JPS62132343A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62132343A
JPS62132343A JP27422585A JP27422585A JPS62132343A JP S62132343 A JPS62132343 A JP S62132343A JP 27422585 A JP27422585 A JP 27422585A JP 27422585 A JP27422585 A JP 27422585A JP S62132343 A JPS62132343 A JP S62132343A
Authority
JP
Japan
Prior art keywords
region
cavity
semiconductor device
groove
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27422585A
Other languages
Japanese (ja)
Inventor
Kazuya Honma
運也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27422585A priority Critical patent/JPS62132343A/en
Publication of JPS62132343A publication Critical patent/JPS62132343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To reduce a parasitic capacity generated in a separating groove by laminating insulators having different viscosities to form an insulator region, thereby forming a cavity in the separating groove of a semiconductor device. CONSTITUTION:A cavity 21 is formed in a polyimide region 16 of a separating groove 6. A low viscosity polyimide region 22 is formed in the groove 6, and a high viscosity polyimide region 23 is thereafter formed to obtain the cavity 21. Thus, the cavity 21 is formed in the groove 6 to reduce a parasitic capacity generated from the separating groove.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は分離溝を有する半導体装置に関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a semiconductor device having an isolation trench.

(ロ) 従来の技術 第5図は従来の分離溝を有する半導体装置の断面図であ
り、(1)はGaAs基体であつイ、このGaAs基体
(1)は、半絶縁領域(2)と、この半絶縁領域(2)
の上に形成された不純物領域(3)とから構成されてい
−C1更に不純物領域(3)は、半絶縁領域(2)の上
にエピタキシャル成長されたn→低抵抗層(4)と、こ
の低抵抗層(4)の上にエピタキシャル成長された動作
1(5)とから構成されている。(6)は不純物領域く
3)を分断して、半絶縁領域(2)に達するまで垂直に
エツチング形成された分離溝である。この分離溝(6)
によって、不純物領域(3)は第1、第2の素子領域(
7)(8)に分断されていて、第1の素子領域(7)と
第2の素子領域(8)とは、それぞれ電気的に独立に存
在されている。
(b) Conventional technology FIG. 5 is a cross-sectional view of a conventional semiconductor device having an isolation trench, in which (1) is a GaAs substrate, and this GaAs substrate (1) has a semi-insulating region (2), This semi-insulating area (2)
Furthermore, the impurity region (3) is composed of an n → low resistance layer (4) epitaxially grown on the semi-insulating region (2) and a low resistance layer (4) formed on the semi-insulating region (2). 1 (5) epitaxially grown on a resistive layer (4). Reference numeral (6) denotes a separation trench which is vertically etched to divide the impurity region (3) and reach the semi-insulating region (2). This separation groove (6)
Accordingly, the impurity region (3) is located between the first and second element regions (
The first element region (7) and the second element region (8) are electrically independent from each other.

第1、第2の素子領域(? )(8)には、夫々第1、
第2のダイオード(9)(10)が設けられている。(
11)(12)は夫々第1、第2の素子領域(7)(8
)において、動作層(5)とショットキ接合された第1
、第2のショットキ電極、(13)(14>は第1、第
2のショットキ電極(11)(12)を取り囲んで低抵
抗M(4)とオーミック接合された第1、第2のオーミ
ンク電極である。第1、第2のショット生電極(tt)
(t2)は、夫々第1.第2のダイオード(9)(10
)のアノード電極として働き、第1、第2のオーミック
を極(13)(14)はカソード電極として働<、(1
5)は動作層(5)の上にスパッタリング形成されたS
iO2膜であって、この5iOz膜(15)によって、
第1、第2のショットキ電極(11)(12)のショッ
トキ接合径が決定諮れている。
The first and second element regions (?) (8) include the first and second element regions (?) (8), respectively.
A second diode (9) (10) is provided. (
11) and (12) are the first and second element regions (7) and (8), respectively.
), the first layer is Schottky-junctioned with the active layer (5).
, second Schottky electrodes, (13) and (14> are first and second Ohmink electrodes that surround the first and second Schottky electrodes (11) and (12) and are ohmically connected to the low resistance M(4). The first and second shot raw electrodes (tt)
(t2) are respectively 1st. Second diode (9) (10
) acts as an anode electrode, and the first and second ohmic electrodes (13) and (14) act as cathode electrodes <, (1
5) is S sputtered on the active layer (5).
iO2 film, with this 5iOz film (15),
The Schottky junction diameters of the first and second Schottky electrodes (11) and (12) are being determined.

