JPH0199254A - Semiconductor device with groove digging type isolating layer and manufacture thereof - Google Patents

Semiconductor device with groove digging type isolating layer and manufacture thereof

Info

Publication number
JPH0199254A
JPH0199254A JP25862187A JP25862187A JPH0199254A JP H0199254 A JPH0199254 A JP H0199254A JP 25862187 A JP25862187 A JP 25862187A JP 25862187 A JP25862187 A JP 25862187A JP H0199254 A JPH0199254 A JP H0199254A
Authority
JP
Japan
Prior art keywords
groove
trench
semiconductor device
oxide film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25862187A
Other languages
Japanese (ja)
Inventor
Kimiharu Uga
宇賀 公治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25862187A priority Critical patent/JPH0199254A/en
Publication of JPH0199254A publication Critical patent/JPH0199254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To mount a chip having a small capacity in high density by forming the substrate potential of a semiconductor device in a structure for taking the potential from the surface of the device. CONSTITUTION:A high concentration n-type impurity buried layer 2, a low impurity concentration n-type epitaxially grown layer 3 and a silicon oxide film 4 are sequentially laminated on a p-type silicon substrate 1. Then, a narrow groove G1 is formed on an interelement isolating region and a wide groove G2 is formed on a region except the isolating region. Then, a thick oxide film 5 is deposited on the oxide film 4, the grooves G1, G2, and a groove digging isolating layer 5 is formed. The film 5 is dry etched, only the part of the groove G1, the surface of the layer 3 and the sidewalls of the wide groove G2 are left to remain, and the bottom of the groove G2 is flatly removed until the surface of the substrate 1 is presented. Then, a p-type aluminum electrode 6 exposed in the bottom of the groove G2 is formed. The substrate potential can be taken from the surface of the semiconductor device.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、溝掘型分離層を有する半導体装置、および
その製造方法に関し、特に素子間分離に溝充填法を用い
た半導体集積回路装置の基板電極の形成に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device having a grooved isolation layer and a method for manufacturing the same, and particularly to a semiconductor integrated circuit device using a trench filling method for isolation between elements. This relates to the formation of substrate electrodes.

[従来の技術] 第2図は、従来の溝掘型分離層を有する半導体装置の一
例を示す部分断面図である。
[Prior Art] FIG. 2 is a partial cross-sectional view showing an example of a semiconductor device having a conventional trench-type isolation layer.

図において、p型シリコン基板1上にはn型不純物理め
込み層2およびn型エピタキシャル成長層3が形成され
ている。このn型不純物理め込み層2およびn型エピタ
キシャル成長層3内には素子間分離用の溝がp型シリコ
ン基板1に達するように形成されている。この溝には絶
縁体からなる膜としての酸化膜7が埋め込まれることに
よって溝掘型分離層が形成され、素子間の分離が図られ
ている。
In the figure, an n-type impurity physical implantation layer 2 and an n-type epitaxial growth layer 3 are formed on a p-type silicon substrate 1. A groove for isolation between elements is formed in the n-type impurity physical implantation layer 2 and the n-type epitaxial growth layer 3 so as to reach the p-type silicon substrate 1. An oxide film 7, which is a film made of an insulator, is buried in this trench to form a trench-type isolation layer, thereby providing isolation between the elements.

このような溝掘型分離層を有する半導体装置においては
、基板電位をとるために一般的には次のような処理が施
される。まず、p型シリコン基数1の裏面に、たとえば
、Ti−Ni−Au膜8を形成するために裏面メタライ
ジング処理が施される。裏面にTi−Ni−Au膜8が
形成されたp型シリコン基板1は半田9でもってアセン
ブリパッケージ10の表面に接着される。このアセンブ
リパッケージ10の上表面は通常、ダイパッド領域と呼
ばれる金属面である。そのため、このように構成された
半導体装置において、その基板電位はp型シリコン基板
1からTi−Ni−Au膜8を経てアセンブリパッケー
ジ10のダイパッド領域より採取される。
In a semiconductor device having such a grooved isolation layer, the following process is generally performed to obtain a substrate potential. First, a backside metallizing process is performed on the backside of the p-type silicon base 1 in order to form, for example, a Ti-Ni-Au film 8 . A p-type silicon substrate 1 having a Ti--Ni--Au film 8 formed on its back surface is bonded to the surface of an assembly package 10 with solder 9. The upper surface of this assembly package 10 is typically a metal surface called a die pad area. Therefore, in the semiconductor device configured in this way, the substrate potential is collected from the die pad region of the assembly package 10 from the p-type silicon substrate 1 through the Ti--Ni--Au film 8.

