JPS62133093A - Continuous production of m-hydroxybenzyl alcohol - Google Patents

Continuous production of m-hydroxybenzyl alcohol

Info

Publication number
JPS62133093A
JPS62133093A JP60272467A JP27246785A JPS62133093A JP S62133093 A JPS62133093 A JP S62133093A JP 60272467 A JP60272467 A JP 60272467A JP 27246785 A JP27246785 A JP 27246785A JP S62133093 A JPS62133093 A JP S62133093A
Authority
JP
Japan
Prior art keywords
mhba
electrolytic
hydroxybenzyl alcohol
aqueous solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60272467A
Other languages
Japanese (ja)
Other versions
JPS6347792B2 (en
Inventor
Shinji Takenaka
竹中 慎司
Tatsu Oi
龍 大井
Chitoshi Shimakawa
千年 島川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60272467A priority Critical patent/JPS62133093A/en
Priority to CA000523197A priority patent/CA1309375C/en
Priority to AU65344/86A priority patent/AU584477B2/en
Priority to US06/932,333 priority patent/US4684449A/en
Priority to EP86309071A priority patent/EP0228181B1/en
Priority to DE8686309071T priority patent/DE3672586D1/en
Priority to KR1019860009851A priority patent/KR890002864B1/en
Priority to BR8605899A priority patent/BR8605899A/en
Publication of JPS62133093A publication Critical patent/JPS62133093A/en
Publication of JPS6347792B2 publication Critical patent/JPS6347792B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To continuously produce m-hydroxybenzyl alcohol in a high yield by continuously feeding m-hydroxybenzoic acid and an acidic aqueous soln. as starting materials, allowing m-hydroxybenzyl alcohol to exist in the electrolytic soln. and carrying out electrolysis at a specified temp. CONSTITUTION:m-Hydroxybenzoic acid and 10-20wt% aqueous sulfuric acid soln. as starting materials are continuously fed to a multistage electrolytic cell. m-Hydroxybenzyl alcohol is allowed to exist in the electrolytic soln. in the electrolytic cell and continuous electrolysis is carried out at 20-70 deg.C, especially 30-60 deg.C reaction temp. to continuously produce m-hydroxybenzyl alcohol.

Description

【発明の詳細な説明】 産Hk、 o fll M ’yビし 本発明は、m−ヒドロキシベンジルアルコール(以下m
HI30Hと略記する)の製造方法に関する。
[Detailed Description of the Invention] The present invention provides m-hydroxybenzyl alcohol (hereinafter referred to as m-hydroxybenzyl alcohol).
(abbreviated as HI30H).

mHBOHは上薬、あるいは農薬の中間体として有用な
化合物であるが、現状ではこれの安価な製造方法による
工業的供給には至っていない。
mHBOH is a compound useful as an intermediate for pharmaceuticals or agricultural chemicals, but at present it has not been commercially supplied by an inexpensive manufacturing method.

従来の技術 mHBOHの合成法として、m−クレゾールを原料とす
る発酵法、m−ヒドロキシベンズアルデヒドを原料とす
るナトリウム・アマルガム、 NaBH,1、LiAl
H4等による還元及び水素添加反応等があるが、収率的
に不十分であったりして、実用化には至っていない。ま
た水素添加反応は高温、高圧下の反応であり工業的製造
法には種々問題がある。
Conventional methods for synthesizing mHBOH include fermentation using m-cresol as a raw material, sodium amalgam using m-hydroxybenzaldehyde as a raw material, NaBH,1, and LiAl.
There are reduction and hydrogenation reactions using H4, etc., but they have not been put to practical use because the yield is insufficient. Further, the hydrogenation reaction is a reaction at high temperature and high pressure, and there are various problems with industrial production methods.

またm−ヒドロキシ安息香酸(以下m HB Aと略記
する)を原料とする方法については、ナトリウム番アマ
ルガム及び電解還元法が提案(Berichtユ上、1
752(1905))されているが収率的にも低く工業
的方法にはなり得なかった。
Regarding the method using m-hydroxybenzoic acid (hereinafter abbreviated as mHBA) as a raw material, sodium amalgam and electrolytic reduction method have been proposed (Bericht U.
752 (1905)), but the yield was low and it could not be used as an industrial method.

