し、詳しくは、炭
化チタン及び/又は窒化チタンを基質とし、これに酸化
ジルコニウムを分散させてなり、ダイス、切削工具、メ
カニカル・シール等の耐摩耗性治具類に好適である新規
な高強度高靭性高硬度セラミックス焼結体及びその製造
方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a high strength, high toughness, high hardness ceramic sintered body with excellent wear resistance and a method for manufacturing the same. A novel high-strength, high-toughness, high-hardness ceramic sintered body, which is made by using zirconium oxide as a substrate and dispersing zirconium oxide therein, and is suitable for wear-resistant jigs such as dies, cutting tools, and mechanical seals, and a method for manufacturing the same. Regarding.

(従来の技術) 従来、例えば、セラミック工具の分野において、Al2
O,を99%以上含むアルミナ系の工具と、20〜40
%の炭化チタンを添加した炭化チタン添加アルミナ系の
工具とがアルミナ・セラミック工具として実用化されて
いる。しかし、このセラミック工具は、硬さと耐熱性に
はすぐれるが、超硬工具に比べて靭性(抗折力)に劣る
と共に、熱伝導率が低いので、用途が限定されている。
(Prior Art) Conventionally, for example, in the field of ceramic tools, Al2
Alumina-based tools containing 99% or more of O, and 20 to 40
% of titanium carbide has been put into practical use as an alumina ceramic tool. However, although this ceramic tool has excellent hardness and heat resistance, it has inferior toughness (transverse rupture strength) and low thermal conductivity compared to cemented carbide tools, so its uses are limited.

かかるアルミナ・セラミック工具における問題を解決す
るために、近年、アルミナを基質とし、これに酸化ジル
コニウムを分散させることにより、靭性を向上させた焼
結セラミックス焼結体が種々提案されている。アルミナ
中に酸化ジルコニウムを分散させた焼結原料組成物は、
これを焼結した後、冷却する過程において、アルミナ中
に分散している酸化ジルコニウムが正方品から単斜晶に
相転移し、この際に体積膨張によって焼結体中に微細な
りラックが生じ、この微細なりラックが焼結体に加わる
応力による主クラックの伝播を防止するので、焼結体が
すぐれた靭性を有することとなるとされている。また、
焼結体には、非平衡状態の正方晶も含有されるので、応
力による主クラックがこの酸化ジルコニウムに至ったと
き、酸化ジルコニウムの結晶構造が正方品から単斜晶に
相転移し、クラック先端の応力が緩和されることも、強
靭化の一因であるとされている。
In order to solve such problems with alumina ceramic tools, various sintered ceramic bodies have been proposed in recent years that have improved toughness by using alumina as a matrix and dispersing zirconium oxide therein. The sintering raw material composition in which zirconium oxide is dispersed in alumina is
After sintering this, during the cooling process, the zirconium oxide dispersed in the alumina undergoes a phase transition from tetragonal to monoclinic, and at this time, due to volume expansion, fine racks are created in the sintered body. It is said that the fine racks prevent the propagation of main cracks due to stress applied to the sintered body, resulting in the sintered body having excellent toughness. Also,
The sintered body also contains tetragonal crystals in a non-equilibrium state, so when the main crack due to stress reaches this zirconium oxide, the crystal structure of the zirconium oxide undergoes a phase transition from tetragonal to monoclinic, and the tip of the crack Relaxation of stress is also said to be one of the reasons for toughness.

更に、最近においては、特開昭57−100976号公
報や特開昭59−190259号公報に記載されている
ように、酸化ジルコニウムと共に、ある種の元素の酸化
物、例えば、Y2O3、MgO1CaO等を酸化ジルコ
ニウムに対して適宜量添加し、焼結過程においてこれら
を酸化ジルコニウムに固溶させて、酸化ジルコニウムの
一部又は主体の結晶構造を常温にて準安定相の正方晶と
した部分安定化酸化ジルコニウムを含む焼結体も提案さ
れている。
Furthermore, recently, as described in JP-A-57-100976 and JP-A-59-190259, oxides of certain elements, such as Y2O3, MgO1CaO, etc., have been used together with zirconium oxide. Partially stabilized oxidation by adding an appropriate amount to zirconium oxide and making it a solid solution in zirconium oxide during the sintering process, making the crystal structure of a part or the main part of zirconium oxide into a tetragonal crystal with a metastable phase at room temperature. Sintered bodies containing zirconium have also been proposed.