[発明か解決しようとする問題点] しかしながら、上述のような従来の溝掘型分離層を有す
る半導体装置においては基板電位をアセンブリパッケー
ジのダイパッド領域からとるために基板にダイボンディ
ングを施す必要があった。
[Problems to be Solved by the Invention] However, in a semiconductor device having a conventional grooved isolation layer as described above, it is necessary to perform die bonding to the substrate in order to take the substrate potential from the die pad area of the assembly package. Ta.

そのため、高密度のチップ実装を行なう上で支障をきた
し、半導体装置の高速化、高集積化を妨げるなどの問題
点があった。
This poses a problem in that it is difficult to perform high-density chip packaging and hinders the speeding up and high integration of semiconductor devices.

そこで、この発明は上記のような問題点を解消するため
になされたもので、基板電位を半導体装置の表面からと
ることを可能にするとともに、小容積で高密度なチップ
実装が実現可能である半導体装置、およびその製造方法
を得ることを目的とする。
Therefore, this invention was made to solve the above-mentioned problems, and it makes it possible to take the substrate potential from the surface of the semiconductor device, and also makes it possible to realize high-density chip mounting in a small volume. The purpose of this invention is to obtain a semiconductor device and a method for manufacturing the same.

[問題点を解決するための手段] この発明に従った素子間分離のための溝掘型分離層を有
する半導体装置は、素子間分離領域に第1の溝と、前記
素子間分離領域以外の所定の領域に第2の溝とが半導体
基板に達するように形成されている。第1の溝は絶縁膜
で埋め込まれ、それによってFj掘型分離層が形成され
ている。また、第2の溝は少なくとも底部において上記
半導体基板表面を露出しており、その表面上には基板電
極が形成されている。
[Means for Solving the Problems] A semiconductor device having a trench type isolation layer for element isolation according to the present invention includes a first groove in an element isolation region and a groove in a region other than the element isolation region. A second groove is formed in a predetermined region so as to reach the semiconductor substrate. The first trench is filled with an insulating film, thereby forming an Fj trench isolation layer. Further, the second groove exposes the surface of the semiconductor substrate at least at the bottom, and a substrate electrode is formed on the surface.

また、この発明に従った素子間分離のための溝掘型分離
層をHする半導体装置を製造する方法は、以下の工程を
備えていることを特徴とするものである。
Further, a method of manufacturing a semiconductor device in which a trench type isolation layer for isolation between elements is formed according to the present invention is characterized by comprising the following steps.

(a)  素子間分離領域に第1の溝と、素子間分離領
域以外の所定の領域に第2の満とを半導体基板に達する
ように形成する工程。
(a) A step of forming a first trench in the element isolation region and a second trench in a predetermined region other than the element isolation region so as to reach the semiconductor substrate.

(b)  第1の溝と第2の溝に絶縁膜を堆積させる工
程。
(b) A step of depositing an insulating film in the first groove and the second groove.

(c)  上記絶縁膜を選択的にエツチングすることに
より、上記第2の溝の底部において上記半導体基板表面
を露出させる工程。
(c) selectively etching the insulating film to expose the surface of the semiconductor substrate at the bottom of the second groove;

(d)  上記第2の溝の底部表面上に基板電極を形成
する工程。
(d) forming a substrate electrode on the bottom surface of the second groove;

[作用コ この発明における半導体装置は半導体基板表面を露出し
ている溝の底部に基板電極が形成されている。そのため
、基板電位を半導体装置の表面からとることができる。
[Function] In the semiconductor device according to the present invention, a substrate electrode is formed at the bottom of a groove exposing the surface of the semiconductor substrate. Therefore, the substrate potential can be taken from the surface of the semiconductor device.

