WO1998032186A1 - Sodium-sulfur battery module - Google Patents

Sodium-sulfur battery module Download PDF

Info

Publication number
WO1998032186A1
WO1998032186A1 PCT/JP1997/000061 JP9700061W WO9832186A1 WO 1998032186 A1 WO1998032186 A1 WO 1998032186A1 JP 9700061 W JP9700061 W JP 9700061W WO 9832186 A1 WO9832186 A1 WO 9832186A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
module
liquid
sulfur
sulfur battery
Prior art date
Application number
PCT/JP1997/000061
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Hiranuma
Hiromi Tokoi
Naohisa Watahiki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/000061 priority Critical patent/WO1998032186A1/en
Publication of WO1998032186A1 publication Critical patent/WO1998032186A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a conventional natural sulfur battery module battery is composed of a plurality of unit cells 1 assembled in an insulated container 4, and sand or ceramic particles are interposed between the unit cells 1.
  • sand or ceramic particles are interposed between the unit cells 1.
  • the thirteenth goal of this study is to provide a highly reliable and safe module for sodium sulfur batteries.
  • the i! JJ module is filled with a liquid that is non-reactive with sodium and sulfur and electrically insulating between cells, and leaks sodium, sulfur, and polysulfide in the liquid.
  • Riumu is provided with a device for collecting the active material, such as c further, the module, which was provided with a control device for sensors and control them for detecting damage a pump for circulating the liquid Confuse.
  • the active material leaked from the cell and released into the surrounding liquid can be removed, and a short circuit of the adjacent battery can be prevented, the operation of the module can be continued.
  • the leaked active material can be effectively collected in the recovery device by flowing the liquid by the pump, and the damaged portion can be gradually heated to suppress the temperature change of the adjacent battery.
  • the uniformity between the batteries can be achieved, the characteristics and temperature of the batteries are stabilized, and the cells are less likely to be damaged.
  • FIG. 1 is a diagram showing a main part structure of a first embodiment of the present invention
  • FIG. 2 is a diagram showing a main part structure of a second embodiment of the present invention
  • FIG. Implementation of FIG. 4 is a view showing a main part structure of an example
  • FIG. 4 is a view showing a main part structure of a fourth embodiment of the present invention
  • FIG. 5 is a view showing one embodiment of the active material recovery apparatus of the present invention
  • FIG. The figure shows the battery operation control method based on the damage detection of the present invention.
  • FIG. 7 shows the first embodiment of the unit cell of the present invention and the position of the damage detection sensor.
  • FIG. 8 shows the unit of the present invention.
  • FIG. 7 shows the first embodiment of the unit cell of the present invention and the position of the damage detection sensor.
  • FIG. 9 is a diagram showing a second embodiment of the battery and the position of the damage detection sensor
  • FIG. 9 is a diagram showing the main structure of the first embodiment of the power storage system according to the present invention
  • FIG. FIG. 11 is a diagram showing a main part of the second embodiment of the power storage system according to the present invention
  • FIG. 11 is a diagram showing an embodiment of the active material recovery device of the present invention
  • FIG. FIG. 13 is a view showing a transportation method
  • FIG. 13 is a view showing a structure of a conventional example.
  • FIG. 1 is a diagram showing a first embodiment of the present invention.
  • the cells 1 are collectively arranged in a heat insulating container 4.
  • an electrically insulating liquid 3 that does not react with sodium and sulfur (for example, a perfluoropolyether-based heating medium, an alkylbiphenyl-based heating medium, a dibenzyltoluene-based heating medium, etc.)
  • the space is filled with inert gas 4 at the top to alleviate the expansion of the liquid.
  • An active material recovery device 5 for removing sodium, sulfur and sodium polysulfide from the liquid 3 is provided in a pipe 7 to which a pump 8 is connected.
  • the installation position of the active material recovery device 5 is not limited to the piping, but may be in an insulated container or the like as long as the active material leaked from the unit cell can be captured.
  • a leak sensor 6 for detecting the active material leaked from the cell is installed, and the active material recovery device 5 and the pump 8 are controlled by the control device 10 based on a leak signal of the leak sensor 16.
  • Ko Control The active material recovery device 5, the pump 8, the leak sensor 6, and the control device 10 are connected by a signal line 9.
  • the leakage sensor 6 changes the electrical resistance when sodium or sodium polysulfide leaks into the liquid 3.
  • Another method that detects battery damage from the electrical changes in the sodium-conducting solid conductive solid electrolyte is c.
  • Another method is to detect leakage from the rise in temperature of the liquid 3 due to the heat of reaction at the time of breakage and the acoustic change associated with the damage. Detect.
  • the active material is activated the pump 8 at that time t to remove the active material leads to the active material recovery device 5, by forced convection of the liquid 3, the reaction heat at failure is also removed.