発明が解決しようとする問題点 本発明者らは、mHBOHの工業的製造方法について、
鋭意検討を行ないmHBAの電解還元により高収率で高
純度のmHBOH@得る方法を先に見い出した(特願昭
59−90887、特願昭59−96639)。これら
の電解反応はバッチ反応であるが、電解反応をスムース
に進行させる為には電解液が均一に溶解されており、電
極表面に障害を生じないことが必要である。
Problems to be Solved by the Invention The present inventors have solved the following problems regarding the industrial production method of mHBOH:
After extensive research, we have previously discovered a method for obtaining high-yield, high-purity mHBOH@ by electrolytic reduction of mHBA (Japanese Patent Application No. 59-90887, Japanese Patent Application No. 59-96639). Although these electrolytic reactions are batch reactions, in order for the electrolytic reaction to proceed smoothly, it is necessary that the electrolytic solution is uniformly dissolved and that no damage is caused to the electrode surface.

mHBAは水に対する溶解度が低く、基質濃度を高くす
ることはなかなか困難であった。工業的な生産効率や経
済性から基質濃度を10チ以上にすることが望ましいが
、水溶媒にmHBAを溶解して10%以上の濃度にする
為には、温度を90℃以とにあげるか、支持電解物質と
して第4級アンモニウム塩を用いて、これとの相溶性に
よってmHBAの濃度を高める方法、更には水溶性の有
機溶媒を用いてmHBAの溶解性を増す方法、1f(B
Aをエステル化して水溶性を増す方法等が必要である。
mHBA has low solubility in water, and it has been difficult to increase the substrate concentration. It is desirable to have a substrate concentration of 10% or higher from the viewpoint of industrial production efficiency and economic efficiency, but in order to dissolve mHBA in an aqueous solvent to a concentration of 10% or higher, it is necessary to raise the temperature to 90°C or higher. , a method of increasing the concentration of mHBA by using a quaternary ammonium salt as a supporting electrolyte, and a method of increasing the solubility of mHBA by using a water-soluble organic solvent, 1f (B
A method of esterifying A to increase its water solubility is required.

またm HB Aを溶液状態にして電解するに際しては
、溶液を酸性にして行う必要があることもわかり、本発
明者らは先にこれらを提案した。
It was also found that when electrolyzing mHBA in a solution state, it is necessary to make the solution acidic, and the present inventors have previously proposed these methods.

しかし反応時に支持電解物質や有機溶媒を用いると、電
解終了後にmHBOHを単離するのに、有機溶媒、又は
支持電解物質との分離が繁雑となり、その分コストup
  に結びつく。又、温度をあげて溶解度を増す方法で
は、酸性水溶液中ではmHBAは温度の上昇とともに分
解速度が早くなり好ましくない。
However, if a supporting electrolyte or an organic solvent is used during the reaction, separation from the organic solvent or supporting electrolyte becomes complicated to isolate mHBOH after electrolysis, which increases costs.
connected to. Furthermore, in the method of increasing solubility by raising the temperature, mHBA decomposes faster in an acidic aqueous solution as the temperature rises, which is not preferable.

第1図は、mHBA硫酸水溶液中の硫酸濃度が5重量係
、25重量係における夫々のm HB A溶液温度と、
5時間経過後のmHBA熱分解率との関係図である。
FIG. 1 shows the respective mHBA solution temperatures when the sulfuric acid concentration in the mHBA sulfuric acid aqueous solution is 5% by weight and 25% by weight,
It is a relationship diagram with the mHBA thermal decomposition rate after 5 hours.

図よりわかるように、例えば10%硫酸水溶液中に90
℃でmHB Aを溶解させた場合、1時間に約5係の割
合で分解が進行することになり、通常の場合は反応には
4〜5時間が適尚であるのしこ、全体で20〜2596
の分解は無視出来ないことがわかった。
As can be seen from the figure, for example, 90%
When mHBA is dissolved at ℃, the decomposition proceeds at a rate of about 5 times per hour, which means that 4 to 5 hours is appropriate for the reaction in normal cases, but the total reaction time is 20°C. ~2596
It turns out that the decomposition of can not be ignored.

更に、電解槽の隔膜に使用する陽イオン交換膜の耐熱性
の問題もあり、高温下での電解は実用上不可能であった
Furthermore, there was a problem with the heat resistance of the cation exchange membrane used in the diaphragm of the electrolytic cell, making electrolysis at high temperatures practically impossible.