かかる部分安定化酸化ジルコニウムを含むアルミナ・セ
ラミックス焼結体においては、応力によって正方品酸化
ジルコニウムが単斜晶へ相転移し、その結果としての応
力緩和によって、前述したアルミナ系焼結体に比較して
、高強度高靭性であって、抗折力にもすぐれるが、他方
、酸化ジルコニウムを含むために、硬度が低下してi5
t I”&純性がアルミナ系よりも劣ることとなり、例
えば、高硬度鋼材の切削工具としては、使用に適さない
In the alumina ceramic sintered body containing such partially stabilized zirconium oxide, the tetragonal zirconium oxide undergoes a phase transition to monoclinic crystal due to stress, and due to the resulting stress relaxation, compared to the alumina-based sintered body described above, It has high strength, high toughness, and excellent transverse rupture strength, but on the other hand, since it contains zirconium oxide, the hardness decreases and the i5
tI''&purity is inferior to that of alumina-based materials, and is not suitable for use as a cutting tool for high-hardness steel, for example.

他方、−J’lBに、高硬度焼結体を形成するセラミッ
クス焼結原料として、炭化チタンや窒化チタンかよく知
られている。これらのチタン化合物のみの焼結体は、反
面、強度及び靭性が低いため、チッピングを起こしやす
く、耐摩耗性焼結体としては実用に耐えない。特に、粒
径5μm程度のこれらチタン化合物は焼結性に劣るので
、焼結体を得るには、通常、1700℃以上でのホット
・プレスを必要とするが、尚、得られる焼結体は強度及
び靭性において劣る。他方、粒径2μm以下のチタン化
合物を温度1600℃程度でホット・プレスする場合は
、緻密化と同時に著しい粒成長が生じ、結果として、得
られる焼結体は強度、靭性共に劣る。
On the other hand, titanium carbide and titanium nitride are well known as ceramic sintering raw materials for forming a high-hardness sintered body. On the other hand, these sintered bodies made only of titanium compounds have low strength and toughness, so they are susceptible to chipping and cannot be put to practical use as wear-resistant sintered bodies. In particular, these titanium compounds with a particle size of about 5 μm have poor sinterability, so hot pressing at 1700°C or higher is usually required to obtain a sintered body. Inferior in strength and toughness. On the other hand, when a titanium compound with a grain size of 2 μm or less is hot pressed at a temperature of about 1600° C., significant grain growth occurs at the same time as densification, and as a result, the resulting sintered body is inferior in both strength and toughness.

(発明の目的) 本発明者らは、従来のセラミックス焼結体における上記
した問題を解決するために鋭意研究した結果、微細な炭
化チタン及び/又は窒化チタンに酸化ジルコニウムを分
散させ、これを比較的低い温度にて焼結することによっ
て、均質微細な組繊を有して、耐摩耗性にすぐれる高強
度高靭性高硬度のセラミックス焼結体を得ることができ
ることを見出して、本発明に至ったものである。
(Purpose of the Invention) As a result of intensive research to solve the above-mentioned problems in conventional ceramic sintered bodies, the present inventors dispersed zirconium oxide in fine titanium carbide and/or titanium nitride, and compared the results. We have discovered that by sintering at a relatively low temperature, it is possible to obtain a high-strength, high-toughness, and high-hardness ceramic sintered body that has homogeneous and fine fibers and has excellent wear resistance, and has developed the present invention. This is what we have come to.

従って、本発明は、微細な炭化チタン及び/又は窒化チ
タンに酸化ジルコニウムを分散させてなる耐摩耗性高強
度高靭性高硬度セラミックス焼結体及びその製造方法を
提供することを目的とする。
Therefore, an object of the present invention is to provide a wear-resistant, high-strength, high-toughness, high-hardness ceramic sintered body formed by dispersing zirconium oxide in fine titanium carbide and/or titanium nitride, and a method for manufacturing the same.

(発明の構成) 本発明による耐摩耗性高強度高靭性高硬度セラミックス
焼結体は、酸化ジルコニウム5〜30体積%、残部が平
均粒径2μm以下である炭化チタン及び窒化チタンより
なる群から選ばれる少なくとも1種及び不可避的不純物
よりなることを特徴とする。
(Structure of the Invention) The wear-resistant, high-strength, high-toughness, high-hardness ceramic sintered body according to the present invention is selected from the group consisting of zirconium oxide in an amount of 5 to 30% by volume, and the remainder being titanium carbide and titanium nitride having an average particle size of 2 μm or less. and unavoidable impurities.