(16)は分離溝(6)を含めて素子上面に形成された
絶縁物領域としてのポリイミド領域である。
(16) is a polyimide region as an insulator region formed on the upper surface of the element including the isolation groove (6).

(17)は第1のショットキ電極(11)と一体的に形
成された第1のビームリード電極、(18)は第1のオ
ーミック電極(13)を第2のショットキ電極(12)
に連結するリード電極、(19)は第2のオーミンク電
極(14)に連結された第2のビームリード電極であっ
て、第1、第2のビームリード電極(17)(19)は
、ポリイミド領域(16)の上面から、夫々反対方向に
向けて外方へ延出されている。 (20>は基体(1)
の裏面に蒸着されたアルミ膜である。
(17) is the first beam lead electrode formed integrally with the first Schottky electrode (11), (18) is the first ohmic electrode (13) and the second Schottky electrode (12).
The lead electrode (19) is a second beam lead electrode connected to the second ohmink electrode (14), and the first and second beam lead electrodes (17) and (19) are made of polyimide. They extend outward from the upper surface of the region (16) in opposite directions. (20> is the base (1)
This is an aluminum film deposited on the back side of the

ここで、絶縁物領域(16)の形成は、分離溝〈6)形
成後のGaAs基体(1)上に、所定の量の高純度金[
剤DMAC(ジ、ノチルアセトアミド)を加え所望の粘
度にしたポリイミド樹脂をスピンナーで塗布し、ベーキ
ング(約180℃、30分)することにより成されてい
る。しかし、ポリイミド樹脂ベーキング後の比誘電率は
約3.5であり、分離溝(幅61m、深さ15μm1奥
行220μm)(6)がら発生する寄生容量は約0.0
179Fと高く、回路の動作速度周波数特性に悪影響を
及ぼす。
Here, the insulator region (16) is formed by placing a predetermined amount of high-purity gold [
This is accomplished by applying a polyimide resin to a desired viscosity by adding the agent DMAC (di-notylacetamide) using a spinner, and baking it (approximately 180° C., 30 minutes). However, the dielectric constant after polyimide resin baking is approximately 3.5, and the parasitic capacitance generated in the isolation groove (61 m wide, 15 μm deep, 220 μm deep) (6) is approximately 0.0.
It is as high as 179F and has an adverse effect on the operating speed and frequency characteristics of the circuit.

(ハ) 発明が解決しようとする問題点従来、半導体装
置の分離溝に発生する寄生容量は半導体装置の動作速度
、周波数特性に悪影響を及ぼしていた0本発明は、半導
体装置のより高性能化を計るため、前記寄生容量を最小
化しようとするものである。
(c) Problems to be solved by the invention Conventionally, the parasitic capacitance generated in the isolation trench of a semiconductor device had a negative effect on the operating speed and frequency characteristics of the semiconductor device.The present invention aims to improve the performance of the semiconductor device. In order to measure the parasitic capacitance, the parasitic capacitance is minimized.

(ニ)問題点を解決するための手段 本発明は絶縁物領域の形成に際し、異った粘度の絶縁物
を積層することにより、分離溝内に空洞を形成すること
を特徴とするものである。
(d) Means for solving the problem The present invention is characterized in that when forming the insulator region, a cavity is formed in the separation groove by laminating insulators of different viscosities. .

(ホ) 作用 本発明は、異った粘度の絶縁物を積層して絶縁物領域を
形成することにより、分子jltlll内に空洞を設は
分離溝に発生する寄生容量を低減することができる。
(e) Effect: In the present invention, by stacking insulators of different viscosities to form an insulator region, it is possible to reduce the parasitic capacitance generated in the separation groove by creating a cavity in the molecule jltllll.

(へ〉 実施例 第1[XJは本発明の一実施例の半導体装置の断面図で
あり、第5図と同じ形状を呈していて、第1図において
第5図と同一部分には同・−符号が付されているので、
これらの部分については説明を省略する。
Embodiment 1 [XJ is a cross-sectional view of a semiconductor device according to an embodiment of the present invention, which has the same shape as FIG. 5, and the same parts in FIG. 1 as in FIG. - Since the symbol is attached,
Description of these parts will be omitted.