  • the module of the present invention can continue to operate.
  • the pump 8 is always operated at the base to be used as an emergency power supply or as a power demand peak cut power supply, so that the inside of the battery is evenly heated and damage is prevented.
  • FIG. 2 is a diagram showing a second embodiment of the present invention.
  • a heating or cooling device 10 is provided in the embodiment of FIG. 1 to actively control the temperature of the liquid 3.
  • the temperature of the unit cell is kept constant, the battery performance is further stabilized, and damage is less likely to occur.
  • FIG. 3 is a view showing a third embodiment of the present invention.
  • the embodiment shown in Fig. 1 is provided with a heat storage tank 11 (which also reduces the expansion of liquid in this example), and supplies heat to an external heat load 12 or an adjacent module. is there. Joule heat generated during discharging and charging can be stored and used effectively, such as maintaining the temperature during standby and supplying heat to adjacent modules and external heat loads.
  • Figure 4 shows a fourth embodiment of the present invention.
  • the liquid 3 in the insulated container 2 is directly heated or cooled by the heating device or cooling device 1 1, and the liquid 4 is circulated using the natural convection of the liquid, eliminating the need for a pump. Become.
  • 11 is a cooling device, a downward flow of the liquid 3 occurs between the heat insulating container 2 and the partition plate 14 and an upward flow occurs between the cells, so that the cells can be cooled.
  • 11 is a heating device, an ascending flow of the liquid 3 occurs between the heat insulating container 2 and the partition plate 14, and a descending flow occurs between the cells, so that the cells can be heated.
  • FIG. 5 is a view showing a fifth embodiment of the present invention.
  • the liquid 3 in the heat insulating container 2 is replaced with the liquid 3 in the heat storage tank 12. This prevents the damage from spreading and allows the battery to continue operating, as in Example 1.
  • FIG. 6 is a diagram showing a specific example of a control method of the present invention. If damage is detected, activate the active material recovery device and pump. However, if the damage is still widespread, for example when the temperature continues to rise or the electrical resistance of the liquid continues to drop, the battery output is temporarily reduced to prevent the damage from spreading.
  • FIG. 7 is a view showing a specific example of the arrangement of the unit cell and the leak sensor of the present invention.
  • Sodium is lighter than liquid, and the temperature rises due to the heat generated due to breakage, and the density becomes lighter and the liquid rises, so the leak sensor that detects electrical resistance, Na leak, and temperature is installed above the cell. By doing so, leakage can be detected with a small number of sensors.
  • the separators 14 between the collections of the cells 1 connected to the terminals 15 in series are connected in parallel to the collection of batteries including the damaged batteries in series. This prevents the active material from leaking and accumulates in the collection of batteries, and reduces the effect of reduced output due to damaged batteries to only the stains of series batteries including damaged batteries.
  • FIG. 8 is a view showing a second specific example of the arrangement of the unit cell and the leak sensor according to the present invention. If a liquid is flowing during power generation, a leak sensor that detects electrical resistance, Na leak, and temperature is installed downstream. Liquid flows Therefore, if damage occurs on the upstream side, an increase in electrical resistance, temperature, Na leakage, etc. can be detected on the downstream side, so the number of upstream leakage sensors can be reduced.
  • FIG. 9 is a diagram showing a specific example of the power storage system of the present invention.
  • FIG. 11 is a view showing a specific example of the active material recovery device of the present invention. Sodium 18, sulfur 19, and sodium polysulfide 20 leaked from the pipe 7 are mixed with the liquid 3 and flow.
  • liquid 3 is, for example, a perfluoropolyether-based heating medium
  • the density at the battery operating temperature is about 1.3 g
  • the density of sulfur 15 is about 1.7 g. 5 precipitates and accumulates in the sulfur recovery tank 24 at the bottom of the active material recovery device.
  • Sodium 14 and sulfur 15 can be discharged from the drain valve 22.
  • FIG. 12 is a view showing a transportation method of the present invention. After transporting the battery from the battery manufacturing site to the battery installation location, filling it with liquid reduces the volume required for transportation. Can be
  • the present invention can provide a highly reliable and safe module of one sodium sulfur pond as in the above embodiment. Industrial applicability
  • the active material leaked from the cell and released into the surrounding liquid can be removed, a short circuit between adjacent cells can be prevented, and the module can be operated continuously.
  • the leaked material can be effectively collected in the recovery device by flowing the liquid by the pump, and the temperature of the adjacent battery can be suppressed by gradually heating the damaged portion.
  • the temperature between the batteries can be made uniform or constant by applying liquid heat or gradual heating, the characteristics and temperature of the entire battery are stabilized, and the battery is less likely to be damaged.