更に、本発明によるセラミックス焼結体は、好ましくは
、酸化ジルコニウムに加えて、Y2O3,10及びCa
Oよりなる群から選ばれる少なくとも1種の酸化物を酸
化ジルコニウムに基づいて0.1〜5モル%の範囲で含
有する。
Furthermore, the ceramic sintered body according to the present invention preferably contains Y2O3,10 and Ca in addition to zirconium oxide.
It contains at least one oxide selected from the group consisting of O in an amount of 0.1 to 5 mol % based on zirconium oxide.

本発明において用いる炭化チタン及び窒化チタンは、い
ずれもその平均粒径が2μm以下であることを必要とす
る。平均粒径が2μmを越えるときは、1650℃以下
での焼結によっては、緻密な焼結体を得ることが困難で
ある。即ち、本発明に従って、平均粒径が2μm以下で
ある炭化チタン及び/又は窒化チタンに酸化ジルコニウ
ムを分散させ、これを比較的低い温度で焼結することに
よって、均一微細な組織を有して、高硬度であるうえに
、強度及び靭性に共にすくれるセラミック焼結体を得る
ことができる。特に、かかる観点からは、炭化チタン及
び窒化チタンは、その平均粒径が1.5μm以下である
ことが好ましい。
Both titanium carbide and titanium nitride used in the present invention need to have an average particle size of 2 μm or less. When the average particle size exceeds 2 μm, it is difficult to obtain a dense sintered body by sintering at 1650° C. or lower. That is, according to the present invention, by dispersing zirconium oxide in titanium carbide and/or titanium nitride with an average particle size of 2 μm or less and sintering this at a relatively low temperature, a uniform fine structure is obtained. It is possible to obtain a ceramic sintered body that not only has high hardness but also has good strength and toughness. Particularly from this point of view, titanium carbide and titanium nitride preferably have an average particle size of 1.5 μm or less.

本発明によるセラミックス焼結体においては、酸化ジル
コニウムを5〜30体積%の範囲で含有する。この量が
5体積%よりも少ないときは、原料組成物の焼結時にお
ける炭化チタン及び窒化チタンの粒成長を抑制する効果
が不十分であり、結果として得られる焼結体が強度及び
靭性に劣ることとなる。他方、30体積%を越えるとき
は、前述したように、酸化ジルコニウムは硬度が低いた
め、得られる焼結体が満足すべき硬度をもたない。
The ceramic sintered body according to the present invention contains zirconium oxide in a range of 5 to 30% by volume. When this amount is less than 5% by volume, the effect of suppressing grain growth of titanium carbide and titanium nitride during sintering of the raw material composition is insufficient, and the resulting sintered body has poor strength and toughness. It will be inferior. On the other hand, when the amount exceeds 30% by volume, the resulting sintered body does not have satisfactory hardness because zirconium oxide has low hardness, as described above.

本発明によるセラミツ、クス焼結体は、上記した炭化チ
タン及び/又は窒化チタンと酸化ジルコニウムに加えて
、好ましくは、Y2O3、MgO及びCaOよりなる群
から選ばれる少なくとも1種の酸化物を酸化ジルコニウ
ムに基づいて0.1〜5モル%の範囲で含有する。上記
酸化物は、前述したように、酸化ジルコニウムと共に焼
結されるときに酸化ジルコニウムに固溶して、酸化ジル
コニウムの結晶構造を正方晶とし、応力場において、こ
の正方品を単斜晶に相転移させて、応力緩和を図る。従
って、上記酸化物量が0.1モル%よりも少ないときは
、焼結体中に十分な量の正方品酸化ジルコニウムが生成
しないので、靭性の改善効果に乏しく、他方、5モル%
を越えて過多に加えるときは、酸化ジルコニウムが安定
化されて、前述した正方晶から単斜晶への相転移による
応力緩和の効果が生じないのみならず、焼結時に正方晶
から単斜晶への相転移によって、焼結体中に微細なりラ
ックが分散されないので、応力場でのクラックの伝播防
止効果が発現されず、靭性が改善されない。
In addition to the above-mentioned titanium carbide and/or titanium nitride and zirconium oxide, the ceramic or sintered body of the present invention preferably contains at least one oxide selected from the group consisting of Y2O3, MgO and CaO. It is contained in a range of 0.1 to 5 mol% based on. As mentioned above, when the above oxide is sintered with zirconium oxide, it forms a solid solution in zirconium oxide, making the crystal structure of zirconium oxide tetragonal, and in a stress field, this tetragonal product becomes monoclinic. Transfer and try to relieve stress. Therefore, when the amount of the above oxide is less than 0.1 mol%, a sufficient amount of tetragonal zirconium oxide is not generated in the sintered body, so the effect of improving toughness is poor;
If an excessive amount is added beyond the zirconium oxide, the zirconium oxide is stabilized, and not only does the stress relaxation effect due to the phase transition from tetragonal to monoclinic described above not occur, but also the phase transition from tetragonal to monoclinic occurs during sintering. Because fine racks are not dispersed in the sintered body due to the phase transition to , the effect of preventing crack propagation in a stress field is not exhibited, and the toughness is not improved.