また、この発明における半導体装置の製造方法によれば
、基板電極を形成するために半導体基板に達する溝を形
成している。この溝は素子間分離用の溝を形成する工程
と同一工程で形成され得る。
Further, according to the method of manufacturing a semiconductor device according to the present invention, a groove reaching the semiconductor substrate is formed in order to form a substrate electrode. This groove can be formed in the same process as forming the groove for isolation between elements.

[実施例] 以下、この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1A図〜第1D図はこの発明に従った半導体装置の製
造方法を主な工程順に示した部分断面図である。
1A to 1D are partial cross-sectional views showing the method of manufacturing a semiconductor device according to the present invention in the order of main steps.

まず、第1A図を参照して、p型シリコン基板1上に高
濃度のn型不純物理め込み層2、低不純物濃度のn型エ
ピタキシャル成長層3およびシリコン酸化膜4を順に積
み重ねて形成する。その後、素子間分離領域に幅の狭い
溝61と、それ以外の領域に幅の広い溝62とをシリコ
ン酸化膜4をマスクとして、p型シリコン基板1に達す
るまで異方性エツチングを行なうことによって形成する
First, referring to FIG. 1A, a high concentration n-type impurity physical implantation layer 2, a low impurity concentration n-type epitaxial growth layer 3, and a silicon oxide film 4 are stacked in this order on a p-type silicon substrate 1. Thereafter, narrow trenches 61 in the element isolation region and wide trenches 62 in other regions are formed by anisotropic etching using the silicon oxide film 4 as a mask until the p-type silicon substrate 1 is reached. Form.

次に第1B図に示すように、素子間分離用の溝61を絶
縁物で埋め込むために、シリコン酸化膜4、溝Gl、G
2の上に厚い酸化膜5をCVD法等によって堆積させる
。このとき、素子間分離用の溝G1は酸化膜5によって
充填され、埋め込まれて溝掘型分離層を形成する。とこ
ろが、幅の広い溝62は酸化膜5によって均一に充填さ
れない。
Next, as shown in FIG. 1B, in order to fill the trenches 61 for element isolation with an insulator, the silicon oxide film 4, trenches Gl, G
A thick oxide film 5 is deposited on 2 by CVD or the like. At this time, the trench G1 for isolation between elements is filled with the oxide film 5 to form a trench type isolation layer. However, the wide groove 62 is not uniformly filled with the oxide film 5.

図に示すように、酸化膜5は溝62に沿って堆積し、側
壁部を厚く覆うような形状になり、溝02を完全には埋
め込まない。
As shown in the figure, the oxide film 5 is deposited along the groove 62 and has a shape that thickly covers the side wall portion, but does not completely fill the groove 02.

第1C図を参照して、酸化膜5をドライエツチングのエ
ッチバック法を用いて選択的に除去する。
Referring to FIG. 1C, oxide film 5 is selectively removed using an etch-back method of dry etching.

この場合、酸化膜は、溝61の部分、n型エピタキシャ
ル成長層3の表面、および幅の広い溝62の側壁部のみ
に残し、幅の広い溝62の底部においてはp型シリコン
基板1の表面か現われるまで平坦に除去する。
In this case, the oxide film is left only on the groove 61, the surface of the n-type epitaxial growth layer 3, and the sidewalls of the wide groove 62, and the bottom of the wide groove 62 is left on the surface of the p-type silicon substrate 1. Remove it evenly until it appears.

その後、第1D図に示すように、溝02の底部で露出し
たp型シリコン基板1の表面上にアルミニウム電極6を
形成する。
Thereafter, as shown in FIG. 1D, an aluminum electrode 6 is formed on the surface of the p-type silicon substrate 1 exposed at the bottom of the groove 02.