第1図の実施例が第5図の半導体装置と異なるところは
分離溝(6)のポリイミド領域(16)の内部に空洞(
21)が形成されているところである。この空洞(21
)の形成について以下に説明する。
The difference between the embodiment shown in FIG. 1 and the semiconductor device shown in FIG. 5 is that there is a cavity (
21) is being formed. This cavity (21
) will be explained below.

分離溝(6)に形成されるポリイミド樹脂は高純度希釈
剤DMACを加えることにより粘度が低下する。DMA
Cを加えないポリイミド樹脂の粘度は高く、分離溝が形
成されたGaAs基体(1)に、スピンナーで塗布した
場合、第2図に示す如く分離溝(6)内に高粘度のポリ
イミド樹脂(22)は入っていかない、またDMACを
ポリイミド樹脂に加え粘度を低くすると、GaAs基体
(1)上にスピンナーで塗布した場合、第3図に示す如
く、分離溝(6)内に低粘度のポリイミド樹脂(23)
は入っていくが、分離溝(6)内を埋めつくすことはで
きず、分離溝(6)の内壁に形成されるだけである。上
述から、第4図に示す如く分離溝(6)に低粘度のポリ
イミド樹Wa(22)を形成し、その後高粘度のポリイ
ミド樹脂(23)を形成することにより空m(21)が
得られる。また、第2図のように空洞(21)を形成し
た場合、GaAs表面が露出しているため、GaAs表
面を電流が流れるようになり信頼性が悪くなる。
The viscosity of the polyimide resin formed in the separation groove (6) is reduced by adding a high purity diluent DMAC. D.M.A.
Polyimide resin without C added has a high viscosity, and when it is coated with a spinner on a GaAs substrate (1) in which separation grooves are formed, the high viscosity polyimide resin (22 ) does not enter the separation groove (6), and when DMAC is added to the polyimide resin to lower its viscosity, when it is coated on the GaAs substrate (1) with a spinner, as shown in Figure 3, the polyimide resin with low viscosity is deposited in the separation groove (6). (23)
Although it enters the separation groove (6), it cannot completely fill the inside of the separation groove (6) and is only formed on the inner wall of the separation groove (6). From the above, the void m (21) can be obtained by forming a low viscosity polyimide resin Wa (22) in the separation groove (6) and then forming a high viscosity polyimide resin (23) as shown in FIG. . Furthermore, when a cavity (21) is formed as shown in FIG. 2, the GaAs surface is exposed, and current flows through the GaAs surface, resulting in poor reliability.

以上の方法で分離溝(6)内に第4図に示す空洞(21
)を設けることにより、分離溝から発生する寄生容量を
低減することができる。
By the above method, the cavity (21) shown in FIG.
), it is possible to reduce the parasitic capacitance generated from the isolation trench.

なお、分離溝(6)の大き妨を従来例と同じにし、低粘
度のポリイミド樹JAW(23)の厚さを1μmとした
場合、分離溝(6)に発生する寄生容量は従来例の半分
以下の約0,00649 Fとなる。
Furthermore, if the large hindrance of the separation groove (6) is the same as the conventional example, and the thickness of the low-viscosity polyimide JAW (23) is 1 μm, the parasitic capacitance generated in the separation groove (6) is half that of the conventional example. It is approximately 0,00649 F as follows.

(ト) 発明の効果 本発明は以上の説明から明らかな如く、半導体装置内に
設けれた分離溝に絶縁物領域を形成する際、異った粘度
の絶縁物を積属することにより、分離溝内に空洞を形成
し、分離溝に発生する寄生容量を低減したものであり、
半導体装置の高性能化を計ることができる。
(G) Effects of the Invention As is clear from the above description, when forming an insulating material region in an isolation trench provided in a semiconductor device, the present invention improves the separation trench by depositing insulators with different viscosities. A cavity is formed inside to reduce the parasitic capacitance generated in the isolation groove.
It is possible to improve the performance of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の半導体装置の断面図。 第2図、第3図、第4図は本発明の実施例の半導体装置
の分離溝近傍の断面!5゜ 第5図は従来の半導体装置の断面図。 (1)・・・基体、(6)・・・分離溝、(16)・・
・絶縁物領域、(21)・・空洞、(22)・・・高粘
度のポリイミド樹脂、(23)・・・低粘度のポリイミ
ド樹脂。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention. FIGS. 2, 3, and 4 are cross sections of the semiconductor device of the embodiment of the present invention near the isolation trench! 5. FIG. 5 is a sectional view of a conventional semiconductor device. (1)...Substrate, (6)...Separation groove, (16)...
- Insulator region, (21)...Cavity, (22)...High viscosity polyimide resin, (23)...Low viscosity polyimide resin.