本発明によるセラミックス焼結体は、本発明に従って、
酸化ジルコニウム5〜30体積%と、好ましくは、酸化
ジルコニウムに加えて、Y2O3、MgO及びCaOよ
りなる群から選ばれる少な(とも1種の酸化物を酸化ジ
ルコニウムに基づいて0.1〜5モル%の範囲で含有し
、残部が平均粒径2μm以下である炭化チタン及び窒化
チタンよりなる群から選ばれる少なくとも1種及び不可
避的不純物よりなる焼結原料組成物を温度1400〜1
650℃、圧力100 kg/cd以上にてホット・プ
レスすることによって得ることができる。
The ceramic sintered body according to the present invention has the following features:
5 to 30% by volume of zirconium oxide and preferably, in addition to the zirconium oxide, a small amount (both 0.1 to 5% by mole, based on the zirconium oxide) of one oxide selected from the group consisting of Y2O3, MgO and CaO. A sintering raw material composition consisting of at least one selected from the group consisting of titanium carbide and titanium nitride and unavoidable impurities, with the remainder having an average particle size of 2 μm or less, is heated at a temperature of 1400 to 1.
It can be obtained by hot pressing at 650° C. and a pressure of 100 kg/cd or more.

本発明の方法において、上記焼結原料組成物を焼結して
、緻密な焼結体を得るために、ホット・プレス温度は少
なくとも1400°C以上が必要である。しかし、16
50℃を越える高温とする場合は、炭化チタンや窒化チ
タンが酸化ジルコニウムと反応して、それぞれ炭化ジル
コニウム及び窒化ジルコニウムを生成し、結果として酸
化ジルコニウムが失われて、酸化ジルコニウムによる炭
(ヒチタンや窒化チタンの粒成長抑制効果が発現されな
い。更に、焼結時には、少な(とも100kg/clの
圧力が必要であり、これよりも低い圧力下では緻密な焼
結体を得ることが困難である。圧力の上限は、特に限定
されるものではないか、焼結に用いる黒鉛型の強度上、
通常は、500 kg/cI11か実用的である。焼結
は、緻密な焼結体を得るためには、上記した温度及び圧
力下に、通常、10分以上にわたって行なうことが必要
である。しかし、余りに長時間にわたって焼結すること
は、炭化チタンや窒化チタンの粒成長が起こるので、好
ましくない。
In the method of the present invention, in order to obtain a dense sintered body by sintering the sintering raw material composition, the hot pressing temperature must be at least 1400°C. However, 16
When the temperature exceeds 50°C, titanium carbide and titanium nitride react with zirconium oxide to form zirconium carbide and zirconium nitride, respectively. As a result, zirconium oxide is lost, and zirconium oxide carbon (hydrogen and nitride) The grain growth suppressing effect of titanium is not expressed.Furthermore, during sintering, a small pressure (of 100 kg/cl) is required, and it is difficult to obtain a dense sintered body under a pressure lower than this. The upper limit of is not particularly limited, due to the strength of the graphite mold used for sintering
Usually, 500 kg/cI11 is practical. In order to obtain a dense sintered body, sintering must be carried out at the above-mentioned temperature and pressure for usually 10 minutes or more. However, sintering for too long is not preferable because grain growth of titanium carbide and titanium nitride occurs.

