JPS62131474A - Cooling device of alkaline type fuel cell - Google Patents

Cooling device of alkaline type fuel cell

Info

Publication number
JPS62131474A
JPS62131474A JP60270914A JP27091485A JPS62131474A JP S62131474 A JPS62131474 A JP S62131474A JP 60270914 A JP60270914 A JP 60270914A JP 27091485 A JP27091485 A JP 27091485A JP S62131474 A JPS62131474 A JP S62131474A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte
refrigerant
cooling
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60270914A
Other languages
Japanese (ja)
Inventor
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60270914A priority Critical patent/JPS62131474A/en
Publication of JPS62131474A publication Critical patent/JPS62131474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To effectively cool without losing the balance of electrolyte concentration and generation of leakage current by connecting a cooling tube arranged in an electrolyte chamber to a coolant circulation line. CONSTITUTION:When an electrolyte chamber 4 is filled with electrolyte and reaction gases are supplied to a fuel electrode 2 and an oxidizing agent electrode 3 to operate a fuel cell, heat is generated by polarization of each electrode and liquid resistance of the electrolyte, and the temperature of electrolyte is increased. When a pump 9 in a coolant circulation line 11 is operated to circulate coolant between a cooling tube 7 and the circulation line 11, heat generated in the fuel cell 1 is transferred by the coolant flowing within the tube 7 from the cell and exhausted outside with a heat exchanger 8, and the coolant cooled in the heat exchanger 8 is circulated again to the cell 1. Since a power generating line and a cooling line are separated, the fuel cell is effectively cooled without an adverse are separated, the fuel cell is effectively cooled without an adverse effect on power generation such as break of balance of electrolyte concentration.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、アルカリ水溶液である電解液を満たした電
解液室を挟んでその両側に燃料極、酸化剤極および各電
極へ燃料、酸化剤の反応ガスを供給する供給路を配して
なる単電池をセパレート板を介して多数積層して構成し
たアルカリ型燃料電池の冷却装置に関する。
This invention consists of a fuel electrode, an oxidizer electrode, and a supply path for supplying fuel and oxidizer reaction gas to each electrode on both sides of an electrolyte chamber filled with an electrolyte, which is an alkaline aqueous solution. The present invention relates to a cooling device for an alkaline fuel cell constructed by stacking a large number of cells with separate plates interposed therebetween.

【従来技術とその問題点】[Prior art and its problems]