このように形成された基板電極としてのアルミニウム電
極6は、基板電位を半導体装置の表面からとることを可
能にする。そのため、゛基板電位をとるためにダイボン
ディングを行なう必要がなく、フリップチップ方式、T
AB (Tape  Automated  Bond
ing)方式を採用することにより高密度なチップ実装
が実現可能となる。
The aluminum electrode 6 as a substrate electrode formed in this way makes it possible to take the substrate potential from the surface of the semiconductor device. Therefore, there is no need to perform die bonding to obtain the substrate potential, and the flip-chip method, T
AB (Tape Automated Bond
ing) method makes it possible to implement high-density chip packaging.

また、この基板電極を形成するための溝62は素子間分
離用の溝01を形成する工程と同一の工程において形成
することができる。そのため、半導体装置の表面に基板
電極を形成させるために工程数を増加させることがない
Moreover, the groove 62 for forming the substrate electrode can be formed in the same process as the process for forming the groove 01 for isolation between elements. Therefore, there is no need to increase the number of steps to form the substrate electrode on the surface of the semiconductor device.

なお、この実施例では基板電極が形成される溝は素子間
分離用の溝に比べて幅の広いものを形成しているが、少
なくとも上記エツチング方法によって溝の底部のみを露
出させることができるだけの幅を有するものであればよ
い。また、この発明が適用される半導体装置は上記実施
例の構造を有するものに限定されることはなく、少なく
とも溝掘型分離層を有す゛るものであればよい。
In this example, the groove in which the substrate electrode is formed is wider than the groove for isolation between elements, but at least the etching method described above allows only the bottom of the groove to be exposed. Any width may be used. Further, the semiconductor device to which the present invention is applied is not limited to one having the structure of the above embodiment, but may be any one having at least a grooved isolation layer.

[発明の効果] 以上のように、この発明の半導体装置によれば半導体装
置の基板電位を半導体装置の表面からとるような構造に
したので、ダイボンディングを施す必要がなくなり、小
容積で高密度なチップ実装が可能となる。
[Effects of the Invention] As described above, the semiconductor device of the present invention has a structure in which the substrate potential of the semiconductor device is taken from the surface of the semiconductor device, so there is no need for die bonding, and it is possible to achieve high density in a small volume. chip mounting becomes possible.

