JPS62127487A - Production of m-hydroxybenzyl alcohol - Google Patents

Production of m-hydroxybenzyl alcohol

Info

Publication number
JPS62127487A
JPS62127487A JP60263858A JP26385885A JPS62127487A JP S62127487 A JPS62127487 A JP S62127487A JP 60263858 A JP60263858 A JP 60263858A JP 26385885 A JP26385885 A JP 26385885A JP S62127487 A JPS62127487 A JP S62127487A
Authority
JP
Japan
Prior art keywords
reaction
mhba
electrolytic
hydroxybenzyl alcohol
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60263858A
Other languages
Japanese (ja)
Other versions
JPS6347791B2 (en
Inventor
Shinji Takenaka
竹中 慎司
Tatsu Oi
龍 大井
Chitoshi Shimakawa
千年 島川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60263858A priority Critical patent/JPS62127487A/en
Priority to CA000523197A priority patent/CA1309375C/en
Priority to AU65344/86A priority patent/AU584477B2/en
Priority to US06/932,333 priority patent/US4684449A/en
Priority to DE8686309071T priority patent/DE3672586D1/en
Priority to EP86309071A priority patent/EP0228181B1/en
Priority to KR1019860009851A priority patent/KR890002864B1/en
Priority to BR8605899A priority patent/BR8605899A/en
Publication of JPS62127487A publication Critical patent/JPS62127487A/en
Publication of JPS6347791B2 publication Critical patent/JPS6347791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce m-hydroxybenzyl alcohol in a high yield by the electrolytic reduction of m-hydroxybenzoic acid in an acidic aqueous soln. by allowing m-hydroxybenzyl alcohol to always exist in the electrolytic soln. and carrying out the reaction at a specified temp. CONSTITUTION:When m-hydroxybenzoic acid is electrolytically reduced in an acidic aqueous soln. such as 10-20wt% aqueous H2SO4 soln. to produce m-hydroxybenzyl alcohol, m-hydroxybenzyl alcohol is cumulatively added during the reaction so that it always exists in the electrolytic soln. and the reaction is carried out at 20-70 deg.C, especially 30-60 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、m−ヒドロキシベンジルアルコール有用な化
合物であるが、現状ではこれの安価な製造方法による工
業的供給には至っていない。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a useful compound of m-hydroxybenzyl alcohol, but at present it has not been commercially supplied by an inexpensive manufacturing method.

玄Jソ四1肛 mHBOHの合成法として、m−クレゾールを原料とす
る発酵法、m−ヒドロキシベンズアルデヒドを原料とす
るナトリウム・アマルガム、NILBH4、LiAlH
4等による還元及び水素系10反応等があるが、収率的
に不十分であったりして、実用化には至っていない。ま
た水素添111反応は高温、高圧下の反応であり工業的
製造法には種々問題がある。
Synthesis methods for mHBOH include fermentation using m-cresol as a raw material, sodium amalgam using m-hydroxybenzaldehyde as a raw material, NILBH4, and LiAlH.
Although there are reductions using 4, etc. and hydrogen-based 10 reactions, they have not been put to practical use because the yields are insufficient. Further, the hydrogenation 111 reaction is a reaction at high temperature and high pressure, and there are various problems with industrial production methods.

またm−ヒドロキシ安息香酸く以下mH]]Aと略記す
る)を原料とする方法については、ナトリウム・アマル
ガム及び電解還元法が提案(BerichtLfL 1
752(1905)) されているが収率的にも低く工
業的方法にはなり得なかった。
Regarding the method using m-hydroxybenzoic acid (hereinafter abbreviated as mH]]A) as a raw material, sodium amalgam and electrolytic reduction method have been proposed (Bericht LfL 1
752 (1905)), but the yield was low and it could not be used as an industrial method.

明が  しよ とする。Ming will do it.