問題を解決 るための 本発明者らは、酸性水溶液中で基質濃度を10係以上溶
解して、連続電解還元する方法について鋭意検討して本
発明を完成させた。
In order to solve the problem, the present inventors conducted intensive studies on a method of dissolving the substrate in an acidic aqueous solution to a concentration of 10 or more and carrying out continuous electrolytic reduction, and completed the present invention.

第2図は、水100g中にm HB OHを添加した水
溶液をパラメータにして、各温度におけるmHBAの溶
解度曲線を示すものであり1図中、夫々の溶解度曲線の
カッコ内数字は、添加したmHBOHの重量係を示す。
Figure 2 shows the solubility curve of mHBA at each temperature using an aqueous solution of mHBOH added to 100 g of water as a parameter. Shows the weight of.

図よりわかるように、例えばmHBOHを10重重量秤
在させることにより、mHBAの溶解度は極端に大きく
なり、mHBA分解率が比較的低い温度の70゛C以下
でも実施できるような充分な溶解性を有する。
As can be seen from the figure, for example, by weighing 10 g of mHBOH, the solubility of mHBA becomes extremely high, and the mHBA decomposition rate is sufficiently solubility that it can be carried out even at a relatively low temperature of 70°C or lower. have

このように、m HB Aは水に対する溶解度は小さい
が、mHBOHは水に対する溶解度が大きく、mHBO
Hが溶存しているとmHBAの溶解度が増し。
Thus, mHBA has low solubility in water, but mHBOH has high solubility in water, and mHBO
When H is dissolved, the solubility of mHBA increases.

このため電解還元反応系中には、必ずしも有機溶媒や支
持電解物質は添D11する必要もなく、比較的低い反応
温度で実施できる。そのためには電解還元反応に付す電
解液中には、常にmHBOHを存在させておくことが必
要であるが、仕込段階からmHBOHを添り口して溶解
後、m HB Aを一括装入するバッチ方式や、反応の
進行に合せて消費されるmHBAを逐次累積添7Jn 
L、ながら行うセミバッチ方式を本発明者らは先に提案
した。
Therefore, it is not necessary to add an organic solvent or a supporting electrolyte D11 to the electrolytic reduction reaction system, and the reaction can be carried out at a relatively low reaction temperature. For this purpose, it is necessary to always have mHBOH present in the electrolytic solution subjected to the electrolytic reduction reaction, but it is necessary to add mHBOH from the preparation stage to dissolve it, and then charge mHB A all at once. Depending on the method and the progress of the reaction, the mHBA consumed is added sequentially and cumulatively.
The present inventors previously proposed a semi-batch method in which the process is carried out while using L.

しかしながら、該方法はセミバッチ方式であるため、槽
内でのm I(B Of(の存在量は経時的に変動し、
そのため溶解させるmHBAの量もその都度変動させる
必要があった。
However, since this method is a semi-batch method, the amount of m I(B Of() in the tank fluctuates over time.
Therefore, it was necessary to vary the amount of mHBA to be dissolved each time.

その結果、生産効率の面からだけでなく、反応操作も繁
雑なものであった。
As a result, not only the production efficiency was reduced, but also the reaction operation was complicated.

本発明者らは鋭意検討を行い、電解槽中に酸沈水溶液と
、mHBAを連続供給して電解を行う事で生産効率の良
い製法を見い出し本発明を完成した。
The inventors of the present invention conducted extensive research and found a manufacturing method with high production efficiency by continuously supplying an acid precipitate solution and mHBA into an electrolytic tank to perform electrolysis, and completed the present invention.

すなわち、本発明はm−ヒドロキシ安息香酸を酸性水溶
液で電解還元するに際して、原料のm −ヒドロキシ安
息香酸、及び酸性水溶液を連続添加しながら、電解液中
にm−ヒドロキシベンジルアルコールを存在させ、20
〜70℃で電解を行なう事を特徴とする雇−ヒドロキシ
ベンジルアルコールの連続製造方法である。
That is, in the present invention, when m-hydroxybenzoic acid is electrolytically reduced with an acidic aqueous solution, m-hydroxybenzoic acid as a raw material and the acidic aqueous solution are continuously added, m-hydroxybenzyl alcohol is made to exist in the electrolytic solution, and 20
This is a continuous method for producing hydroxybenzyl alcohol, characterized by carrying out electrolysis at ~70°C.

本発明方法を実施する場合の好ましい一例を以下説明す
る。
A preferred example of carrying out the method of the present invention will be described below.