(発明の効果) 以上のように、本発明によるセラミックス焼結体は、微
細な炭化チタン及び/又は窒化チタンに所定量の酸化ジ
ルコニウムを分散させてなるので、炭化チタン及び/又
は窒化チタンの粒成長が抑制される結果、均質微細な組
織を有して、高硬度で耐摩耗性にすぐれると共に、焼結
体中に含まれる正方品酸化ジルコニウムが応力場におい
て応力を援用し、クラックの伝播を阻止するので、高強
度高靭性である。
(Effects of the Invention) As described above, the ceramic sintered body according to the present invention is made by dispersing a predetermined amount of zirconium oxide in fine titanium carbide and/or titanium nitride. As a result of suppressing growth, it has a homogeneous fine structure, has high hardness and excellent wear resistance, and the tetragonal zirconium oxide contained in the sintered body utilizes stress in the stress field, preventing crack propagation. It has high strength and high toughness.

特に、窒化チタンを分散させてなる焼結体は、従来のア
ルミナ系材料に比べて高温での熱電導率にすくれ、また
、化学的にも鉄との親和性か低いので、鉄鋼材料との接
触摩耗条件下での凝着による摩耗が少ない。
In particular, sintered bodies made of dispersed titanium nitride have lower thermal conductivity at high temperatures than conventional alumina-based materials, and also have a low chemical affinity for iron, so they are not suitable for steel materials. Less wear due to adhesion under contact wear conditions.

更に、本発明の方法によれば、かかるセラミックス焼結
体を比較的低い温度による焼結によって得ることができ
る。
Furthermore, according to the method of the present invention, such a ceramic sintered body can be obtained by sintering at a relatively low temperature.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例■ (炭化チタンを用いる例) 実施例1 平均粒径1.0μmの炭化チタン粉末85体積%と、酸
化ジルコニウムに対して3モル%のY2O3を含む酸化
ジルコニウム粉末15体積%とをエタノールを分散媒と
して振動ミルにて5時間湿式混合した後、得られたスラ
リーを噴霧乾燥して、焼結に供する原料組成物を得た。
Example ■ (Example using titanium carbide) Example 1 85% by volume of titanium carbide powder with an average particle size of 1.0 μm and 15% by volume of zirconium oxide powder containing 3 mol% of Y2O3 based on zirconium oxide were mixed with ethanol. After wet mixing for 5 hours using a vibration mill as a dispersion medium, the resulting slurry was spray-dried to obtain a raw material composition to be sintered.

この原料組成物を黒鉛型(断面積56X56mm)に充
填し、温度1600℃、圧力250kg乙ctAにて3
0分間ホット・プレスした。
This raw material composition was filled into a graphite mold (cross-sectional area: 56 x 56 mm), and the temperature was 1600°C and the pressure was 250 kg.
Hot pressed for 0 minutes.

このようにして得られた焼結体は、非常に緻密であって
、その相対密度(理論密度に対する実測密度の割合)は
99.1%であった。また、曲げ強度(3点曲げ、スバ
7301+1)は92kg/mmz、破壊靭性値に+c
(ビッカース圧子圧入法)は6.4Hpam172、ビ
ッカース硬度は2460 kg/mm2であって、高強
度高靭性高硬度であることが示された。更に、摩耗試験
材としてインコルネ750を用いて、大越式摩耗試験法
によって測定した比摩耗量は1.2 X 10−6mm
27kgであって、耐摩耗性にもすくれることが示され
た。
The sintered body thus obtained was extremely dense, and its relative density (ratio of measured density to theoretical density) was 99.1%. In addition, the bending strength (3-point bending, Suba 7301+1) is 92 kg/mmz, and the fracture toughness value is +c.
(Vickers indentation method) was 6.4 HPam172 and Vickers hardness was 2460 kg/mm2, indicating high strength, high toughness, and high hardness. Furthermore, using Incorne 750 as the wear test material, the specific wear amount measured by the Okoshi method was 1.2 x 10-6 mm.
The weight was 27 kg, and it was shown that the wear resistance was also low.

実施例2〜9及び比較例1〜6 焼結原料組成物として、第1表に示すようにそれぞれ所
定量の平均粒径1.0μmの炭化チタン粉末と、(Y2
Ch、門gO又はCaOのいずれかを含む)酸化ジルコ
ニウム粉末とを用い、第1表に示す条件Fに焼結した以
外は、実施例1と同イ、良に処理した。このようにして
得られたそれぞれの焼結体の性質を第1表に示す。
Examples 2 to 9 and Comparative Examples 1 to 6 As shown in Table 1, a predetermined amount of titanium carbide powder with an average particle diameter of 1.0 μm and (Y2
The process was carried out in the same manner as in Example 1, except that zirconium oxide powder (containing either Ch, O, or CaO) was used and sintered under Condition F shown in Table 1. Table 1 shows the properties of each of the sintered bodies thus obtained.