また、この発明の製造方法では基板電位をとるための溝
を素子間分離用の溝の形成工程と同じ工程で形成するこ
とかできるため、工程数が増えずに済み、容易に本発明
に従った構造を得ることができる。
Further, in the manufacturing method of the present invention, the groove for taking the substrate potential can be formed in the same process as the groove for isolation between elements, so the number of steps does not increase, and the process according to the present invention can be easily performed. structure can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図、第1B図、第1C図、第1D図はこの発明の
一実施例である半導体装置の製造方法を工程順に示す部
分断面図、第2図は従来の半導体装置を示す部分断面図
である。 図において、1はp型シリコンM[2,2はn型不純物
理め込み層、3はn型エピタキシャル成長層、4はシリ
コン酸化膜、5は酸化膜、6はアルミニウム11yw、
Gl、G2は溝である。 なお、各図中、同一符号は同一または相当部分をボす。
1A, 1B, 1C, and 1D are partial cross-sectional views showing the manufacturing method of a semiconductor device according to an embodiment of the present invention in the order of steps, and FIG. 2 is a partial cross-sectional view showing a conventional semiconductor device. It is. In the figure, 1 is p-type silicon M [2, 2 is n-type impurity physical implantation layer, 3 is n-type epitaxial growth layer, 4 is silicon oxide film, 5 is oxide film, 6 is aluminum 11yw,
Gl and G2 are grooves. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)素子間分離のための溝掘型分離層を有する半導体
装置において、 素子間分離領域に第1の溝と、前記素子間分離領域以外
の所定の領域に第2の溝とが、半導体基板に達するよう
に形成され、 前記第1の溝は、絶縁膜で埋め込まれ、それによって溝
掘型分離層が形成されており、 前記第2の溝は、少なくとも底部において前記半導体基
板表面を露出しており、その表面上には基板電極が形成
されていることを特徴とする溝掘型分離層を有する半導
体装置。
(1) In a semiconductor device having a trench-type isolation layer for isolation between elements, a first groove in an isolation region and a second groove in a predetermined region other than the isolation region for semiconductor The first trench is formed to reach the substrate, the first trench is filled with an insulating film, thereby forming a trench isolation layer, and the second trench exposes the surface of the semiconductor substrate at least at the bottom. What is claimed is: 1. A semiconductor device having a grooved separation layer, characterized in that a substrate electrode is formed on the surface of the semiconductor device.
(2)前記半導体装置は、第1導電型のシリコン基板表
面上に第2導電型の不純物理め込み層、エピタキシャル
成長層および第1の酸化膜が順に積み重ねられて形成さ
れており、 前記第1の溝および前記第2の溝が、前記第1の酸化膜
から前記第1導電型のシリコン基板に達するように形成
され、 前記第1の溝は第2の酸化膜で埋め込まれており、 前記第2の溝は側壁部が第2の酸化膜で覆われ、底部に
は前記シリコン基板用の電極が形成されている、特許請
求の範囲第1項に記載の半導体装置。
(2) The semiconductor device is formed by sequentially stacking an impurity physical implantation layer of a second conductivity type, an epitaxial growth layer, and a first oxide film on the surface of a silicon substrate of a first conductivity type, and and the second groove are formed to reach the first conductivity type silicon substrate from the first oxide film, the first groove is filled with a second oxide film, and the first groove is filled with a second oxide film. 2. The semiconductor device according to claim 1, wherein the second trench has a side wall portion covered with a second oxide film, and a bottom portion of which is formed with an electrode for the silicon substrate.
(3)素子間分離のための溝掘型分離層を有する半導体
装置を製造する方法において、 素子間分離領域に第1の溝と、前記素子間分離領域以外
の所定の領域に第2の溝とを半導体基板に達するように
形成する工程と、 前記第1の溝と前記第2の溝に絶縁膜を堆積させる工程
と、 前記絶縁膜を選択的にエッチングすることにより、前記
第2の溝の底部において前記半導体基板表面を露出させ
る工程と、 前記第2の溝の底部表面上に基板電極を形成する工程と
を備えたことを特徴とする、溝掘型分離層を有する半導
体装置の製造方法。
(3) A method for manufacturing a semiconductor device having a grooved isolation layer for isolation between elements, comprising: a first groove in an isolation region; and a second groove in a predetermined region other than the isolation region. a step of depositing an insulating film in the first trench and the second trench; and selectively etching the insulating film to form the second trench. manufacturing a semiconductor device having a trench-type isolation layer, comprising: exposing the surface of the semiconductor substrate at the bottom of the second trench; and forming a substrate electrode on the bottom surface of the second trench. Method.
(4)前記半導体装置を製造する方法は、 第1導電型のシリコン基板の表面上に第2導電型の不純
物理め込み層、エピタキシャル成長層および第1の酸化
膜を順に積み重ねて形成する工程と、 前記素子間分離領域に前記第1の溝と、前記素子間分離
領域以外の所定の領域に前記第2の溝とを、前記第1の
酸化膜をマスクとして、エッチングすることにより、前
記第1導電型のシリコン基板に達するように形成する工
程と、 前記第1の溝、前記第2の溝および前記第1の酸化膜の
上に第2の酸化膜を堆積させる工程と、前記第2の酸化
膜を選択的にエッチングすることにより、前記第2の溝
の底部において前記シリコン基板の表面を露出させる工
程と、 前記第2の溝の底部表面上に前記シリコン基板用の電極
を形成する工程とを備えている、特許請求の範囲第3項
に記載の半導体装置の製造方法。
(4) The method for manufacturing the semiconductor device includes a step of sequentially stacking and forming an impurity physical implantation layer of a second conductivity type, an epitaxial growth layer, and a first oxide film on the surface of a silicon substrate of a first conductivity type. , etching the first groove in the element isolation region and the second groove in a predetermined region other than the element isolation region using the first oxide film as a mask; a step of depositing a second oxide film on the first trench, the second trench and the first oxide film; exposing the surface of the silicon substrate at the bottom of the second trench by selectively etching the oxide film of the second trench; and forming an electrode for the silicon substrate on the bottom surface of the second trench. A method for manufacturing a semiconductor device according to claim 3, comprising the steps of:
JP25862187A 1987-10-13 1987-10-13 Semiconductor device with groove digging type isolating layer and manufacture thereof Pending JPH0199254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25862187A JPH0199254A (en) 1987-10-13 1987-10-13 Semiconductor device with groove digging type isolating layer and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25862187A JPH0199254A (en) 1987-10-13 1987-10-13 Semiconductor device with groove digging type isolating layer and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0199254A true JPH0199254A (en) 1989-04-18