Claims (1)

【特許請求の範囲】[Claims] (1)半絶縁領域と、この半絶縁領域の上に形成された
不純物領域と、この不純物領域を分断して前記半絶縁領
域に達するまで形成された分離溝と、この分離溝を含め
て素子上面に形成された絶縁物領域と、を含む半導体装
置において、前記分離溝内の前記絶縁物領域には空洞が
備えられ、この空洞は前記分離溝の内壁部分に形成され
た低粘度の絶縁物と、前記分離溝の開口部に形成された
高粘度の絶縁物で囲まれたことを特徴とする半導体装置
(1) A semi-insulating region, an impurity region formed on this semi-insulating region, an isolation trench formed by dividing this impurity region until it reaches the semi-insulating region, and an element including this isolation trench. an insulator region formed on an upper surface, the insulator region in the isolation trench is provided with a cavity, and the cavity is formed of a low-viscosity insulator formed on an inner wall portion of the isolation trench. and a high-viscosity insulator formed at the opening of the separation trench.
JP27422585A 1985-12-04 1985-12-04 Semiconductor device Pending JPS62132343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27422585A JPS62132343A (en) 1985-12-04 1985-12-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27422585A JPS62132343A (en) 1985-12-04 1985-12-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62132343A true JPS62132343A (en) 1987-06-15

Family

ID=17538761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27422585A Pending JPS62132343A (en) 1985-12-04 1985-12-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62132343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088369A (en) * 2005-09-26 2007-04-05 Fuji Electric Device Technology Co Ltd Manufacturing method and manufacturing apparatus of semiconductor device
US7235185B2 (en) * 2005-07-29 2007-06-26 Touch Micro-System Technology Inc. Method of protecting wafer front pattern and method of performing double-sided process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235185B2 (en) * 2005-07-29 2007-06-26 Touch Micro-System Technology Inc. Method of protecting wafer front pattern and method of performing double-sided process
JP2007088369A (en) * 2005-09-26 2007-04-05 Fuji Electric Device Technology Co Ltd Manufacturing method and manufacturing apparatus of semiconductor device

Similar Documents

Publication Publication Date Title
US4017885A (en) Large value capacitor
US3962713A (en) Large value capacitor
KR100624683B1 (en) Mis device having a trench gate electrode and method of making the same
US4097890A (en) Low parasitic capacitance and resistance beamlead semiconductor component and method of manufacture
US4141021A (en) Field effect transistor having source and gate electrodes on opposite faces of active layer
US4155155A (en) Method of manufacturing power semiconductors with pressed contacts
US4697201A (en) Power MOS FET with decreased resistance in the conducting state
CN106206424A (en) Through hole in porous substrate
GB2150756A (en) Methods of forming semiconductor device structures
JPH0548951B2 (en)
CN105762200B (en) A kind of trench schottky diode structure and preparation method thereof
JPS58106849A (en) Low parasitic capacity semiconductor device
US3578514A (en) Method for making passivated field-effect transistor
JPH0656865B2 (en) Adhesive substrate for high voltage devices
JPH0217676A (en) Semiconductor device
JPS62132343A (en) Semiconductor device
JPS5914906B2 (en) Method for manufacturing field effect transistors
GB2081506A (en) Resin-filled groove isolation of integrated circuit elements in a semi-conductor body
JPS5834943A (en) Semiconductor device and manufacture thereof
JPS58106848A (en) Low parasitic capacity semiconductor device and method of producing same
JP3665453B2 (en) Cathode device for GTO thyristor
JPS5923115B2 (en) Mesa type semiconductor device
JPS63122147A (en) Semiconductor device
JPS62136048A (en) Manufacture of beam lead type semiconductor device
JPS63142820A (en) Gallium arsenide device chip