実施例10及び比較例7 焼結原料組成物として、第1表に示すようにそれぞれ所
定量の平均粒径2.0μmの炭化チタン粉末と、Y2O
,を含む酸化ジルコニウム粉末とを用い、第1表に示す
条件下に焼結した以外は、実施例1と同様に処理した。
Example 10 and Comparative Example 7 As shown in Table 1, predetermined amounts of titanium carbide powder with an average particle size of 2.0 μm and Y2O were used as sintering raw material compositions.
The process was carried out in the same manner as in Example 1, except that zirconium oxide powder containing .

このようにして得られたそれ、ぞれの焼結体の性質を第
1表に示す。
Table 1 shows the properties of each of the sintered bodies thus obtained.

比較例8〜10 焼結原料組成物として、第1表に示すようにそれぞれ所
定量の平均粒径5.0μmの炭化チタン粉末と、Y2O
3を含む酸化ジルコニウム粉末とを用い、第1表に示す
条件下に焼結した以外は、実施例1と同様に処理した。
Comparative Examples 8 to 10 As sintering raw material compositions, predetermined amounts of titanium carbide powder with an average particle size of 5.0 μm and Y2O were used as shown in Table 1.
The process was carried out in the same manner as in Example 1, except that zirconium oxide powder containing No. 3 was used and sintered under the conditions shown in Table 1.

このようにして得られたそれぞれの焼結体の性質を第1
表に示す。
The properties of each sintered body obtained in this way are
Shown in the table.

実施例■(窒化チタンを用いる例) 実施例1 平均粒径1.0μmの窒化チタン粉末85体積%と、酸
化ジルコニウムに対して3モル%のY2O3粉末を含む
酸化ジルコニウム粉末15体積%とを実施例1における
と同じ方法にて湿式混合し、噴霧乾燥した後、黒鉛型に
充填し、温度1600 ’c、圧力250 kg/cn
Tにて30分間ポット・プレスした。
Example ■ (Example using titanium nitride) Example 1 85% by volume of titanium nitride powder with an average particle size of 1.0 μm and 15% by volume of zirconium oxide powder containing 3 mol% of Y2O3 powder based on zirconium oxide were carried out. After wet mixing and spray drying in the same manner as in Example 1, it was filled into graphite molds at a temperature of 1600'C and a pressure of 250 kg/cn.
Pot press for 30 minutes at T.

このようにして得られた焼結体は、非常に緻密であって
、その相対密度(理論密度に対する実測密度の割合)は
99.5%であった。また、曲げ強度(3点曲げ、スパ
ン30mm)は114 kg/mm2、破壊靭性値に1
.(ビッカース圧子圧入法)は6.2MPamI/z、
ビッカース硬度は1750 kg/mm2であって、高
強度高靭性高硬度であることが示された。
The sintered body thus obtained was extremely dense, and its relative density (ratio of measured density to theoretical density) was 99.5%. In addition, the bending strength (3-point bending, span 30mm) is 114 kg/mm2, and the fracture toughness value is 1
.. (Vickers indentation method) is 6.2MPamI/z,
The Vickers hardness was 1750 kg/mm2, indicating high strength, high toughness, and high hardness.

更に、摩耗試験材としてSO5304鋼を用いて、大戦
式摩耗試験法によって測定した比摩耗量は0.8X 1
0−6mm27kgであって、耐摩耗性にもすくれるこ
とが示された。
Furthermore, using SO5304 steel as the wear test material, the specific wear amount measured by the Great War style wear test method was 0.8X 1
The weight was 0-6 mm and 27 kg, and it was shown that the wear resistance was also low.

実施例2〜9及び比較例1〜6 焼結原料組成物として、第2表に示すようにそれぞれ所
定量の平均粒径1.0μmの窒化チタン粉末と、(Yz
Oi、MgO又はCaOのいずれかを含む)酸化ジルコ
ニウム粉末とを用い、第2表に示す条件下に焼結した以
外は、実施例1と同様に処理した。このようにして得ら
れたそれぞれの焼結体の性質を第2表に示す。
Examples 2 to 9 and Comparative Examples 1 to 6 As shown in Table 2, a predetermined amount of titanium nitride powder with an average particle size of 1.0 μm and (Yz
The process was carried out in the same manner as in Example 1, except that zirconium oxide powder (containing either Oi, MgO or CaO) was used and sintered under the conditions shown in Table 2. Table 2 shows the properties of each of the sintered bodies thus obtained.