Abstract

A sodium-sulfur battery module comprising batteries (1) separated by spaces filled up with an insulating liquid (3) which does not react with sodium and sulfur, wherein a recovering device (5) prevents the short circuit between adjacent batteries by removing an active material, such as the sodium or sulfur leaking into the liquid or sodium polysulfide, etc., and removes heat from the batteries or equalizes the temperatures of adjacent batteries by circulating the liquid. Therefore, the module can be continuously operated even when some of the batteries are out of order and, at the same time, the batteries are protected from damage by stabilizing their characteristics and temperature.

Description

明 細 書  Specification
ナトリゥム硫]¾電池のモジュール 技術分野  [Sulfuric acid] battery module Technical field
本究明は、 ナ卜リゥム硫黄電池を集合させてなるモジュール電池に関 するものである。 背景技術  The present study relates to a module battery made up of a series of sulfur batteries. Background art
従来のナ 卜 リゥム硫黄電池のモジュール電池は、 第 1 3図に示すよう に、 断熱容器 4内に複数の単電池 1 を集合させて、 その単電池 1 の間に は、 砂やセラミック粒などを充填したり、 あるいは、 ガスを循環させる ための空間を設け、 その空間にセラミックや金属製の仕切りが置かれて いる。 また、 砂以外に不燃性汕を充填するものもある。  As shown in Fig. 13, a conventional natural sulfur battery module battery is composed of a plurality of unit cells 1 assembled in an insulated container 4, and sand or ceramic particles are interposed between the unit cells 1. There is a space for filling or circulating gas, and a ceramic or metal partition is placed in the space. Some are filled with non-combustible shanto besides sand.
上記従来技術では、 単電池が破損し電気伝導性を有するナトリウムや 多硫化ナ卜 リゥムなどの活物質が漏洩した場合には、 隣接する単電池が 短絡し直並列電圧のバランスが崩れ、 十分な電池出力が得られなくなる さらに、 隣接する単電池では、 過電流や過放電による破損, 反応熱で生 じる温度上昇による破損などの恐れがあり、 モジュールの運転を停止さ せ、 破損電池あるいは破損電池を含んだモジュール全体を交換すること になる。 一般に数百本以上の単電池でモジュール電池は構成されており , 1本の電池破損による出力低下や運転停止の影響は大きい。 このため、 電池の運転を継続できる信頼性が高いモジュールが求められており、 単 電池の破損が究生しにく く、 たとえ破損が生じてもその破損を拡大させ ない構造とする必要がある。 また、 非常用電源や電力需要ピークカッ ト 電源として、 より短時間で放電し、 より高い電力が必要とされる場合、 単 池では、 電流値の 2乗に比例してジュ一ル発熱量が増加するため、 単電池の温度が上昇し、 熱応力, 内部の圧力上昇や温度の不均一が助長 され、 破損の恐れが増大する。 この場合、 従来の砂, 不燃性油の熱伝導 やガスによる熱伝達では、 それらを防止できない。 In the above prior art, when a unit cell is damaged and an active material such as sodium or sodium polysulfide having electrical conductivity leaks, the adjacent unit cell is short-circuited, the balance of series-parallel voltage is lost, and sufficient Battery output cannot be obtained. In addition, adjacent cells may be damaged by overcurrent or overdischarge, or may be damaged by temperature rise caused by reaction heat. The entire module, including the battery, will need to be replaced. In general, a module battery is composed of several hundred cells or more, and the damage of one battery greatly affects the output and shuts down. For this reason, there is a demand for a highly reliable module that can continue battery operation, and it is necessary to provide a structure in which damage to the cells is difficult and even if damage occurs, the damage does not spread . Also, as an emergency power supply or peak demand power supply, when discharging in a shorter time and higher power is required, In a cell, the heating value of the joule increases in proportion to the square of the current value, so the temperature of the cell rises, promoting thermal stress, internal pressure rise and uneven temperature, which may cause damage. Increase. In this case, conventional heat transfer by sand or non-combustible oil or heat transfer by gas cannot prevent them.
本究明の 13的は、 信頼性 · 安全性の高いナ卜リゥム硫黄電池のモジュ —ルを提供することにある。  The thirteenth goal of this study is to provide a highly reliable and safe module for sodium sulfur batteries.
¾ l j) Jの開示 ¾ l j) Disclosure of J
本 ¾ i!JJのモジュールは、 単電池の間にナト リウムと硫黄と非反応性で かつ電気絶縁性の液体を充填し、 その液体中に漏洩したナ卜リゥム、 硫 黄や多硫化ナ 卜 リゥムなどの活物質を回収する装置を設けたものである c さらに、 そのモジュールに、 液体を循環させるためのポンプと破損検知 するためのセンサーとそれらを制御するための制御装置を設けたもので める。 The i! JJ module is filled with a liquid that is non-reactive with sodium and sulfur and electrically insulating between cells, and leaks sodium, sulfur, and polysulfide in the liquid. Riumu is provided with a device for collecting the active material, such as c further, the module, which was provided with a control device for sensors and control them for detecting damage a pump for circulating the liquid Confuse.