燃料電池は燃料と酸化剤との電気化学的反応により発電
を行うものであり、その発電により燃料。 酸化剤の持つ活性化エネルギーの約50%が電極の分i
、を池の内部抵抗により熱に変換されて失われる。この
ために燃料電池は運転に伴って発生ずる生成熱を何等か
の手段で系外に除熱して燃料電池本体を冷却する必要が
ある。 ところで頭記したアルカリ型燃料電池は室温での運転が
可能であり、またその運転温度の上限は電解液であるア
ルカリ水溶液の沸点でl1flllされる。 したがって燃料電池の運転温度を15〜80’e程度に
定めることにより、耐熱性が低いが安価に入手できるポ
リエチレン等のプラスチック材を燃料電池の構成材料と
して使用することが可能となる。しかしてこのようなア
ルカリ型燃料電池では、運転温度と外気温との間の差が
小さい上に、電池を構成しているプラスチック材の熱伝
導性が悪いので燃料電池本体からの放熱による冷却効果
が低く、更に加えて運転の許容温度を超えると電池を構
成しているプラスチック材が溶解して修復し難い損傷が
生しるという問題がある。 このために従来では、燃r+ii池の運転時に発生する
生成熱の除熱方式として燃料ガス循環方式。 あるいは電解液循環方式等を採用して生成熱を強制除熱
するような方式が一般に採用されている。 このうち、前者の燃料ガス循環方式は電池反応によって
燃料掻側に生じた生成水を電池外部に燃料ガスと一緒に
取出した上でこの生成水を気液分離して系外に除去する
とともに同時に燃料ガスを冷却用熱交換器で冷却し、再
び燃料電池側に循環供給して燃料電池本体を冷却するも
のである。しかして水素である燃料ガスは熱伝導性が低
く、このために所要の冷却能力を得るには系内に多量の
燃料ガスを循環送風させねばならない、しがち多量の燃
料ガスを循環送風させるには燃料ガス循環送風機の動力
および除熱用の熱交換器が大きなものとなり、このこと
が燃料電池の綜合効率を低下させる他、燃料電池発電設
備全体が大形化するという問題に波及する。また多量の
燃料を循環送風すると、同時に多量の電解液が燃料ガス
と一緒に電池内部から持ち去られることとなるため、電
解液の濃度バランスを崩すようになる。一方、前記した
電解液循環方式は電解液を電池外部に設置した除熱用熱
交換器との間で循環送流して電解液を冷却することによ
り、電解液を熱媒として燃料電池の生成熱を系外に排熱
する方式であり、この方式によれば効率の良い冷却を行
うことができる反面、積層電池を構成してい゛る各単電
池の間が電解液を媒体として電気的に導通されるために
、電解液に漏i!S!電流が流れて電池出力の低下や、
電池構成部材の電蝕を引き起こす欠点がある。 さらに加えて、前記した従来の各冷却方式では、燃料ガ
スあるいは電解液の循環量を増加させることによりある
程度までは冷却能力を増すことが可能であるがその増加
割合には限度があり、例えば積N電池を構成している単
電池の電極破損等により燃料電池に異常発熱が生じた場
合にはこれに対処し切れず、燃料電池はそ運転上での許
容最高温度を超過してしまう事態の発生するおそれがあ
る。
A fuel cell generates electricity through an electrochemical reaction between fuel and an oxidizer, and the resulting electricity is used as fuel. Approximately 50% of the activation energy of the oxidant is distributed to the electrode i
, is converted into heat and lost due to the internal resistance of the pond. For this reason, it is necessary to cool the fuel cell main body by removing the generated heat generated during operation of the fuel cell to the outside of the system by some means. By the way, the above-mentioned alkaline fuel cell can be operated at room temperature, and the upper limit of its operating temperature is determined by the boiling point of the alkaline aqueous solution that is the electrolyte. Therefore, by setting the operating temperature of the fuel cell to about 15 to 80'e, it becomes possible to use a plastic material such as polyethylene, which has low heat resistance but is available at low cost, as a constituent material of the fuel cell. However, in such alkaline fuel cells, the difference between the operating temperature and the outside temperature is small, and the plastic material that makes up the cell has poor thermal conductivity, so the cooling effect due to heat dissipation from the fuel cell body is limited. There is a problem in that if the temperature is low and exceeds the allowable operating temperature, the plastic material that makes up the battery will melt, causing irreversible damage. For this reason, conventionally, a fuel gas circulation method has been used as a heat removal method for the generated heat generated during operation of the fuel R+II fuel tank. Alternatively, a method is generally adopted in which the generated heat is forcibly removed by employing an electrolyte circulation method or the like. Among these, the former fuel gas circulation method takes out the water generated on the fuel side by the cell reaction to the outside of the cell together with the fuel gas, separates this water into gas and liquid, and removes it from the system. The fuel gas is cooled by a cooling heat exchanger and then circulated and supplied to the fuel cell side again to cool the fuel cell body. However, fuel gas, which is hydrogen, has low thermal conductivity, and for this reason, in order to obtain the required cooling capacity, a large amount of fuel gas must be circulated through the system. In this case, the power of the fuel gas circulation blower and the heat exchanger for heat removal are large, which not only reduces the overall efficiency of the fuel cell but also causes the problem that the entire fuel cell power generation equipment becomes larger. Furthermore, when a large amount of fuel is circulated and ventilated, a large amount of electrolyte is simultaneously removed from the inside of the cell together with the fuel gas, which disrupts the concentration balance of the electrolyte. On the other hand, the electrolyte circulation method described above cools the electrolyte by circulating the electrolyte between a heat exchanger for heat removal installed outside the battery, and uses the electrolyte as a heat medium to generate heat in the fuel cell. While this method allows efficient cooling, it also prevents electrical conduction between the individual cells that make up the stacked battery using the electrolyte as a medium. Leakage into the electrolyte in order to be used! S! Current flows and battery output decreases,
It has the disadvantage of causing electrolytic corrosion of battery components. In addition, in each of the conventional cooling methods described above, it is possible to increase the cooling capacity to a certain extent by increasing the circulation amount of fuel gas or electrolyte, but there is a limit to the rate of increase. If abnormal heat generation occurs in the fuel cell due to damage to the electrodes of the single cells that make up the N battery, there is a risk that the fuel cell will not be able to deal with this and the temperature will exceed the maximum allowable operating temperature. There is a possibility that this may occur.