本発明者らは、mHBOHの工業的製造方法について、
鋭化検討を行ないmHBAの電解還元により高収率で高
純度の7nHBOHを得る方法を先に見い出した(特願
昭59−90887、特願昭59−96639)。これ
らの電解反応はバッチ反応であるが、電解反応をスムー
スに進行させる為には電解液が均一に溶解されており、
電極表面に障害を生じないことが必要である。
Regarding the industrial production method of mHBOH, the present inventors have
After carrying out sharpening studies, we have previously discovered a method for obtaining 7nHBOH with high yield and high purity by electrolytic reduction of mHBA (Japanese Patent Application No. 59-90887, Japanese Patent Application No. 59-96639). These electrolytic reactions are batch reactions, but in order for the electrolytic reaction to proceed smoothly, the electrolyte must be uniformly dissolved.
It is necessary that no damage be caused to the electrode surface.

mHBAは水に対する溶解度が低く、基質濃度を高くす
ることはなかなか困難であった。工業的な生産効率や経
済性から基質濃度を10%以とにすることが望ましいが
、水溶媒にmT(BAを溶解して10チ以との濃度にす
る為には、温度を90℃以上にあげるか、支持電解物質
として第4級アンモニウム塩を用いて、これとの相溶性
によってmHBAの濃度を高める方法、更には水溶性の
有機溶媒を用いてmHBAの溶解性を増す方法、mHB
Aをエステル1ヒして水溶性を増す方法等が必要である
mHBA has low solubility in water, and it has been difficult to increase the substrate concentration. It is desirable to keep the substrate concentration at 10% or higher from the standpoint of industrial production efficiency and economic efficiency, but in order to dissolve mT (BA) in an aqueous solvent and achieve a concentration of 10% or higher, the temperature must be set at 90°C or higher. In addition, a method of increasing the concentration of mHBA by using a quaternary ammonium salt as a supporting electrolyte and increasing its compatibility with it, and a method of increasing the solubility of mHBA by using a water-soluble organic solvent.
There is a need for a method such as adding ester to A to increase its water solubility.

またmHBAを溶液状態にして電解するに際しては、溶
液を酸性下にして行う必要があることもわかり、本発明
者らは先にこれらを提案した。
It was also found that when electrolyzing mHBA in a solution state, it is necessary to make the solution acidic, and the present inventors have previously proposed these methods.

しかし反応時に支持電解物質や有機溶媒を用いると、電
解終了後にml(BOHを単離するのに、有機溶媒、又
は支持電解物質との分離が繁雑となり、その分コストu
pに結びつく。又、温度をあげて溶解度を増す方法では
、酸性水溶液中ではm HB Aは温度の上昇とともに
分解速度が早くなり好ましくない。
However, if a supporting electrolyte or an organic solvent is used during the reaction, separation from the organic solvent or supporting electrolyte becomes complicated in order to isolate ml (BOH) after the completion of electrolysis, which increases costs.
Connects to p. Furthermore, in the method of increasing the solubility by raising the temperature, the decomposition rate of m HB A becomes faster as the temperature rises in an acidic aqueous solution, which is not preferable.

第1図は、mHBA硫酸水溶液中の硫酸濃度が5重量%
、255重量%おける夫々のmHBA溶液温度と、5時
間経過後のmHBA熱分解率との関係図である。
Figure 1 shows that the sulfuric acid concentration in the mHBA sulfuric acid aqueous solution is 5% by weight.
, 255% by weight, and the mHBA thermal decomposition rate after 5 hours.

図よりわかるように、例えば1(l硫酸水溶液中に90
℃でm HB Aを溶解させた場合は、1時間に約5俤
の割合で分解が進行することになり、反応には4〜5時
間が適当であるのに、全体で20〜25%の分解は無視
出来ないことがわかった。
As can be seen from the figure, for example, 1 (90% in 1 sulfuric acid aqueous solution)
When mHBA is dissolved at ℃, the decomposition proceeds at a rate of about 5 tons per hour, and although 4 to 5 hours are appropriate for the reaction, 20 to 25% of the total It turns out that decomposition cannot be ignored.

更に、電解槽の隔膜に使用する陽イオン交換膜の耐熱性
の問題もあり、高温下での電解は実用上不可能であった
Furthermore, there was a problem with the heat resistance of the cation exchange membrane used in the diaphragm of the electrolytic cell, making electrolysis at high temperatures practically impossible.