実施例10及び比較例7 焼結原料組成物として、第2表に示すようにそれぞれ所
定量の平均粒径2.0μmの窒化チタン粉末と、Y2O
3を含む酸化ジルコニウム粉末とを用い、第2表に示す
条件下に焼結した以外は、実施例1と同様に処理した。
Example 10 and Comparative Example 7 As shown in Table 2, predetermined amounts of titanium nitride powder with an average particle size of 2.0 μm and Y2O were used as sintering raw material compositions.
The process was carried out in the same manner as in Example 1, except that zirconium oxide powder containing No. 3 was used and sintered under the conditions shown in Table 2.

このようにして得られたそれぞれの焼結体の性質を第2
表に示す。
The properties of each sintered body obtained in this way are
Shown in the table.

比較例8〜10 焼結原料組成物として、第2表に示すようにそれぞれ所
定量の平均粒径5.0μmの窒化チタン粉末と、Y2O
3を含む酸化ジルコニウム粉末とを用い、第2表に示す
条件下に焼結した以外は、実施例1と同様に処理した。
Comparative Examples 8 to 10 As sintering raw material compositions, predetermined amounts of titanium nitride powder with an average particle size of 5.0 μm and Y2O were used as shown in Table 2.
The process was carried out in the same manner as in Example 1, except that zirconium oxide powder containing No. 3 was used and sintered under the conditions shown in Table 2.

このようにして得られたそれぞれの焼結体の性質を第2
表に示す。
The properties of each sintered body obtained in this way are
Shown in the table.

比較例11及び12 本発明によるセラミックス焼結体と比較するために、酸
化ジルコニウムを含むアルミナ焼結体と超硬合金(WC
−10%Co)の性質を第2表に示す。
Comparative Examples 11 and 12 In order to compare with the ceramic sintered body according to the present invention, an alumina sintered body containing zirconium oxide and a cemented carbide (WC
-10%Co) properties are shown in Table 2.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化ジルコニウム5〜30体積%、残部が平均粒
径2μm以下である炭化チタン及び窒化チタンよりなる
群から選ばれる少なくとも1種及び不可避的不純物より
なることを特徴とする耐摩耗性高強度高靭性高硬度セラ
ミックス焼結体。
(1) High strength and wear resistance characterized by comprising 5 to 30% by volume of zirconium oxide, the balance being at least one member selected from the group consisting of titanium carbide and titanium nitride with an average particle size of 2 μm or less, and unavoidable impurities. High toughness and high hardness ceramic sintered body.
(2)酸化ジルコニウム5〜30体積%、Y_2O_3
、MgO及びCaOよりなる群から選ばれる少なくとも
1種の酸化物を酸化ジルコニウムに基づいて0.1〜5
モル%、残部が平均粒径2μm以下である炭化チタン及
び窒化チタンよりなる群から選ばれる少なくとも1種及
び不可避的不純物よりなることを特徴とする耐摩耗性高
強度高靭性高硬度セラミックス焼結体。
(2) Zirconium oxide 5-30% by volume, Y_2O_3
, MgO and CaO, based on zirconium oxide, at least one oxide selected from the group consisting of 0.1 to 5
A wear-resistant, high-strength, high-toughness, high-hardness ceramic sintered body characterized by comprising at least one member selected from the group consisting of titanium carbide and titanium nitride, with the remainder having an average particle diameter of 2 μm or less, and unavoidable impurities. .
(3)酸化ジルコニウム5〜30体積%、残部が平均粒
径2μm以下である炭化チタン及び窒化チタンよりなる
群から選ばれる少なくとも1種及び不可避的不純物より
なる組成物を温度1400〜1650℃、圧力100k
g/cm^2以上にてホット・プレスすることを特徴と
する耐摩耗性高強度高靭性高硬度セラミックス焼結体の
製造方法。
(3) A composition consisting of 5 to 30 volume % of zirconium oxide, the remainder being at least one selected from the group consisting of titanium carbide and titanium nitride with an average particle size of 2 μm or less, and unavoidable impurities at a temperature of 1400 to 1650 °C and a pressure 100k
A method for producing a wear-resistant, high-strength, high-toughness, high-hardness ceramic sintered body, which comprises hot pressing at g/cm^2 or more.
(4)酸化ジルコニウム5〜30体積%、Y_2O_3
、MgO及びCaOよりなる群から選ばれる少なくとも
1種の酸化物を酸化ジルコニウムに基づいて0.1〜5
モル%、残部が平均粒径2μm以下である炭化チタン及
び窒化チタンよりなる群から選ばれる少なくとも1種及
び不可避的不純物よりなる組成物を温度1400〜16
50℃、圧力100kg/cm^2以上にてホット・プ
レスすることを特徴とする耐摩耗性高強度高靭性高硬度
セラミックス焼結体の製造方法。
(4) Zirconium oxide 5-30% by volume, Y_2O_3
, MgO and CaO, based on zirconium oxide, at least one oxide selected from the group consisting of 0.1 to 5
A composition consisting of at least one member selected from the group consisting of titanium carbide and titanium nitride with an average particle size of 2 μm or less and unavoidable impurities is heated at a temperature of 1400 to 16 mol%.
A method for producing a wear-resistant, high-strength, high-toughness, high-hardness ceramic sintered body, characterized by hot pressing at 50°C and a pressure of 100 kg/cm^2 or more.
JP60291770A 1985-12-23 1985-12-23 Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture Pending JPS62148367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291770A JPS62148367A (en) 1985-12-23 1985-12-23 Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291770A JPS62148367A (en) 1985-12-23 1985-12-23 Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS62148367A true JPS62148367A (en) 1987-07-02