【発明の目的】[Purpose of the invention]

この発明は上記の点にがんがみなされたものであり、従
来の冷却方式で問題となる電解液濃度のバランスの崩れ
、および漏洩電流の発生等の恐れなしに効果的に燃料電
池本体を冷却できるようにしたアルカリ型燃料電池の冷
却装置を提供することを目的とする。
This invention addresses the above points, and effectively cools the fuel cell body without the fear of imbalance in electrolyte concentration or occurrence of leakage current, which are problems with conventional cooling methods. An object of the present invention is to provide a cooling device for an alkaline fuel cell that can perform cooling.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は燃料極と酸化剤
極との間に画成された電解液室内に冷却チューブを配管
し、かつ該冷却チューブに外部の除熱用熱交換器を経由
して前記冷却チューブとの間で冷媒を循環送流する冷媒
循環ラインを接続し、燃料電池の運転時に前記冷媒循環
ラインを通じて冷媒を循環送流することにより、燃料電
池本体の生成熱を系外に取り出した上で熱交換器より糸
外へ排熱除去するようにしたものである。 かかる冷却装置によれば燃料電池の発電系と冷却系とが
独立しており、かつ各車電池毎に配管された冷却チュー
ブと外部の冷媒循環ラインとの間で送流される冷媒は電
解液と完全に分離しているので、先記した従来の冷却方
式で問題となっていた単電池相互間の液絡にる漏洩電流
や、電解液の持ち去りに起因する電解液濃度のバランス
崩れと言った発電系への影響は全く無くなり、発電系お
よび冷却系のそれぞれを別々に最適な運転条件で運転す
ることが可能となる。なお前記冷却系に使用する冷媒と
しては純水の使用も可能であるが、例えばメチルアルコ
ール等の低沸点の冷媒を使用することにより、燃料電池
の故障等により異常発熱状態となった場合にも、燃料電
池の許容最高温度近くになるとメチルアルコールが沸謄
するのでその蒸発潜熱により冷却能力が自動的に高まり
、異常発熱にも充分に対処できるようになる。
In order to achieve the above object, the present invention includes piping a cooling tube within an electrolyte chamber defined between a fuel electrode and an oxidizer electrode, and passing an external heat removal heat exchanger to the cooling tube. A refrigerant circulation line is connected between the cooling tube and the refrigerant, and the refrigerant is circulated through the refrigerant circulation line during operation of the fuel cell, thereby removing the heat generated in the fuel cell body to the outside of the system. The exhaust heat is then removed from the yarn through a heat exchanger. According to such a cooling system, the power generation system and the cooling system of the fuel cell are independent, and the refrigerant that is sent between the cooling tube installed for each vehicle battery and the external refrigerant circulation line is an electrolytic solution. Because they are completely separated, there is no leakage current due to the liquid junction between the cells, which was a problem with the conventional cooling method mentioned above, and an imbalance in the electrolyte concentration caused by the electrolyte being carried away. There is no influence on the power generation system, and it becomes possible to operate the power generation system and the cooling system separately under optimal operating conditions. It is also possible to use pure water as the refrigerant used in the cooling system, but by using a low boiling point refrigerant such as methyl alcohol, it can be used in the event of abnormal heat generation due to fuel cell failure, etc. When the temperature approaches the maximum allowable temperature of the fuel cell, methyl alcohol boils, and its latent heat of vaporization automatically increases the cooling capacity, making it possible to sufficiently cope with abnormal heat generation.