電解槽には最初、酸性水溶液を装入しておく。The electrolytic cell is initially charged with an acidic aqueous solution.

次に一定量の酸性水溶液と、mHBAを連続供給し、電
解槽内の陽、陰極に通電し連続電解を行なう。
Next, a certain amount of acidic aqueous solution and mHBA are continuously supplied, and electricity is applied to the anode and cathode in the electrolytic cell to perform continuous electrolysis.

一方、電解液は陰極槽側壁と部に設けられた溢流管より
一定量流出させるか、又は陰極槽より定量ポンプで流出
させる。その際、多段式電解槽を設けて行なうのが好ま
しく、流出液は連続的に陰極槽へ装入する。
On the other hand, the electrolytic solution is caused to flow out in a fixed amount from an overflow pipe provided on the side wall of the cathode cell, or from the cathode cell using a metering pump. In this case, it is preferable to provide a multistage electrolytic cell, and the effluent is continuously charged to the cathode cell.

電解の開始時期には、電極槽内に溶存する1HBOHの
量も少なく、シたがって電解液に添加するmHBAの量
も少なくする必要があるが、時間の経過と共にmHBO
Hの量が増え、それにつれmHBAの溶解量も増やし、
それが一定になる時期、即ち定常状態では電解槽内には
常に一定量のmHBOHが溶存し、供給されるmHBA
の溶解量も一定となる。
At the start of electrolysis, the amount of 1HBOH dissolved in the electrode bath is small, and therefore the amount of mHBA added to the electrolyte needs to be reduced, but as time passes, mHBO
As the amount of H increases, the amount of mHBA dissolved also increases,
When it becomes constant, that is, in a steady state, a certain amount of mHBOH is always dissolved in the electrolytic cell, and the supplied mHBA
The amount of dissolved is also constant.

その結果、反応基質の濃度も常に一定で連続電解が行な
われ、電解液をとり出す事ができる。
As a result, the concentration of the reaction substrate is always constant, continuous electrolysis is performed, and the electrolyte can be taken out.

電解槽の型式については特に限定するものではない。m
HBAの溶解性を高めて電解還元に供することが出来れ
ば良い。
The type of electrolytic cell is not particularly limited. m
It is sufficient if the solubility of HBA can be increased and the HBA can be subjected to electrolytic reduction.

また本発明においては、酸性水溶液としては、陰極での
電解反応に不活性な酸性物質なら特に限定するものでは
ないが、コスト的に通常鉱酸を用いるのが望ましく、特
に材質及び収率の観点より硫酸が好ましい鉱酸である。
In addition, in the present invention, the acidic aqueous solution is not particularly limited as long as it is an acidic substance that is inert to the electrolytic reaction at the cathode, but mineral acids are preferably used from the viewpoint of cost, especially from the viewpoint of material quality and yield. Sulfuric acid is a more preferred mineral acid.

使用濃度は5〜30重量係、好ましくは10〜20重量
係の硫酸水溶液を用いる。硫酸濃度が5重量係以下のよ
うな低い濃度では、 mHBAの分解率は小さいものの
反応速度が遅く、また30重量係以上のような高い濃度
では、反応速度は早くなるが、mHBAの分解率が大き
くなる。
An aqueous sulfuric acid solution having a concentration of 5 to 30% by weight, preferably 10 to 20% by weight is used. When the sulfuric acid concentration is low, such as 5 parts by weight or less, the decomposition rate of mHBA is small, but the reaction rate is slow, and at high concentrations, such as 30 parts by weight or more, the reaction rate is fast, but the decomposition rate of mHBA is slow. growing.