開運を  するための 本発明者らは、酸性水溶液中で基質濃度を1゜係以上溶
解して電解還元する方法について鋭意検討して、本発明
を完成するにいたった。
In order to improve their luck, the present inventors conducted intensive studies on a method of electrolytic reduction by dissolving the substrate concentration by 1° or more in an acidic aqueous solution, and finally completed the present invention.

第2図は、水100g中にmHBOHを添加した水溶液
をパラメータにして、各温度におけるmHBAの溶解度
曲線を示すものであり、図中、夫々の溶解度曲線のカッ
コ内数字は、添加したmHBOHの重量係を示す。
Figure 2 shows the solubility curve of mHBA at each temperature using an aqueous solution of mHBOH added to 100 g of water as a parameter. In the figure, the numbers in parentheses of each solubility curve indicate the weight of mHBOH added. Indicates the person in charge.

図よりわかるように、例えばmHBOHを10重量係存
在させることにより、 mHBAの溶解度は極端に大き
くなり、mHBA分解率が比較的低い温度の70℃以下
でも実施できるような充分な溶解性を有する。
As can be seen from the figure, the solubility of mHBA becomes extremely high when, for example, 10 parts by weight of mHBOH is present, and the solubility is sufficient to allow mHBA decomposition to be carried out even at a relatively low temperature of 70° C. or lower.

このように、mHBAは水に対する溶解度は小さいが、
m HB OHは水に対する溶解度が大きく、mHBO
Hが溶存しているとmHBAの溶解度が増し、このため
電解還元反応系中には、必ずしも有機溶媒や支持電解物
質は添noする必要もなく、比較的(巳 低い反応温度で実施事ることがわがった。そのためには
電解還元反応に付す電解液中には、常にfiHBOHを
存在させておくことが必要であることカワかり、本発明
に到達したものである。
Thus, although mHBA has low solubility in water,
mHBOH has high solubility in water, mHBO
When H is dissolved, the solubility of mHBA increases, so there is no need to add an organic solvent or supporting electrolyte to the electrolytic reduction reaction system, and the reaction can be carried out at a relatively low reaction temperature. For this purpose, it was realized that fiHBOH must always be present in the electrolytic solution subjected to the electrolytic reduction reaction, and the present invention was developed.

すなわち本発明はfiHBAを酸性水溶液中で電解還元
するに際して、mHBO罹電解液中に常に存在させ、2
0〜70℃で行うことを特徴とする1HBOHの製造方
法である。
That is, in the present invention, when fiHBA is electrolytically reduced in an acidic aqueous solution, mHBO is always present in the electrolytic solution, and 2
This is a method for producing 1HBOH characterized in that it is carried out at a temperature of 0 to 70°C.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、電解液中に常にmHBOHを存在させ
るためには、原料のmHBAを仕込段階がらmHBOH
を添加して溶解後、mHBAを一括装入するバッチ方式
でもよい。
In the present invention, in order to always have mHBOH present in the electrolyte, mHBOH as a raw material must be added to mHBOH during the preparation stage.
A batch method may be used, in which mHBA is added and dissolved, and then mHBA is charged all at once.

しかしながら、電解液の反応基質濃度には限度があり、
反応の進行とともにmHBOHが漸増するのでその分、
仕込み原料のmHBA使用量を減らさねばならず、生産
効率が悪くなる。また反応時間が長いためmHBOHも
若干分解する傾向がある。
However, there is a limit to the concentration of reaction substrates in the electrolyte.
As mHBOH gradually increases as the reaction progresses,
It is necessary to reduce the amount of mHBA used in the raw material, which reduces production efficiency. Furthermore, since the reaction time is long, mHBOH also tends to be slightly decomposed.

したがって、本発明においては反応の進行に合せて、消
費されるmHB Aを逐次累積添加しながら行うセミパ
ッチ方式を採用することが望ましい。
Therefore, in the present invention, it is desirable to adopt a semi-patch method in which mHBA to be consumed is added sequentially and cumulatively as the reaction progresses.