Family

ID=17322822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25862187A Pending JPH0199254A (en) 1987-10-13 1987-10-13 Semiconductor device with groove digging type isolating layer and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0199254A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061652A (en) * 1990-01-23 1991-10-29 International Business Machines Corporation Method of manufacturing a semiconductor device structure employing a multi-level epitaxial structure
EP0463330A2 (en) * 1990-06-29 1992-01-02 Texas Instruments Incorporated Iterative self-aligned contact metallization process
US5105253A (en) * 1988-12-28 1992-04-14 Synergy Semiconductor Corporation Structure for a substrate tap in a bipolar structure
US5159429A (en) * 1990-01-23 1992-10-27 International Business Machines Corporation Semiconductor device structure employing a multi-level epitaxial structure and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105253A (en) * 1988-12-28 1992-04-14 Synergy Semiconductor Corporation Structure for a substrate tap in a bipolar structure
US5061652A (en) * 1990-01-23 1991-10-29 International Business Machines Corporation Method of manufacturing a semiconductor device structure employing a multi-level epitaxial structure
US5159429A (en) * 1990-01-23 1992-10-27 International Business Machines Corporation Semiconductor device structure employing a multi-level epitaxial structure and method of manufacturing same
EP0463330A2 (en) * 1990-06-29 1992-01-02 Texas Instruments Incorporated Iterative self-aligned contact metallization process

Similar Documents

Publication Publication Date Title
US20060223199A1 (en) Semiconductor device and manufacturing method thereof
JP5154000B2 (en) Semiconductor device
US5449946A (en) Semiconductor device provided with isolation region
JPH11233727A (en) Inductor on silicon substrate and its manufacture
JP2006310726A (en) Semiconductor device and manufacturing method thereof
US3689992A (en) Production of circuit device
JP2006324688A (en) Getter for multi-layer wafer and method for making the same
US5478758A (en) Method of making a getterer for multi-layer wafers
JP4837939B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH0199254A (en) Semiconductor device with groove digging type isolating layer and manufacture thereof
EP0111651B1 (en) Semiconductor device comprising dielectric isolation regions
JP2001144173A (en) Method of manufacturing semiconductor device
JPH04333257A (en) Dielectric isolation wafer and manufacture thereof
US3817799A (en) Production of circuit device
KR101287308B1 (en) Thinned image sensor having trench-isolated contact pads
JPH0629376A (en) Integrated circuit device
JP2604745B2 (en) Semiconductor integrated circuit device
TWI857265B (en) A semiconductor device and process for making same
JPS6276646A (en) Manufacture of semiconductor device
US20240290783A1 (en) Semiconductor device and processes for making same
EP0661735A1 (en) Process for the manufacturing of integrated circuits, particularly of intelligent power semiconductor devices
CN109119415A (en) The monolithic die including active electrical component and passive electrical components with chip edge rock-steady structure
KR100511900B1 (en) Method of manufacturing SOI substrate
JPS59167029A (en) Manufacture of semiconductor device
JPS62130537A (en) Method of separating elements of integrated circuit