Family

ID=17773194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291770A Pending JPS62148367A (en) 1985-12-23 1985-12-23 Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS62148367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461355A (en) * 1987-09-01 1989-03-08 Riken Kk Titanium carbide/silicon carbide whisker/zirconia based complex sintered material and production thereof
JPS6483570A (en) * 1987-09-24 1989-03-29 Onoda Cement Co Ltd Titanium carbide sintered form
JPH03218968A (en) * 1990-01-23 1991-09-26 Mitsubishi Heavy Ind Ltd Sintered body for tool and production thereof
JP2008105091A (en) * 2006-10-27 2008-05-08 Kyocera Corp Die for hot extrusion molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832067A (en) * 1981-08-13 1983-02-24 日本特殊陶業株式会社 Tenacious zirconia sintered body
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body
JPS5961215A (en) * 1982-09-29 1984-04-07 Toshiba Corp Hysteresis circuit
JPS5964575A (en) * 1982-09-30 1984-04-12 京セラ株式会社 Ornamental hard gold-color ceramics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832067A (en) * 1981-08-13 1983-02-24 日本特殊陶業株式会社 Tenacious zirconia sintered body
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body
JPS5961215A (en) * 1982-09-29 1984-04-07 Toshiba Corp Hysteresis circuit
JPS5964575A (en) * 1982-09-30 1984-04-12 京セラ株式会社 Ornamental hard gold-color ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461355A (en) * 1987-09-01 1989-03-08 Riken Kk Titanium carbide/silicon carbide whisker/zirconia based complex sintered material and production thereof
JPS6483570A (en) * 1987-09-24 1989-03-29 Onoda Cement Co Ltd Titanium carbide sintered form
JPH03218968A (en) * 1990-01-23 1991-09-26 Mitsubishi Heavy Ind Ltd Sintered body for tool and production thereof
JP2008105091A (en) * 2006-10-27 2008-05-08 Kyocera Corp Die for hot extrusion molding

Similar Documents

Publication Publication Date Title
EP0311264B1 (en) Ceramic cutting tool inserts and production thereof
US4218253A (en) Sintered ceramic material of improved ductility
CA2071522C (en) Dense sic ceramic products
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JPH0231031B2 (en)
US4578363A (en) Silicon carbide refractories having modified silicon nitride bond
KR20010086446A (en) Composite material
EP0170889B1 (en) Zrb2 composite sintered material
US4975397A (en) Sintered molding, a method for producing it and its use
JPS61178469A (en) Manufacture of silicon carbide base sintered body
JPS60246268A (en) Sialon base ceramic
KR20160064163A (en) Refractory product with a SiAlON matrix
JP2540662B2 (en) Whisker-reinforced ceramic cutting tool material
CN111517798A (en) Carbide-based ceramic material, preparation method and application thereof
JPS62148367A (en) Abrasion resistance, high strength, high toughness and high hardness ceramic sintered body and manufacture
JPH06298573A (en) Ceramic cutting tool material
JPS61146762A (en) Antiabrasive silicon nitride base product
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPH0553747B2 (en)
JPS6335593B2 (en)
US5053363A (en) Ceramic cutting material reinforced by whiskers
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS62187173A (en) Bite chip for machining iron material