【発明の実施N】[Practice of the invention N]

第1図はこの発明の実施例による冷却装置全体の系統図
、第2図および第3図はそれぞれ第1図実施例による積
層アルカリ型燃料電池本体の内部構造を示す断面図およ
び電解液室の冷却チューブ配管構造を示す斜視図である
。 まず第1図において、1はアルカリ型燃料電池あり、該
燃料電池は燃料極2と、酸化剤極3と、燃料極2と酸化
剤極3との間に画成された電解液室4と前記燃料極およ
び酸化剤極にそれぞれ燃料ガスおよび酸化剤ガスの反応
ガスを供給する反応ガス通路5,6とよりなる。ここで
この発明により前記した燃料電池1の電解液室4の内部
には符号7で示す耐アルカリ性の絶縁材で作られた冷却
チューブが配管されており、かつ該冷却チューブ7に接
続して外部には除熱用の水冷式熱交換器8゜冷媒送流ポ
ンプ9.およびバッファタンク10を装備した冷媒循環
ライン11が接続されている。 次に燃料電池本体の内部に配管した前記冷却チューブ7
の配管構造を第2図および第3図に付いて説明する。第
2図において各単電池は電解液室4の外枠12と、該外
枠を挟んでその両側に連接された燃料極側および酸化剤
極側の外枠13および14と、該外枠13.14にそれ
ぞれ装着された燃料極2゜酸化剤8i3との積層体とし
てなり、かつ単電池の相互間をセパレート板15を介し
て積層して積層アルカリ型燃料電池を構成している。な
お16はセパレート板と各t8iとの間に介装されたj
It板である。ここで前記した各外枠12〜14および
セパレート板15の間を貫通して各単電池にまたがる冷
媒の入口流路17および出口流路18が反対側に穿孔さ
れており、かつこの入口流路17と出口流路18との間
にまたがって前記した冷却チューブ7が電解液室4内に
接続配管されている。 また前記の冷却チューブ7は、第3図に明示されている
ように電解液室4内の全域に亙り蛇行状に巡らして配管
されており、この配管構造で冷却チューブ7が同時に燃
料極2と酸化剤極3との間を離間させるスペーサを兼用
しているている。なお通常の燃料電池では、電解液室4
の厚み寸法が3〜41であり、冷却チューブ7はこの厚
み寸法よりも細いチューブが使用される。また第3図に
おいて、19.20はそれぞれ前記冷媒流路と平行して
単電池の間をまたがるように各外枠およびセパレート板
に穿孔された燃料ガスおよび酸化剤ガス供給用の入口流
路、21.22は前記入口流路19.20に対向して外
枠の反対側に穿孔された反応ガスの出口流路である。ま
た23.24は外枠の上辺に穿孔された電解液の入口流
路および出口流路であり、かつその入口流路23は中継
流路25を経て電解液室3の底部に連通している。ここ
で前記した電解液の入口、出口流路23.24は、電解
液の補給、交換。 および燃料電池運転時の温度上昇によに電解液室4内の
電解液が膨張した際に電解液が流れるが、それ以外の通
常運転状態では電解液の液面が前記入口、出口流路23
.24よりも下方に位置しており、咳電解液流路を介し
て電池の相互間が電解液で液絡されないようになってい
る。 次に上記構成による燃料電池の冷却作用に付いて述べる
。すなわち燃料電池の電解液室4を電解液で満たし、か
つ燃料極2および酸化剤極3にそれぞれ反応ガスを供給
して燃料電池の運転を開始すると、各電極の分極、1を
解法の液砥抗等により発熱しその生成熱により電解液の
温度が上昇するようになる。一方、この運転状態で第1
図に示した冷媒循環ライン11の送液ポンプ9を始動し
て冷却チューブ7との間で冷媒を循環送流させることに
より、燃料電池本体の生成熱は電解液室4内に配管され
た冷却チューブ7を流れる冷媒と熱交換して冷媒側に伝
熱した上で冷媒とともに電池外に持ち去られ、熱交換器
8で系外に排熱される。さらに熱交換器8で冷却された
冷媒は再び燃料電池1に還流するように循環送流される
。この場合の冷媒流量は通常の負荷変動範囲で発生する
生成熱を除熱できるような流量に設定されている。 ここで冷却チューブに流す冷媒としては、純水あるいは
低沸点の冷媒等の使用が可能であるが、特にメチルアル
コールを採用することにより次記のような利点が得られ
る。すなわちメチルアルコールは沸点が50〜80℃程
度で電気的に絶縁性があり、かつ腐食性もないので、冷
媒循環ライン11を構成している熱交換器8.送液ポン
プ9およびバッファタンク10は勿論のことこれらの間
を結ぶ外部配管類にも金属製のものを使用することがで
きる。また燃料電池の運転時に異常発熱が生じた場合に
も、冷媒がメチルアルコール等の低沸点の冷媒であれば
、このメチルアルコールが沸騰してその蒸発潜熱により
生成熱を奪うようになる。したがってこれにより冷却能
力が大幅に増大し、特別に冷媒流量を増すように流量制
御を行うことなしに燃料電池本体の温度上昇を許容最高
温度以内に抑え、電池を構成しているプラスチック材が
溶融する−等の修復し難い損傷発生の事態を未然に防ぐ
ことができる利点が得られる。
FIG. 1 is a system diagram of the entire cooling device according to the embodiment of the present invention, and FIGS. 2 and 3 are sectional views showing the internal structure of the stacked alkaline fuel cell main body and the electrolyte chamber according to the embodiment of FIG. 1, respectively. FIG. 3 is a perspective view showing a cooling tube piping structure. First, in FIG. 1, reference numeral 1 denotes an alkaline fuel cell, which includes a fuel electrode 2, an oxidizer electrode 3, and an electrolyte chamber 4 defined between the fuel electrode 2 and the oxidizer electrode 3. It consists of reaction gas passages 5 and 6 that supply reaction gases of fuel gas and oxidant gas to the fuel electrode and oxidizer electrode, respectively. Here, according to the present invention, a cooling tube made of an alkali-resistant insulating material shown by reference numeral 7 is piped inside the electrolyte chamber 4 of the fuel cell 1 described above, and is connected to the cooling tube 7 and connected to the outside. A water-cooled heat exchanger for heat removal 8. Refrigerant flow pump 9. A refrigerant circulation line 11 equipped with a buffer tank 10 is connected thereto. Next, the cooling tube 7 piped inside the fuel cell main body