本発明方法においては、電解還元反応温度は90℃以上
に保持する必要はなく、20〜70℃、好ましくは30
〜60℃の温度で実施する。また基質濃度10係以上の
電解還元が可能である。電解液中にmHBOHを存在さ
せるため、本発明の場合はmHBAの添2In速度はm
HBAの消費速度、即ち通電量によって決めることが出
来る。電解液中のmHBAの濃度としては5チ以下に維
持するように連続添加することが好ましく、それにより
電解反応がスムースに進行し、基質濃度を容易に10係
以北にすることが出来る。しかしあまり高濃度にすると
粘性がup  して電極、及びイオン交換膜に悪影響を
及ぼす為に最終反応基質濃度としては30係以下、通常
は10〜15係が望ましく、硫酸水溶液の装入速度にし
たがって任意に決める事ができる。
In the method of the present invention, the electrolytic reduction reaction temperature does not need to be maintained at 90°C or higher, but is 20 to 70°C, preferably 30°C.
Carry out at a temperature of ~60°C. In addition, electrolytic reduction with a substrate concentration of 10 parts or more is possible. In order to make mHBOH exist in the electrolyte, in the case of the present invention, the addition rate of mHBA is m
It can be determined by the consumption rate of the HBA, that is, the amount of current supplied. It is preferable to continuously add mHBA so that the concentration of mHBA in the electrolytic solution is maintained at 5 or less, so that the electrolytic reaction proceeds smoothly and the substrate concentration can be easily increased to 10 or more. However, if the concentration is too high, the viscosity will increase and have a negative effect on the electrode and ion exchange membrane, so the final reaction substrate concentration is preferably 30 parts or less, usually 10 to 15 parts, and it depends on the charging rate of the sulfuric acid aqueous solution. You can decide arbitrarily.

また、反応温度が20℃以下では、電解液中のmHBA
は殆んど溶解されず、そのためにはmHBOHを多量に
存在させねばならず、生産効率が悪くなる。また70℃
以とではmHBAの分解率が大きく、本発明においては
、電解液中に存在させるmHBOHは、反応温度、酸濃
度よりmHBAの溶解度に合わせ、反応基質濃度を考慮
して、これらより適宜法められる。
In addition, when the reaction temperature is 20°C or lower, mHBA in the electrolyte
is hardly dissolved, and for this purpose a large amount of mHBOH must be present, resulting in poor production efficiency. Also 70℃
In this case, the decomposition rate of mHBA is high, and in the present invention, mHBOH to be present in the electrolytic solution is determined according to the solubility of mHBA rather than the reaction temperature and acid concentration, and the concentration of the reaction substrate is taken into consideration. .

また、本発明方法においては電極のうち特に陰極材料は
水素過電圧の高いもの、具体的には亜鉛、鉛、カドミウ
ム、水銀を用いる。対する陽極については、通常の電極
材料であれば特に限定しない。
Furthermore, in the method of the present invention, materials having high hydrogen overvoltage, specifically zinc, lead, cadmium, and mercury, are used as the cathode material among the electrodes. The anode, on the other hand, is not particularly limited as long as it is made of a normal electrode material.

電解槽は無隔膜でも771HBOHは生成するが、陽極
でも酸化反応が生じる為mHBAに対するmHBOHの
収率は低下する。その為に特に陽イオン交換隔膜により
、陽極室、陰極室を隔離することが好ましい。隔膜の材
質としては、アスベスト、セラミックス、シンタードグ
ラス等が使用できる。
Although 771HBOH is produced even in an electrolytic cell without a diaphragm, the oxidation reaction also occurs at the anode, so the yield of mHBOH relative to mHBA decreases. For this reason, it is particularly preferable to isolate the anode chamber and the cathode chamber by a cation exchange membrane. As the material for the diaphragm, asbestos, ceramics, sintered glass, etc. can be used.

本発明の電解還元において、電流密度は好ましくは5〜
30A、/cmである。理論的には4電子還元であり、
4 F r/mo d eの通電量であるが、電流効率
は50〜70%である為、反応を完結させるには5〜8
Fr/mole  電気量を通す必要がある。
In the electrolytic reduction of the present invention, the current density is preferably 5 to
30A,/cm. Theoretically, it is a four-electron reduction,
Although the current flow is 4 F r/mode e, the current efficiency is 50 to 70%, so it takes 5 to 8 F to complete the reaction.
Fr/mole It is necessary to pass an amount of electricity.

連続法の電解槽は、原料の+nHBAを完全にmHBO
Hへ電解還元するためには、多数の電解槽が必要である
が、未反応のmHBAの存在が許容されるならば、1段
の電解反応でも目的を達することができる。
The continuous method electrolyzer completely converts the raw material +nHBA into mHBO.
Although a large number of electrolytic cells are required for electrolytic reduction to H, if the presence of unreacted mHBA is allowed, the purpose can be achieved even with a single electrolytic reaction.

多数の電解槽を用いて電解する場合、原料であるmHB
A、及び硫酸水溶液の装入は1段目に全量装入するか、
2段目以降に分割装入するかは任意である。
When electrolyzing using a large number of electrolytic cells, the raw material mHB
A, and the sulfuric acid aqueous solution should be charged in full in the first stage, or
It is optional whether to divide the charge into the second stage or later.