本発明によれば、 単電池から漏洩し、 周りの液体に放出された活物質 を除去でき、 隣接電池の短絡を防止できるため、 モジュールの運転を継 続させることができる。 また、 ポンプにより液体を流動させることで漏 洩した活物質を回収装置に効果的に集めることができ、 さらに破損部分 の徐熱をし、 隣接電池の温度変化を押さえることができる。 加えて、 電 池間の均熱化が図れるため、 電池の特性や温度が安定し、 単電池が破損 しにく くなる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention, since the active material leaked from the cell and released into the surrounding liquid can be removed, and a short circuit of the adjacent battery can be prevented, the operation of the module can be continued. In addition, the leaked active material can be effectively collected in the recovery device by flowing the liquid by the pump, and the damaged portion can be gradually heated to suppress the temperature change of the adjacent battery. In addition, since the uniformity between the batteries can be achieved, the characteristics and temperature of the batteries are stabilized, and the cells are less likely to be damaged. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の第 1 の実施例の主要部構造を示す図、 第 2図は本発 叨の第 2の実施例の主要部構造を示す図、 第 3図は本発明の第 3の実施 例の主要部構造を示す図、 第 4図は本発明の第 4の実施例の主要部構造 を示す図、 第 5図は本究明の活物質回収装置の一実施例を示す図、 第 6 図は本 明の破損検知による電池運転制御方法を示す図、 第 7図は本発 明の単電池と破損検知センサー位置の第 1 の実施例を示す図、 第 8図は 本発叨の単電池と破損検知センサ一位置の第 2の実施例を示す図、 第 9 図は本発明による電力貯蔵システムの第 1 の実施例の主要部構造を示す 図、 笫 1 0図は本究リ刀による電力貯蔵システムの第 2の実施例の主要部 樅造を示す図、 第 1 1 図は本発明の活物質回収装置の一実施例を示す図、 第 1 2図は本発明のモジュール電池の運搬方法を示す図、 第 1 3図は従 来例の構造を示す図である。 FIG. 1 is a diagram showing a main part structure of a first embodiment of the present invention, FIG. 2 is a diagram showing a main part structure of a second embodiment of the present invention, and FIG. Implementation of FIG. 4 is a view showing a main part structure of an example, FIG. 4 is a view showing a main part structure of a fourth embodiment of the present invention, FIG. 5 is a view showing one embodiment of the active material recovery apparatus of the present invention, FIG. The figure shows the battery operation control method based on the damage detection of the present invention. FIG. 7 shows the first embodiment of the unit cell of the present invention and the position of the damage detection sensor. FIG. 8 shows the unit of the present invention. FIG. 9 is a diagram showing a second embodiment of the battery and the position of the damage detection sensor, FIG. 9 is a diagram showing the main structure of the first embodiment of the power storage system according to the present invention, and FIG. FIG. 11 is a diagram showing a main part of the second embodiment of the power storage system according to the present invention, FIG. 11 is a diagram showing an embodiment of the active material recovery device of the present invention, FIG. FIG. 13 is a view showing a transportation method, and FIG. 13 is a view showing a structure of a conventional example.
%明を実施するための最良の形態 Best mode for implementing% Ming
以下、 図面を参照し、 実施例について本発明を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1 図は本究明の第 1の実施例を示す図である。 第 1 3図の従来のモ ジュールのように、 単電池 1 は断熱容器 4内に集合配置されている。 そ の周りには、 ナト リウムと硫黄に反応しない電気絶縁性の液体 3 (例え ば、 パーフルォロポリエーテル系熱媒, アルキルビフエニール系熱媒, ジベンジルトルエン系熱媒など) を充填し、 上部には液体の膨張を緩和 するための空間を設け不活性ガス 4 を封入している。 その液体 3の中か らナト リウム、 硫黄や多硫化ナ卜リゥムを除去する活物質回収装置 5 を. ポンプ 8が接続された配管 7に設けている。 活物質回収装置 5の設置位 置は、 配管に限らず単電池から漏洩した活物質を捕らえられる位置であ れば、 断熱容器内などでもよい。 液体 3中には、 単電池から漏洩した活 物質を検出するための漏洩センサー 6が設置してあり、 活物質回収装置 5 とポンプ 8は、 漏洩センサ一 6の漏洩信号によって制御装置 1 0がコ ン 卜ロールする。 活物質回収装置 5, ポンプ 8, 漏洩センサー 6 と制御 装置 1 0は信号線 9でつながっている。 漏洩センサー 6は、 液体 3にナ 卜 リゥムゃ多硫化ナ卜リゥムが漏洩したときの電気抵抗の変化ゃナ卜リ ゥム伝導性固体電解質にナ卜 リゥムゃ多硫化ナ 卜 リゥムが付着したとき のナ 卜 リゥム伝導性固体電解質の電気的変化から電池の破損を検知する c また別の方式では、 破損時の反応熱による液体 3の温度上昇や破損に伴 う音響変化から、 漏洩を 2次的に検知する。 漏洩を検知したときには、 ポンプ 8 を起動させ活物質を活物質回収装置 5に導き活物質を除去する t そのときに、 液体 3の強制対流により、 破損時の反応熱も除去する。 以 上のように、 破損拡大が防止されるため、 本発明のモジュールは、 運転 を継続できる。 また、 非常用電源や電力需要ピ一クカッ ト電源として、 使う場台には、 常時ポンプ 8 を稼働させ、 電池内の均熱化し、 破損を防 止する。 FIG. 1 is a diagram showing a first embodiment of the present invention. As in the conventional module shown in FIG. 13, the cells 1 are collectively arranged in a heat insulating container 4. Around this, an electrically insulating liquid 3 that does not react with sodium and sulfur (for example, a perfluoropolyether-based heating medium, an alkylbiphenyl-based heating medium, a dibenzyltoluene-based heating medium, etc.) The space is filled with inert gas 4 at the top to alleviate the expansion of the liquid. An active material recovery device 5 for removing sodium, sulfur and sodium polysulfide from the liquid 3 is provided in a pipe 7 to which a pump 8 is connected. The installation position of the active material recovery device 5 is not limited to the piping, but may be in an insulated container or the like as long as the active material leaked from the unit cell can be captured. In the liquid 3, a leak sensor 6 for detecting the active material leaked from the cell is installed, and the active material recovery device 5 and the pump 8 are controlled by the control device 10 based on a leak signal of the leak sensor 16. Ko Control. The active material recovery device 5, the pump 8, the leak sensor 6, and the control device 10 are connected by a signal line 9. The leakage sensor 6 changes the electrical resistance when sodium or sodium polysulfide leaks into the liquid 3. Another method that detects battery damage from the electrical changes in the sodium-conducting solid conductive solid electrolyte is c. Another method is to detect leakage from the rise in temperature of the liquid 3 due to the heat of reaction at the time of breakage and the acoustic change associated with the damage. Detect. When detecting a leakage, the active material is activated the pump 8 at that time t to remove the active material leads to the active material recovery device 5, by forced convection of the liquid 3, the reaction heat at failure is also removed. As described above, since the damage is prevented from spreading, the module of the present invention can continue to operate. In addition, the pump 8 is always operated at the base to be used as an emergency power supply or as a power demand peak cut power supply, so that the inside of the battery is evenly heated and damage is prevented.