The piping structure will be explained with reference to FIGS. 2 and 3. In FIG. 2, each cell includes an outer frame 12 of the electrolyte chamber 4, outer frames 13 and 14 on the fuel electrode side and oxidizer electrode side connected to both sides of the outer frame, and the outer frame 13. The fuel electrodes 2 and the oxidizers 8i3 are attached to the fuel electrodes 2 and 8i3, respectively, and the cells are stacked with separate plates 15 interposed between them to form a stacked alkaline fuel cell. Note that 16 is a j interposed between the separate plate and each t8i.
This is an It board. Here, the refrigerant inlet flow path 17 and outlet flow path 18 penetrating between each of the outer frames 12 to 14 and the separate plate 15 and extending over each unit cell are bored on opposite sides, and the inlet flow path The above-mentioned cooling tube 7 is connected to the electrolyte chamber 4 and spans between the electrolyte chamber 17 and the outlet flow path 18 . Furthermore, as clearly shown in FIG. 3, the cooling tube 7 is piped in a meandering manner throughout the electrolyte chamber 4, and with this piping structure, the cooling tube 7 is connected to the fuel electrode 2 at the same time. It also serves as a spacer to separate the electrode from the oxidizer electrode 3. In addition, in a normal fuel cell, the electrolyte chamber 4
The thickness of the cooling tube 7 is from 3 to 41, and a tube thinner than this thickness is used as the cooling tube 7. In FIG. 3, reference numerals 19 and 20 denote inlet channels for supplying fuel gas and oxidant gas, which are bored in each outer frame and separate plate so as to extend between the cells in parallel with the refrigerant channel; Reference numerals 21 and 22 denote reaction gas outlet channels that are bored on the opposite side of the outer frame, facing the inlet channels 19 and 20. Reference numerals 23 and 24 are an inlet channel and an outlet channel for the electrolyte that are bored on the upper side of the outer frame, and the inlet channel 23 communicates with the bottom of the electrolyte chamber 3 via a relay channel 25. . The electrolyte inlet and outlet channels 23 and 24 described above are used for replenishing and exchanging the electrolyte. When the electrolyte in the electrolyte chamber 4 expands due to temperature rise during fuel cell operation, the electrolyte flows, but in other normal operating conditions, the liquid level of the electrolyte is at the inlet and outlet channels 23.
.. 24, so that the batteries are not connected to each other by the electrolyte via the cough electrolyte flow path. Next, the cooling effect of the fuel cell with the above configuration will be described. That is, when the electrolyte chamber 4 of the fuel cell is filled with electrolyte and the fuel electrode 2 and the oxidizer electrode 3 are supplied with a reactive gas to start the operation of the fuel cell, the polarization of each electrode, Heat is generated by the resistor, etc., and the temperature of the electrolytic solution rises due to the generated heat. On the other hand, in this operating state, the first
By starting the liquid pump 9 of the refrigerant circulation line 11 shown in the figure and circulating the refrigerant between the cooling tubes 7, the generated heat of the fuel cell main body is transferred to the cooling tube piped in the electrolyte chamber 4. After exchanging heat with the refrigerant flowing through the tubes 7 and transferring the heat to the refrigerant side, the refrigerant is carried out of the battery together with the refrigerant, and the heat is exhausted to the outside of the system by the heat exchanger 8. Furthermore, the refrigerant cooled by the heat exchanger 8 is circulated and sent back to the fuel cell 1 so as to be returned to the fuel cell 1. The refrigerant flow rate in this case is set to a flow rate that can remove generated heat generated within a normal