また本発明においては、酸性水溶液としては、陰極での
電解反応に不活性な酸性物質なら特に限定するものでは
ないが、コスト的に通常鉱酸を用いるのが望ましく、特
に材質及び収率の現点より、硫酸が好ましい鉱酸である
。使用濃度は5〜30重を係、好ましくは10〜20重
量係の硫酸水溶液を用いる。硫酸濃度が5重量係以下の
ような低い濃度では、mHBAの分解率は小さいものの
反応速度が遅く、また30重量係以上のような高い濃度
では、反応速度は早くなるが、mHBAの分解率が大き
くなる。
In addition, in the present invention, the acidic aqueous solution is not particularly limited as long as it is an acidic substance that is inert to the electrolytic reaction at the cathode, but mineral acids are preferably used in terms of cost, especially considering the material and yield characteristics. From this point of view, sulfuric acid is a preferred mineral acid. The concentration used is 5 to 30% by weight, preferably 10 to 20% by weight. When the sulfuric acid concentration is low, such as 5 parts by weight or less, the decomposition rate of mHBA is small, but the reaction rate is slow, and at high concentrations, such as 30 parts by weight or more, the reaction rate is fast, but the decomposition rate of mHBA is low. growing.

本発明方法においては電解還元反応温度は90°C以と
に保持する必要はなく、20〜70℃、好ましくは30
〜60’Cの温度で実施する。また基質濃度10チ以上
の電解還元が可能である。電解液中にmHBOHを存在
させるため、セミパッチ方式を採用する場合はmHBA
の添加速度はmHBAの消費速度、即ち通電量によって
決めることが出来る。電解液中のmHBAの濃度として
は5%以下に維持するように累&Y添D口することが好
ましく、これにより電解反応がスムースに進行し、累計
の基質濃度を容易に10%以とにすることが出来る。
In the method of the present invention, it is not necessary to maintain the electrolytic reduction reaction temperature below 90°C, but 20 to 70°C, preferably 30°C.
Perform at a temperature of ~60'C. Further, electrolytic reduction with a substrate concentration of 10% or more is possible. mHBOH is present in the electrolyte, so when using the semi-patch method, mHBA
The addition rate can be determined by the consumption rate of mHBA, that is, the amount of current applied. The concentration of mHBA in the electrolyte is preferably maintained at 5% or less by cumulative addition, so that the electrolytic reaction proceeds smoothly and the total substrate concentration can be easily brought to 10% or more. I can do it.

しかしあまり高濃度にすると粘性がupして電流、及び
イオン交換膜に悪影響を及ぼす為に最終反応基質濃度と
しては30係以下、通常は10〜15係が望ましい。
However, if the concentration is too high, the viscosity will increase, which will adversely affect the current and the ion exchange membrane, so the final reaction substrate concentration is desirably 30 parts or less, usually 10 to 15 parts.

また、反応温度が20°C以下では、電解液中のmHB
Aは殆んど溶解されず、そのためにはmHBOHを多量
に存在させねばならず、生産効率が悪くなる。また70
℃以上ではmHBAの分解率が大きく、目的生成物への
収率が悪くなる。
In addition, when the reaction temperature is below 20°C, mHB in the electrolyte
A is hardly dissolved, and for this purpose a large amount of mHBOH must be present, resulting in poor production efficiency. 70 again
If the temperature is higher than 0.degree. C., the decomposition rate of mHBA will be large and the yield of the target product will be poor.

本発明においては、電解液中のmHBAは必ずしも完全
に水溶液となっている必要はなく、若干スラリー状で残
っていても差し支えなく、電解液中に存在させるmHB
OHは、反応温度、酸濃度よりmHBAの溶解度に合わ
せ、反応基質濃度を考慮して、これらより適宜決められ
る。
In the present invention, the mHBA in the electrolytic solution does not necessarily have to be completely in an aqueous solution, and there is no problem even if it remains in the form of a slurry.
OH is appropriately determined based on the reaction temperature, acid concentration, mHBA solubility, and reaction substrate concentration.