このように本発明方法は、電解反応を20〜70℃で行
ないmHBOHを槽内に常に一定濃度にて存在させ、m
HBAを所定温度で槽内に最高に溶解させ電解還元を行
うため、バッチ方式等に比較して単位mHBOH当りの
滞留時間の短縮も可能となり、低温反応によるmHBA
の熱分解も抑制できる事と相まって、高い収率で目的物
を得ることが出来る。
In this way, the method of the present invention performs the electrolytic reaction at 20 to 70°C, allows mHBOH to always exist at a constant concentration in the tank, and
Since HBA is dissolved to the maximum level in the tank at a predetermined temperature and electrolytic reduction is performed, it is possible to shorten the residence time per unit mHBOH compared to batch methods, etc.
Coupled with the fact that thermal decomposition of can be suppressed, the target product can be obtained in high yield.

実施例 以下実施例を示す。Example Examples are shown below.

実施例1 両極室とも300 mlの容量を有し、隔膜としてセレ
ミオン(CMV(旭硝子(株)の商品名の陽イオン交換
膜)で隔離されたH型の電解セルで、陰極室の方はオー
バーフローで200 m1以上になると電解液が連続的
に抜き出し出来るように側管を有している。
Example 1 Both electrode chambers had a capacity of 300 ml, and the cell was an H-type electrolytic cell separated by Selemion (CMV (a cation exchange membrane trade name of Asahi Glass Co., Ltd.)) as a diaphragm, and the cathode chamber had an overflow It has a side pipe so that the electrolyte can be continuously extracted when the volume exceeds 200 ml.

両極室に10%の硫酸水溶液を200m/づつ仕込む。A 10% sulfuric acid aqueous solution is charged into both electrode chambers at a rate of 200 m/each.

陰極には50c11の鉛板、陽極には50CrIの白金
板を用いた。電解セルを30℃に保ち、陰極室には定量
ポンプで10係硫酸水溶液を5o9/時間と、マイクロ
フィーダーを用いてmHBAを8.9/時間で供給しつ
つ、8.5Aの直流定電流電解を15時間行なった。(
0,317Fr/118間)陰極液は均一の透明な液で
あった。2時間で流出した陰極液11o、9を液体クロ
マ1〜グラフイー(HLC)で分析した結果、mHBA
 1.0 %、mHBOHll、9%であった。
A 50C11 lead plate was used as the cathode, and a 50CrI platinum plate was used as the anode. The electrolytic cell was maintained at 30°C, and a 10% sulfuric acid aqueous solution was supplied to the cathode chamber at a rate of 5o9/hour using a metering pump, and mHBA was supplied at a rate of 8.9/hour using a microfeeder, while 8.5A DC constant current electrolysis was carried out. was carried out for 15 hours. (
(0,317Fr/118) The catholyte was a homogeneous and transparent liquid. As a result of analyzing the catholytes 11o and 9 that flowed out in 2 hours using liquid chroma 1~graphie (HLC), it was found that mHBA
1.0%, mHBOHll, 9%.

mHBOHの収率cz、os、電流効率666係。mHBOH yield cz, os, current efficiency 666.

実施例2 実施例1と同様な電解装置を用いる。60″Cに保温し
、20係硫酸水溶液を50J/時間と、171HBAを
12g/時間で陰極室に供給しつつ12Aの直流定電流
電解を15時間行なった。(0,448Fr/f寺間)
Example 2 The same electrolyzer as in Example 1 is used. The temperature was kept at 60''C, and 12A DC constant current electrolysis was performed for 15 hours while supplying 20% sulfuric acid aqueous solution at 50J/hour and 171HBA at 12g/hour to the cathode chamber. (0,448Fr/f Terama)
.