第 2図は本¾明の第 2の実施例を示す図である。 第 1 図の実施例に加 熱あるいは冷却装置 1 0を設け、 液体 3の温度管理を積極的に行うもの である。 本実施例では、 単電池の温度を一定に保持するため、 さらに電 池性能が安定し、 破損が生じにく くなる。  FIG. 2 is a diagram showing a second embodiment of the present invention. A heating or cooling device 10 is provided in the embodiment of FIG. 1 to actively control the temperature of the liquid 3. In this embodiment, since the temperature of the unit cell is kept constant, the battery performance is further stabilized, and damage is less likely to occur.
第 3図は本発明の第 3の実施例を示す図である。 第 1 図の実施例に蓄 熱槽 1 1 (本例では、 液体の膨張緩和も¾ねている) を設けたもので、 外部熱負荷 1 2あるいは隣接するモジュールなどに熱を供給するもので ある。 放電時や充電時に発生するジュール発熱を蓄熱し、 待機時の温度 保持、 隣接するモジュールや外部熱負荷への熱供給など有効利用できる, 第 4図は本発叨の第 4の実施例を示す図である。 断熱容器 2内の液体 3 を加熱装置あるいは冷却装置 1 1 によって直接加熱あるいは冷却し、 液体の自然対流を利用して液体 4 を循環させるもので、 ポンプが不要と なる。 1 1 を冷却装置とすると、 断熱容器 2 と仕切板 1 4の間で液体 3 の下降流が、 単電池の間には上昇流が生じて、 単電池を冷却できる。 1 1 を加熱装置とすると、 断熱容器 2 と仕切板 1 4の間で液体 3の上昇 流が、 単電池の間には下降流が生じて、 単電池を加熱できる。 FIG. 3 is a view showing a third embodiment of the present invention. The embodiment shown in Fig. 1 is provided with a heat storage tank 11 (which also reduces the expansion of liquid in this example), and supplies heat to an external heat load 12 or an adjacent module. is there. Joule heat generated during discharging and charging can be stored and used effectively, such as maintaining the temperature during standby and supplying heat to adjacent modules and external heat loads.Figure 4 shows a fourth embodiment of the present invention. FIG. The liquid 3 in the insulated container 2 is directly heated or cooled by the heating device or cooling device 1 1, and the liquid 4 is circulated using the natural convection of the liquid, eliminating the need for a pump. Become. If 11 is a cooling device, a downward flow of the liquid 3 occurs between the heat insulating container 2 and the partition plate 14 and an upward flow occurs between the cells, so that the cells can be cooled. When 11 is a heating device, an ascending flow of the liquid 3 occurs between the heat insulating container 2 and the partition plate 14, and a descending flow occurs between the cells, so that the cells can be heated.
第 5図は本発明の第 5の実施例を示す図である。 電池の破損を検知し た場合には、 断熱容器 2内の液体 3 を蓄熱槽 1 2の液体 3 と交換する。 このことで、 実施例 1 と同様に、 破損の拡大を防止し、 電池の運転を継 続できる  FIG. 5 is a view showing a fifth embodiment of the present invention. When battery damage is detected, the liquid 3 in the heat insulating container 2 is replaced with the liquid 3 in the heat storage tank 12. This prevents the damage from spreading and allows the battery to continue operating, as in Example 1.
第 6図は本 叨の制御方法の具体例を示す図である。 破損を検知した 場合には、 活物質回収装置およびポンプを稼働させる。 しかし、 それで も破損が拡大する場合、 例えば温度の上昇が続くあるいは液体の電気抵 抗が低下しつづけるときには、 電池出力を一端低下させ、 破損拡大を防 止する。  FIG. 6 is a diagram showing a specific example of a control method of the present invention. If damage is detected, activate the active material recovery device and pump. However, if the damage is still widespread, for example when the temperature continues to rise or the electrical resistance of the liquid continues to drop, the battery output is temporarily reduced to prevent the damage from spreading.
第 7図は本発明の単電池と漏洩センサ一の配列の具体例を示す図であ る。 ナトリウムは液体より軽く、 また、 破損に伴う発熱によって温度が 上昇し、 密度が軽くなり液体は上昇するので、 電気抵抗, N a漏洩, 温 度を検知する漏洩センサーは、 単電池より上部に設置することで、 少な いセンサ一数で漏洩を検知できる。 また、 直列に端子 1 5 をつないだ単 電池 1 の集ま りと集まりの間にある仕切板 1 4によって、 破損電池を含 んだ直列の電池の集ま りから、 それに並列接続されている電池の集ま り への漏洩活物質の付着を防止し、 破損電池による出力低下の影響を破損 電池を含んだ直列電池の染ま りのみに押さえることができる。  FIG. 7 is a view showing a specific example of the arrangement of the unit cell and the leak sensor of the present invention. Sodium is lighter than liquid, and the temperature rises due to the heat generated due to breakage, and the density becomes lighter and the liquid rises, so the leak sensor that detects electrical resistance, Na leak, and temperature is installed above the cell. By doing so, leakage can be detected with a small number of sensors. In addition, the separators 14 between the collections of the cells 1 connected to the terminals 15 in series are connected in parallel to the collection of batteries including the damaged batteries in series. This prevents the active material from leaking and accumulates in the collection of batteries, and reduces the effect of reduced output due to damaged batteries to only the stains of series batteries including damaged batteries.