また、本発明方法においては電流のうち特に陰極材料は
水素過電圧の高いもの、具体的には亜鉛、鉛、カドミウ
ム、水銀を用いる。対する陽樵については、通常の電極
材料であれば特に限定しない。
Furthermore, in the method of the present invention, among the currents, materials having a high hydrogen overvoltage, specifically zinc, lead, cadmium, and mercury, are used as the cathode material. On the other hand, there are no particular limitations on the material used for the positive electrode, as long as it is a normal electrode material.

電解槽は無隔膜でもmHBOHは生成するが、陽臘でも
酸化反応が生じる為mHBAに対するmHBOHの収率
は低下する。その為に特に陽イオン交換隔膜により、陽
他室、陰極室を隔離することが好ましい。隔膜の材質と
しては、アスベスト、セラミックス、シンタードグラス
等が使用できる。
Although mHBOH is produced even in an electrolytic cell without a diaphragm, the yield of mHBOH relative to mHBA decreases because an oxidation reaction occurs even in a positive state. For this reason, it is particularly preferable to isolate the positive and negative chambers and the cathode chamber using a cation exchange membrane. As the material for the diaphragm, asbestos, ceramics, sintered glass, etc. can be used.

本発明の電解還元において、電流密度は好ましくは5〜
30A/dm’である。理論的には4電子還元であり、
4Fr/moleの通電量であるが、電流効率は50〜
70%である為、反応を完結させるには5〜8Fr/m
ole  N、気量を通す必要がある。
In the electrolytic reduction of the present invention, the current density is preferably 5 to
It is 30A/dm'. Theoretically, it is a four-electron reduction,
The current flow rate is 4Fr/mole, but the current efficiency is 50~
70%, so 5-8Fr/m is required to complete the reaction.
ole N, it is necessary to pass air volume.

このように本発明方法はmHBOI(の存在下、電解液
温度20〜70゛Cで行なうことにより、さらに好まし
くは反応速度に応じてmHBAを累積添IQすることに
より、mHBAの熱分解も抑制出来て、高収率で目的生
成物を得ることが出来る。以下実施例を示す。
As described above, the method of the present invention can also suppress thermal decomposition of mHBA by carrying out the process in the presence of mHBOI at an electrolyte temperature of 20 to 70°C, and more preferably by cumulatively adding mHBA depending on the reaction rate. The desired product can be obtained in high yield.Examples are shown below.

実施例1 両極室とも300rnlの容量を有し、隔膜としてセレ
ミオンCMV(旭硝子■の商品名の陽イオン交換膜)で
隔離されたH型の電解セルを使用して、両極室に10%
の硫酸水溶液を200+n/づつ仕込む。陰極として5
0.fflの鉛板、陽極として5ocrIの白金板を用
いた。
Example 1 Both electrode chambers had a capacity of 300 rnl, and an H-type electrolytic cell was used that was isolated with Selemion CMV (a cation exchange membrane manufactured by Asahi Glass ■) as a diaphragm.
200+n/each of sulfuric acid aqueous solution. 5 as cathode
0. A lead plate of ffl and a platinum plate of 5ocrI were used as an anode.

電解セルを30℃に保ちつつ、6Aの直流定電流を通電
しつつ、mHBA25gをマイクロフィーダーを用いて
6g/時間の割合で陰極液中に添加し、4.2時間でm
HBAを全欧添加した。この後更に電解を08時間、1
1!続した。(1,12Fr)電解終了後、陰極液を液
体クロマトグラフィー(HLC)を分析した結果、mH
BA 0.1 %、mHBOH9,9%であった。mH
BOHの収率97.0係。電流効率62.7係。
While maintaining the electrolytic cell at 30°C and applying a constant DC current of 6A, 25g of mHBA was added to the catholyte at a rate of 6g/hour using a microfeeder, and mHBA was added to the catholyte at a rate of 6g/hour in 4.2 hours.
HBA was added throughout Europe. After this, further electrolysis was carried out for 08 hours, 1
1! continued. (1,12Fr) After the electrolysis, liquid chromatography (HLC) analysis of the catholyte revealed that mH
BA was 0.1% and mHBOH was 9.9%. mH
The yield of BOH was 97.0%. Current efficiency 62.7.