陰極液は均一な透明な液であった。2時間で流出した陰
極液115.9をHLCで分析した結果は、mHBA 
1.、7 %、mHBOH16,9%であった。
The catholyte was a homogeneous clear liquid. The result of HLC analysis of 115.9% of the catholyte that flowed out in 2 hours showed that mHBA
1. , 7%, mHBOH 16.9%.

mHBOHの収率 900係、電流効率 69.9 %
実施例3 電解セルとして有効電極面積110X1Oの鉛板(陰極
)と同じ大きさの白金板(陽極)を有し、隔膜としてセ
レミオンCMVで隔難し、膜より各電極までの間隔が1
crnであるフィルタープレス型(陽、陰部の2組)の
電解槽を用いた。300 mlのフラスコ2個に、10
係の硫酸水溶液を200m1づつ仕込み、ポンプにより
電解液(硫酸水溶液)を上記電解セルの陽極室に循環さ
せる。陰h pHの方は側管を有し、200+++1!
以上になるとオーバーフローで液が第2段の同様な電解
装置の陰極槽へ流入させた。原料の10係硫酸水溶液は
50J/時間で第1段の陰極槽へ装入するとともに、m
HBAを12g/時間で第1段及び第2段の陰極槽へ装
入した。各種を60℃に保温し、第1段、及び第2段の
電解セルに各々12Aの直流定電流電解を30時間行な
った。(0,896Fr/時間)1段目、及び2段目の
陰極槽は均一な透明な液であった。HLCによる分析結
果は、1段目mHBA  2.0%、mHBOH16,
5%、2段目mHBA  5.0%、mHBOH28,
2%であった。
mHBOH yield: 900, current efficiency: 69.9%
Example 3 The electrolytic cell has a lead plate (cathode) with an effective electrode area of 110×10 and a platinum plate (anode) of the same size as the diaphragm, Selemion CMV is used as the diaphragm, and the distance from the membrane to each electrode is 1
A filter press type (two sets of positive and private parts) electrolytic cell, which is CRN, was used. 10 in two 300 ml flasks
The relevant sulfuric acid aqueous solution was charged in 200 ml portions, and the electrolytic solution (sulfuric acid aqueous solution) was circulated to the anode chamber of the electrolytic cell using a pump. Yin h pH has a lateral canal and is 200+++1!
When the temperature exceeded this level, an overflow caused the liquid to flow into the cathode bath of a similar electrolyzer in the second stage. The raw material 10M sulfuric acid aqueous solution is charged to the first stage cathode tank at a rate of 50 J/hour, and the m
HBA was charged to the first and second stage cathode cells at 12 g/hour. Each type was kept at 60° C., and constant current electrolysis of 12 A was performed in each of the first-stage and second-stage electrolytic cells for 30 hours. (0,896 Fr/hour) The first and second stage cathode baths were uniform and transparent liquids. The HLC analysis results showed that the first stage mHBA was 2.0%, mHBOH was 16%,
5%, 2nd stage mHBA 5.0%, mHBOH28,
It was 2%.

2段目の陰極槽より流出した液は65g/時間であった
The amount of liquid flowing out from the second stage cathode tank was 65 g/hour.

m HB OHの収率 85.0%、電流効率 66係m HB OH yield 85.0%, current efficiency 66

【図面の簡単な説明】[Brief explanation of drawings]

第1図1よ、各種濃度のmHBAの硫酸水溶液中で、溶
液温度と5時間経過後のmHBA分解率との関係図であ
る。 第2図は、mHBOHを添DI+した各種濃度の水溶液
中での各温度におけるm HB Aの溶解度曲線である
。 特許出頼人 三井東圧化学株式会社 邦1m
FIG. 1 is a diagram showing the relationship between solution temperature and mHBA decomposition rate after 5 hours in aqueous sulfuric acid solutions of mHBA at various concentrations. FIG. 2 is a solubility curve of m HB A at various temperatures in aqueous solutions of various concentrations added with mHBOH DI+. Patent source Mitsui Toatsu Chemical Co., Ltd. 1m

Claims (1)