第 8図は本発明の単電池と漏洩センサ一の配列の第 2の具体例を示す 図である。 発電中に液体を流動させている場合には、 その下流に電気抵 抗, N a漏洩, 温度を検知する漏洩センサ一を設置する。 液体が流動し ていれば、 上流で破損が生じた場合には、 下流において電気抵抗や温度 の上昇, N a漏洩等が検知できるため、 上流側の漏洩センサ一の設置数 を低減できる。 FIG. 8 is a view showing a second specific example of the arrangement of the unit cell and the leak sensor according to the present invention. If a liquid is flowing during power generation, a leak sensor that detects electrical resistance, Na leak, and temperature is installed downstream. Liquid flows Therefore, if damage occurs on the upstream side, an increase in electrical resistance, temperature, Na leakage, etc. can be detected on the downstream side, so the number of upstream leakage sensors can be reduced.
第 9図は本発明の電力貯蔵システムの具体例を示す図である。 複数の モジュールを配管でつなぎ、 活物質回収槽を共用することで、 資材の低 減を図れる。 モジュール 1 6内で破損が検知された場合には、 流調バル ブ 1 7 を 1 け、 ポンプ 8 を起動し、 モジュール内の液体を活物質回収槽 FIG. 9 is a diagram showing a specific example of the power storage system of the present invention. By connecting multiple modules with pipes and sharing the active material recovery tank, materials can be reduced. If damage is detected in module 16, turn on flow control valve 17, start pump 8, and pump the liquid in the module into the active material recovery tank.
5に導入する。 Introduce to 5.
笫 1 0図は本 ¾叨の電力貯蔵システムの第 2の具体例を示す図である c 活物質回収装置につながる配管とポンプで液体を循環させる配管の 2つ を有している。 1 つのモジュールで活物質を回収し、 破損拡大を防止す るためにそのモジュールの出力を低下させている場合には、 他のモジュ —ルでは、 短時間放電による高出力で欠損した電力を補うことができる < 第 1 1 図は本発明の活物質回収装置の具体例を示す図である。 配管 7 から漏洩したナト リウム 1 8, 硫黄 1 9, 多硫化ナト リウム 2 0が液体 3に混じって流れ込んでくる。 ナト リウム 1 8 と多硫化ナトリウム 2 0 は、 固体電解質 2 1 に設けた多孔性電極 2 2に電圧を加えることで、 ナ ト リウムはイオンの形で固体電解質 2 1 を伝導し、 固体電解質 1 7内部 のナトリウム回収槽 1 9に取り込まれる。 一方、 液体 3 を例えばパーブ ルォロポリエーテル系熱媒とすると電池動作温度で密度は約 1 . 3 g で あり、 硫黄 1 5の密度は約 1 . 7 g で、 液体 3より重いため硫黄 1 5は 沈殿し、 活物質回収装置底部の硫黄回収槽 2 4に溜まる。 ナトリウム 1 4 と硫黄 1 5は、 ドレイ ンバルブ 2 2から排出できる。 笫1 0 Figure has two pipes for circulating liquid in a pipe and a pump connected to the c active material collecting device is a diagram showing a second specific example of the power storage system of the present ¾叨. If one module recovers the active material and reduces the output of that module to prevent damage from spreading, the other module compensates for the loss of power due to the short-term high-power output. FIG. 11 is a view showing a specific example of the active material recovery device of the present invention. Sodium 18, sulfur 19, and sodium polysulfide 20 leaked from the pipe 7 are mixed with the liquid 3 and flow. When sodium 18 and sodium polysulfide 20 are applied with a voltage to the porous electrode 22 provided on the solid electrolyte 21, the sodium conducts the solid electrolyte 21 in the form of ions, and the solid electrolyte 1 7 It is taken into the sodium recovery tank 19 inside. On the other hand, if liquid 3 is, for example, a perfluoropolyether-based heating medium, the density at the battery operating temperature is about 1.3 g, and the density of sulfur 15 is about 1.7 g. 5 precipitates and accumulates in the sulfur recovery tank 24 at the bottom of the active material recovery device. Sodium 14 and sulfur 15 can be discharged from the drain valve 22.
第 1 2図は本発明の運搬方法を示す図である。 電池製作現場から電池 設置場所に運搬した後に、 液体を充填することで、 運搬時の蛏量化を図 ることができる。 FIG. 12 is a view showing a transportation method of the present invention. After transporting the battery from the battery manufacturing site to the battery installation location, filling it with liquid reduces the volume required for transportation. Can be
本¾明は、 以上の実施例のように、 信頼性 · 安全性の高いナトリウム 硫黄 1池のモジュールを提供できる。 産業上の利用可能性  The present invention can provide a highly reliable and safe module of one sodium sulfur pond as in the above embodiment. Industrial applicability
木¾明によれば、 単電池から漏洩し、 周りの液体に放出された活物質 を除去でき、 隣接電池の短絡を防止でき、 モジュールの運転を継続させ ることができる。 また、 ポンプにより液体を流動させることで漏洩した ¾物質を回収装置に効果的に集めることができ、 さらに破損部分の徐熱 をし、 隣接電池の温度変化を押さえることができる。 また、 液体入熱あ るいは徐熱することで電池間の均熱化や定温化が図れるため、 電池全体 の特性や温度が安定し、 破損しにく くなる。  According to Kizaki, the active material leaked from the cell and released into the surrounding liquid can be removed, a short circuit between adjacent cells can be prevented, and the module can be operated continuously. In addition, the leaked material can be effectively collected in the recovery device by flowing the liquid by the pump, and the temperature of the adjacent battery can be suppressed by gradually heating the damaged portion. In addition, since the temperature between the batteries can be made uniform or constant by applying liquid heat or gradual heating, the characteristics and temperature of the entire battery are stabilized, and the battery is less likely to be damaged.