実施例2 実施例1と同様な電解装置を用い、電解セルの両極室に
20%硫酸水200mtづつ仕込み、6゜°Cに保温し
つつ、12Aの直流定電流を通電しっつmHBA 40
 gをマイクロフィダーで12g/時間の割合で陰極液
中に添21+1L、つつ、定電流電解を4時間行なった
。(1,79Fr) 電解終了後、実施例1と同様にHLCの分析結果はmH
BA O,2%、mHBOH15,6’lyであった。
Example 2 Using an electrolyzer similar to Example 1, 200 m of 20% sulfuric acid water was charged into both electrode chambers of the electrolytic cell, and while keeping the temperature at 6°C, a constant DC current of 12A was applied to mHBA 40.
21+1 L of the catholyte was added to the catholyte at a rate of 12 g/hour using a microfeeder, and constant current electrolysis was performed for 4 hours. (1,79Fr) After the electrolysis was completed, the HLC analysis result was mH as in Example 1.
BA O, 2%, mHBOH 15.6'ly.

mHBOHの収率95.4%。電流効率61.8%。Yield of mHBOH 95.4%. Current efficiency 61.8%.

比較例1 実施例1と同様な電解セルを用い、両極室に15チの硫
酸水溶液200mjづつ仕込み、70℃にD口温し、m
HBA 259を陰極液に添加した。陰極液はスラリー
状であった。これの5Aの直流定電流電解を5時間行な
った。(0,933Fr)電解終了後、実施例1と同様
にHLCの分析結果は、mHBA 1.3 %、mHB
OH7,2%、その他2係であった。fiHBOHの収
率70,5%。電流効率54.8係。
Comparative Example 1 Using the same electrolytic cell as in Example 1, 200 mj of 15 ml of sulfuric acid aqueous solution was charged into both electrode chambers, the mouth temperature was set to 70°C, and m
HBA 259 was added to the catholyte. The catholyte was in the form of a slurry. This was subjected to constant current electrolysis at 5 A for 5 hours. (0,933Fr) After the electrolysis, the HLC analysis results were as in Example 1: mHBA 1.3%, mHBA
OH was 7.2%, and 2 others. Yield of fiHBOH 70.5%. Current efficiency: 54.8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各種濃度のmHBAの硫酸水溶液中で、溶液
温度と5時間経過後のmHBA分解率との関係図である
。 第2図は、m HB OHを添B111した各種濃度の
水溶液中での各温度におけるmHBAの溶解度曲線であ
る。
FIG. 1 is a diagram showing the relationship between solution temperature and mHBA decomposition rate after 5 hours in aqueous sulfuric acid solutions of mHBA at various concentrations. FIG. 2 shows solubility curves of mHBA at various temperatures in aqueous solutions of various concentrations added with mHBOH.

Claims (4)