【特許請求の範囲】 1)m−ヒドロキシ安息香酸を酸性水溶液で電解還元す
るに際して、原料のm−ヒドロキシ安息香酸、及び酸性
水溶液を連続添加しながら、電解液中にm−ヒドロキシ
ベンジルアルコールを存在させ、20〜70℃で電解を
行う事を特徴とするm−ヒドロキシベンジルアルコール
の連続製造方法。 2)反応温度が30〜60℃である特許請求の範囲第(
1)項記載の方法。 3)酸性水溶液が、10〜20重量%の硫酸水溶液であ
る特許請求の範囲第(1)項記載の方法。 4)多段式電解槽にて連続電解を行う特許請求の範囲第
(1)項記載の方法。
[Scope of Claims] 1) When m-hydroxybenzoic acid is electrolytically reduced with an acidic aqueous solution, m-hydroxybenzyl alcohol is present in the electrolytic solution while continuously adding m-hydroxybenzoic acid as a raw material and the acidic aqueous solution. 1. A method for continuous production of m-hydroxybenzyl alcohol, characterized in that electrolysis is carried out at 20 to 70°C. 2) Claim No. 2, wherein the reaction temperature is 30 to 60°C
The method described in section 1). 3) The method according to claim (1), wherein the acidic aqueous solution is a 10-20% by weight sulfuric acid aqueous solution. 4) The method according to claim (1), in which continuous electrolysis is performed in a multistage electrolytic cell.
JP60272467A 1985-11-26 1985-12-05 Continuous production of m-hydroxybenzyl alcohol Granted JPS62133093A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60272467A JPS62133093A (en) 1985-12-05 1985-12-05 Continuous production of m-hydroxybenzyl alcohol
CA000523197A CA1309375C (en) 1985-11-26 1986-11-18 Process for producing m-hydroxybenzyl alcohol
AU65344/86A AU584477B2 (en) 1985-11-26 1986-11-18 Process for producing m-hydroxybenzyl alcohol
US06/932,333 US4684449A (en) 1985-11-26 1986-11-19 Process for producing m-hydroxybenzyl alcohol
EP86309071A EP0228181B1 (en) 1985-11-26 1986-11-20 Process for producing m-hydroxybenzyl alcohol
DE8686309071T DE3672586D1 (en) 1985-11-26 1986-11-20 METHOD FOR PRODUCING M-HYDROXYBENZYL ALCOHOL.
KR1019860009851A KR890002864B1 (en) 1985-11-26 1986-11-21 Process for the preparation of m-hydroxy benzyl alcohol
BR8605899A BR8605899A (en) 1985-11-26 1986-12-02 PROCESS TO PRODUCE M-HYDROXYBENZYL ALCOHOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272467A JPS62133093A (en) 1985-12-05 1985-12-05 Continuous production of m-hydroxybenzyl alcohol

Publications (2)

Publication Number Publication Date
JPS62133093A true JPS62133093A (en) 1987-06-16
JPS6347792B2 JPS6347792B2 (en) 1988-09-26

Family

ID=17514320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272467A Granted JPS62133093A (en) 1985-11-26 1985-12-05 Continuous production of m-hydroxybenzyl alcohol

Country Status (1)

Country Link
JP (1) JPS62133093A (en)

Also Published As

Publication number Publication date
JPS6347792B2 (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US4714530A (en) Method for producing high purity quaternary ammonium hydroxides
CN1261817A (en) Electrochemical methods for recovery of ascorbic acid
US20130134047A1 (en) Method for production of succinic acid and sulfuric acid by paired electrosynthesis
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPS62133093A (en) Continuous production of m-hydroxybenzyl alcohol
KR890002864B1 (en) Process for the preparation of m-hydroxy benzyl alcohol
JPH0830048B2 (en) Amino acid production method
JP4182302B2 (en) Method for producing potassium persulfate
JPS6342712B2 (en)
JPS62127487A (en) Production of m-hydroxybenzyl alcohol
JP2965679B2 (en) Method for producing N, N, N ', N'-tetrakis (p-dialkylaminophenyl) -p-benzoquinonebis (immonium perchlorate)
JPS5913597B2 (en) Improved method for oxidizing elemental phosphorus
JP2902755B2 (en) Method for producing m-hydroxybenzyl alcohol
KR940003268B1 (en) Method of l-cysteine
JPS63206489A (en) Production of m-hydroxybenzyl alcohol by electrolysis
JPH03100191A (en) Preparation of paraaminophenol
SU423749A1 (en) METHOD FOR OBTAINING CHLORINE BY ELECTROLYSIS OF SALTIC ACID SOLUTION
JPH0715151B2 (en) Method for producing m-hydroxybenzyl alcohol
JPH0676671B2 (en) Method for producing m-hydroxybenzyl alcohol
JPS6383289A (en) Production of 3-hydroxybenzyl alcohol
JPS5913596B2 (en) Method of oxidizing elemental phosphorus
JPS63206488A (en) Production of m-hydroxybenzyl alcohol by electrolysis
JPH0734275A (en) Production of m-hydroxy benzyl alcohol
JPH03120253A (en) Preparation of 3-hydroxymethylpyridine
JPS6056233B2 (en) Manufacturing method of glyoxylic acid or its salt