Claims

請 求 の 範 囲 The scope of the claims
1 . 多数の単電池を直列あるいは並列に接続させてなるナ ト リウム硫黄 電池のモジュールにおいて、 単電池の周囲にナ卜 リゥムと硫黄と非反応 性でかつ電気絶縁性の液体を充填し、 その液体の中からナトリウム, 硫 黄や多硫化ナ卜 リゥムなどの活物質を回収する活物質回収手段を設けた ことを特徴とするナトリウム硫黄電池のモジュール。  1. In a sodium-sulfur battery module consisting of a number of cells connected in series or in parallel, the surroundings of the cells are filled with liquid that is non-reactive with sodium and sulfur and is electrically insulating. A sodium-sulfur battery module characterized by providing active material recovery means for recovering active materials such as sodium, sulfuric acid and sodium polysulfide from liquid.
2 . 特許請求の範囲第 1項に記載のナ卜リゥム硫黄電池のモジュールに おいて、 前記電気絶縁性の液体の駆動手段を設けたことを特徴とするナ 卜 リゥム硫黄電池のモジュール。  2. The module for a sulfur battery according to claim 1, wherein said electrically insulating liquid driving means is provided.
3 . 特許請求の範囲第 2項に記載のナト リゥム硫黄電池のモジュールに おいて、 前記電気絶縁性の液体中に単電池から活物質が漏洩したことを 検出する漏洩センサ一と、 前記駆動手段および前記活物質回収装置を前 記漏洩センサ一の信号から制御する制御装置を設けたことを特徴とする ナ卜 リゥム硫黄電池のモジュール。  3. The module for a sodium-sulfur battery according to claim 2, wherein: a leakage sensor for detecting that an active material has leaked from a cell into the electrically insulating liquid; and the driving means. And a control device for controlling the active material recovery device from the signal of the leak sensor (1).
4 . 特許請求の範囲第 3項に記載のナ卜リゥム硫黄電池のモジュールに おいて、 前記漏洩センサーを単 S池よりも上部に設けたことを特徴とす るナ 卜 リゥム硫黄電池のモジュ一ル。  4. The module according to claim 3, wherein the leak sensor is provided above a single S pond. Le.
5 . 特許請求の範囲第 3項に記載のナ卜リゥム硫黄電池のモジュールに おいて、 前記電気絶縁性の液体を流動させたときの下流側に前記漏洩セ ンサ一を設けたことを特徴とするナ卜リゥム硫黄電池のモジュール。  5. The module according to claim 3, wherein the leak sensor is provided on the downstream side when the electrically insulating liquid is caused to flow. A module for a natural sulfur battery.
6 . 特許請求の範囲第 1項に記載のナトリウム硫黄電池のモジュールに おいて、 仕切板を、 単電池を直列に接続した電池集まりと電池集まりの 間に設けることを特徴とするナト リウム硫黄電池のモジュ一ル。  6. The sodium-sulfur battery according to claim 1, wherein the partition plate is provided between the battery clusters in which the cells are connected in series. Module.
7 . 特許請求の範囲第 1項に記載のナ卜リゥム硫黄電池のモジュールに おいて、 前記電気絶縁性の液体に活物質と密度が異なるものを用いて、 活物質を沈殿あるいは浮遊させ、 活物質を回収することを特徴とするナ 卜リゥム硫黄電池のモジュール。 7. The module for a sulfur battery according to claim 1, wherein the electrically insulating liquid having a different density from an active material is used, A sodium sulfur battery module characterized by recovering the active material by precipitating or suspending the active material.
8 . 特許請求の範囲第 1項に記載のナ卜リゥム硫黄電池のモジュールに おいて、 ナトリウム伝導性の固体電解質を用いて、 ナトリウムを前記電 気絶縁性の液体から回収することを特徴とするナ卜リゥム硫黄電池のモ シュール。  8. The sodium sulfur battery module according to claim 1, wherein sodium is recovered from the electrically insulating liquid by using a sodium-conductive solid electrolyte. A module for a sulfur sulfur battery.
9 . 多数の単電池を直列あるいは並列に接続してなるナ卜 リゥム硫黄電 池のモジュールにおいて、 単電池の周囲にナ 卜 リゥムと硫黄と非反応性 でかつ電気絶縁性の液体を充填し、 その液体を電池運転温度において交 換する手段を有することを特徴とするナ卜 リゥム硫黄電池のモジュール <  9. In a module of a sulfur battery with a number of cells connected in series or in parallel, the cell is filled with a liquid that is non-reactive with the sulfur and sulfur and is electrically insulating. A module for a sodium sulfur battery characterized by having means for exchanging the liquid at the battery operating temperature <
PCT/JP1997/000061 1997-01-16 1997-01-16 Sodium-sulfur battery module WO1998032186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000061 WO1998032186A1 (en) 1997-01-16 1997-01-16 Sodium-sulfur battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000061 WO1998032186A1 (en) 1997-01-16 1997-01-16 Sodium-sulfur battery module