load fluctuation range. Although it is possible to use pure water or a low boiling point refrigerant as the refrigerant to flow through the cooling tube, the following advantages can be obtained by particularly employing methyl alcohol. That is, methyl alcohol has a boiling point of about 50 to 80°C, is electrically insulating, and is not corrosive, so it is not suitable for the heat exchanger 8. which constitutes the refrigerant circulation line 11. Metal can be used not only for the liquid pump 9 and the buffer tank 10 but also for the external piping connecting them. Further, even if abnormal heat generation occurs during operation of the fuel cell, if the refrigerant is a low boiling point refrigerant such as methyl alcohol, the methyl alcohol will boil and take away the heat generated by its latent heat of vaporization. Therefore, this greatly increases the cooling capacity, suppressing the temperature rise in the fuel cell body within the maximum allowable temperature without having to specifically control the flow rate to increase the refrigerant flow rate, and melting the plastic materials that make up the cell. This has the advantage that it is possible to prevent the occurrence of damage that is difficult to repair, such as damage caused by damage.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、電解液室内に冷却
チューブを配管し、かつ該冷却チューブに外部の除熱用
熱交換器を経由して前記冷却チューブとの間で冷媒を循
環送流する冷媒循環ラインを接続して燃料電池の冷却装
置を構成したことにより、燃料電池の発電系と冷却系と
が分離独立となり、従来の燃料ガス循環方式、電解液循
環方式等で問題となっていた単電池相互間での漏洩を流
の発生、I!解液液濃度バランス崩れ等の発電に影響を
及ぼすことなく効果的に燃料電池の冷却を行うことがで
きる。さらに冷媒として低沸点の冷媒を使用することに
より、燃料電池の運転中に異常発熱が発生した場合にも
冷媒が沸騰して蒸発潜熱を奪うことによって対処し、電
池を許容最高温度内に抑えて運転できる等、アルカリ型
燃料電池を対象に運転管理面で優れた効果を発揮する冷
却装置を提供することができる。
As described above, according to the present invention, a cooling tube is installed in the electrolyte chamber, and a refrigerant is circulated between the cooling tube and the cooling tube via an external heat removal heat exchanger. By connecting the refrigerant circulation line to configure the fuel cell cooling system, the fuel cell power generation system and cooling system are separated and independent, which has caused problems with conventional fuel gas circulation systems, electrolyte circulation systems, etc. I! The fuel cell can be effectively cooled without affecting power generation due to loss of solution concentration balance. Furthermore, by using a low-boiling-point refrigerant as the refrigerant, even if abnormal heat generation occurs during fuel cell operation, the refrigerant boils and removes the latent heat of vaporization, keeping the battery within the maximum allowable temperature. It is possible to provide a cooling device that exhibits excellent operation management effects for alkaline fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による冷却装置全体の系統図
、第2図および第3図はそれぞれ第1図における燃料電
池の内部構造を示す縦断面図および電解液室内での冷却
チューブの配管を示す構成斜視図である0図において、 l:燃料電池、2:燃料極、3:酸化剤極、4:電解液
室、5.6:反応ガス供給路、7:冷却チューブ、8:
除熱用熱交換器、9:冷媒の送液ポンプ、11:冷媒循
環ライン、12:ii電解液室外枠、17:冷媒入口流
路、18:冷媒出口流路。 1湾f+を涜 第1図
FIG. 1 is a system diagram of the entire cooling device according to an embodiment of the present invention, and FIGS. 2 and 3 are longitudinal sectional views showing the internal structure of the fuel cell in FIG. 1, and piping of cooling tubes in the electrolyte chamber, respectively. In Figure 0, which is a perspective view of the configuration, l: fuel cell, 2: fuel electrode, 3: oxidizer electrode, 4: electrolyte chamber, 5.6: reaction gas supply path, 7: cooling tube, 8:
heat exchanger for heat removal, 9: refrigerant sending pump, 11: refrigerant circulation line, 12: ii electrolyte outdoor frame, 17: refrigerant inlet channel, 18: refrigerant outlet channel. 1 Bay f+ Figure 1