【特許請求の範囲】[Claims] (1)m−ヒドロキシ安息香酸を酸性水溶液中で電解還
元するに際して、m−ヒドロキシベンジルアルコールを
電解液中に常に存在させ、20〜70℃で行うことを特
徴とするm−ヒドロキシベンジルアルコールの製造方法
(1) Production of m-hydroxybenzyl alcohol, characterized in that when m-hydroxybenzoic acid is electrolytically reduced in an acidic aqueous solution, m-hydroxybenzyl alcohol is always present in the electrolytic solution, and the process is carried out at 20 to 70°C. Method.
(2)電解反応の進行に合せて原料のm−ヒドロキシ安
息香酸を累積添加しながら反応を行うことにより、電解
液中にm−ヒドロキシベンジルアルコールを存在させる
特許請求の範囲第(1)項記載の方法。
(2) Claim (1) states that m-hydroxybenzyl alcohol is present in the electrolytic solution by carrying out the reaction while cumulatively adding m-hydroxybenzoic acid as a raw material as the electrolytic reaction progresses. the method of.
(3)反応温度が30〜60℃である特許請求の範囲第
(1)項記載の方法。
(3) The method according to claim (1), wherein the reaction temperature is 30 to 60°C.
(4)酸性水溶液が、10〜20重量%の硫酸水溶液で
ある特許請求の範囲第(1)項記載の方法。
(4) The method according to claim (1), wherein the acidic aqueous solution is a 10 to 20% by weight sulfuric acid aqueous solution.
JP60263858A 1985-11-26 1985-11-26 Production of m-hydroxybenzyl alcohol Granted JPS62127487A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60263858A JPS62127487A (en) 1985-11-26 1985-11-26 Production of m-hydroxybenzyl alcohol
CA000523197A CA1309375C (en) 1985-11-26 1986-11-18 Process for producing m-hydroxybenzyl alcohol
AU65344/86A AU584477B2 (en) 1985-11-26 1986-11-18 Process for producing m-hydroxybenzyl alcohol
US06/932,333 US4684449A (en) 1985-11-26 1986-11-19 Process for producing m-hydroxybenzyl alcohol
DE8686309071T DE3672586D1 (en) 1985-11-26 1986-11-20 METHOD FOR PRODUCING M-HYDROXYBENZYL ALCOHOL.
EP86309071A EP0228181B1 (en) 1985-11-26 1986-11-20 Process for producing m-hydroxybenzyl alcohol
KR1019860009851A KR890002864B1 (en) 1985-11-26 1986-11-21 Process for the preparation of m-hydroxy benzyl alcohol
BR8605899A BR8605899A (en) 1985-11-26 1986-12-02 PROCESS TO PRODUCE M-HYDROXYBENZYL ALCOHOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263858A JPS62127487A (en) 1985-11-26 1985-11-26 Production of m-hydroxybenzyl alcohol

Publications (2)

Publication Number Publication Date
JPS62127487A true JPS62127487A (en) 1987-06-09
JPS6347791B2 JPS6347791B2 (en) 1988-09-26

Family

ID=17395210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263858A Granted JPS62127487A (en) 1985-11-26 1985-11-26 Production of m-hydroxybenzyl alcohol

Country Status (1)

Country Link
JP (1) JPS62127487A (en)

Also Published As

Publication number Publication date
JPS6347791B2 (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US4714530A (en) Method for producing high purity quaternary ammonium hydroxides
EP0425582A1 (en) Improved process for preparing quaternary ammonium hydroxides
TWI406849B (en) Improved electrochemical reduction of halogenated 4-aminopicolinic acids
JPH04331235A (en) Production of polysilane
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPS62127487A (en) Production of m-hydroxybenzyl alcohol
KR890002864B1 (en) Process for the preparation of m-hydroxy benzyl alcohol
JPS60234987A (en) Manufacture of m-hydroxybenzyl alcohol
JPS60187689A (en) Nanufacture of 3-exo-methylenecepham derivative
JP2902755B2 (en) Method for producing m-hydroxybenzyl alcohol
JPS62133093A (en) Continuous production of m-hydroxybenzyl alcohol
JPS63206489A (en) Production of m-hydroxybenzyl alcohol by electrolysis
JPH03107490A (en) Preparation of aminobenzyl alcohol
JP2622115B2 (en) Method for producing benzyl alcohols
KR880001313B1 (en) Preparation method for tetrahydro indol derivatives
JPS63103093A (en) Production of 3-hydroxybenzyl alcohol
JPS63157891A (en) Production of m-hydroxybenzyl alcohol
ES2434034B2 (en) Stereoselective procedure for electrochemical synthesis of 3- (2-propyloxy) -2-propenoic acid
JPH0676671B2 (en) Method for producing m-hydroxybenzyl alcohol
JPS62135455A (en) Purification of s-carboxymethyl-l-cysteine
JPS63149389A (en) Production of m-hydroxybenzyl alcohol
JPS6018755B2 (en) Method for producing benzylic acid derivatives
JPS59113191A (en) Manufacture of 1,8-diaminonaphthalene
JPS6167784A (en) Production of glyoxalic acid by electrochemical anodic oxidation of glyoxal
JPS58117886A (en) Manufacture of 4-substituted phenylacetic acids