Claims (1)

【特許請求の範囲】 1)アルカリ水溶液を電解液として燃料極と酸化剤極と
の間に画成された電解液室内を前記電解液で満たし、か
つ前記各電極へ反応ガスを供給して発電を行うアルカリ
型燃料電池の冷却装置であって、前記電解液室内に冷却
チューブを配管し、かつ該冷却チューブに外部の除熱用
熱交換器を経由して前記冷却チューブとの間で冷媒を循
環送流する冷媒循環ラインを接続して構成したたことを
特徴とするアルカリ型燃料電池の冷却装置。 2)特許請求の範囲第1項記載の冷却装置において、冷
媒として沸点が50〜80℃の低沸点の冷媒を使用する
ことを特徴とするアルカリ型燃料電池の冷却装置。 3)特許請求の範囲第2項記載の冷却装置において、冷
媒がメチルアルコールであることを特徴とするアルカリ
型燃料電池の冷却装置。 4)特許請求の範囲第1項記載の冷却装置において、冷
却チューブが耐アルカリ性の絶縁チューブであり、かつ
該冷却チューブが燃料極と酸化剤極との間のスペーサを
兼ねて電解液室内の全域に亙り蛇行配管されていること
を特徴とするアルカリ型燃料電池の冷却装置。
[Claims] 1) Power generation by using an alkaline aqueous solution as an electrolyte, filling an electrolyte chamber defined between a fuel electrode and an oxidizer electrode, and supplying a reactive gas to each of the electrodes. A cooling device for an alkaline fuel cell that performs the following steps, wherein a cooling tube is installed in the electrolyte chamber, and a refrigerant is passed between the cooling tube and the cooling tube via an external heat removal heat exchanger. A cooling device for an alkaline fuel cell, characterized in that it is configured by connecting a refrigerant circulation line for circulating circulation. 2) A cooling device for an alkaline fuel cell according to claim 1, characterized in that a low boiling point refrigerant having a boiling point of 50 to 80° C. is used as the refrigerant. 3) A cooling device for an alkaline fuel cell according to claim 2, wherein the coolant is methyl alcohol. 4) In the cooling device according to claim 1, the cooling tube is an alkali-resistant insulating tube, and the cooling tube also serves as a spacer between the fuel electrode and the oxidizer electrode to cover the entire area inside the electrolyte chamber. 1. A cooling device for an alkaline fuel cell, characterized by having meandering piping extending over the area.
JP60270914A 1985-12-02 1985-12-02 Cooling device of alkaline type fuel cell Pending JPS62131474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270914A JPS62131474A (en) 1985-12-02 1985-12-02 Cooling device of alkaline type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270914A JPS62131474A (en) 1985-12-02 1985-12-02 Cooling device of alkaline type fuel cell

Publications (1)

Publication Number Publication Date
JPS62131474A true JPS62131474A (en) 1987-06-13

Family

ID=17492745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270914A Pending JPS62131474A (en) 1985-12-02 1985-12-02 Cooling device of alkaline type fuel cell

Country Status (1)

Country Link
JP (1) JPS62131474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191545A (en) * 2012-01-24 2013-09-26 Boeing Co:The Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
JP2014049339A (en) * 2012-08-31 2014-03-17 Daihatsu Motor Co Ltd Fuel cell system
JP2014072092A (en) * 2012-09-28 2014-04-21 Daihatsu Motor Co Ltd Cooling controller of fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191545A (en) * 2012-01-24 2013-09-26 Boeing Co:The Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
US10218010B2 (en) 2012-01-24 2019-02-26 The Boeing Company Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
JP2014049339A (en) * 2012-08-31 2014-03-17 Daihatsu Motor Co Ltd Fuel cell system
JP2014072092A (en) * 2012-09-28 2014-04-21 Daihatsu Motor Co Ltd Cooling controller of fuel cell system

Similar Documents

Publication Publication Date Title
RU2332753C2 (en) Thermoregulation in electrochemical fuel elements
JP2020004716A (en) Battery system architecture permitting single cell abnormality
JPS62131474A (en) Cooling device of alkaline type fuel cell
JP2013105620A (en) Power supply system
JP2004355860A (en) Combined power generation system, power generation plant, heat insulation method of secondary battery
JPH01176668A (en) Start-up method of fuel cell
JP2000215901A (en) Solid polymer type fuel cell system
JP3337258B2 (en) Solid polymer electrolyte fuel cell system
JP2008262752A (en) Fuel cell stack and its warming up method
JPH0750614B2 (en) Fuel cell
JP2551713B2 (en) Fuel cell
JPS6266581A (en) Fuel cell
KR100448690B1 (en) Cooling system for fuel cell
CN219553725U (en) Liquid cooling battery module of energy storage system
JP2009238628A (en) Fuel cell system
WO1998032186A1 (en) Sodium-sulfur battery module
JPH06140066A (en) Fuel cell power generating system
JP4537511B2 (en) Power storage unit
JPS5973858A (en) Operation method of fuel cell power generating system
JPH0831437A (en) Fuel cell and operation thereof
JP2006147400A (en) Fuel cell system
JPS63155561A (en) Fuel cell
JP2002319417A (en) Solid polymer fuel cell generating device
JPH03216961A (en) Cooling method for fuel cell
JP3310412B2 (en) Fuel cell cooling device and control method thereof