Publications (1)

Publication Number Publication Date
WO1998032186A1 true WO1998032186A1 (en) 1998-07-23

Family

ID=14179919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000061 WO1998032186A1 (en) 1997-01-16 1997-01-16 Sodium-sulfur battery module

Country Status (1)

Country Link
WO (1) WO1998032186A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001675T5 (en) 2007-06-29 2010-08-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Power storage device
US8298694B2 (en) 2007-02-01 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply device
WO2013187096A1 (en) * 2012-06-15 2013-12-19 日本碍子株式会社 Insulating container for battery, battery control device, and battery-failure detection method
KR20140022687A (en) * 2012-08-14 2014-02-25 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery
JP2017502450A (en) * 2013-10-30 2017-01-19 シーメンス アクティエンゲゼルシャフト Heat storage system with high temperature battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202865A (en) * 1987-02-18 1988-08-22 Hitachi Ltd Sodium-sulfur cell system
JPH03203169A (en) * 1989-12-29 1991-09-04 Ngk Insulators Ltd High temperature battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202865A (en) * 1987-02-18 1988-08-22 Hitachi Ltd Sodium-sulfur cell system
JPH03203169A (en) * 1989-12-29 1991-09-04 Ngk Insulators Ltd High temperature battery system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298694B2 (en) 2007-02-01 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply device
DE112008001675T5 (en) 2007-06-29 2010-08-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Power storage device
US8349481B2 (en) 2007-06-29 2013-01-08 Toyota Jidosha Kabushiki Kaisha Power storage apparatus
WO2013187096A1 (en) * 2012-06-15 2013-12-19 日本碍子株式会社 Insulating container for battery, battery control device, and battery-failure detection method
US10147976B2 (en) 2012-06-15 2018-12-04 Ngk Insulators, Ltd. Insulating container for battery, battery control device, and battery-failure detection method
KR20140022687A (en) * 2012-08-14 2014-02-25 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery
JP2017502450A (en) * 2013-10-30 2017-01-19 シーメンス アクティエンゲゼルシャフト Heat storage system with high temperature battery

Similar Documents

Publication Publication Date Title
KR101029506B1 (en) A fuel cell system, and method of protecting a fuel cell from freezing
JP6687895B2 (en) Vehicle fuel cell warm-up device
US6057050A (en) Quick charge battery with thermal management
EP2997623B1 (en) Active thermal management and thermal runaway prevention for high energy density lithium ion battery packs
US4314008A (en) Thermoelectric temperature stabilized battery system
US9136564B2 (en) Battery pack system and liquid leakage detection method thereof
US11967689B2 (en) Smart battery pack
JP2006302629A (en) Fuel cell module and power generation system using it
CN101682060A (en) Fuel cell system
US20230130832A1 (en) Hot charging systems and methods
JP2005228637A (en) Fuel cell system
KR102210218B1 (en) Battery system, base plate for a battery system and electric vehicle
JP6817375B2 (en) Battery system architecture tolerating single cell anomalies
US7563526B2 (en) Fuel cell system and method for removal of water from fuel cells
CN114448049A (en) Temperature control system and method and energy storage charging system
US20160248132A1 (en) Heat storage system comprising a high-temperature battery
WO1998032186A1 (en) Sodium-sulfur battery module
KR102586103B1 (en) Battery system, a method for leakage detection inside a battery system and a vehicle including a battery system
EP2584637B1 (en) Fuel cell
JP2007220559A (en) Fuel cell system
JP2009123670A (en) Fuel cell system
US11631913B2 (en) Assembly of battery cells, and aircraft comprising such an assembly
JP4533604B2 (en) Low temperature startup method for fuel cells
JP2007026893A (en) Fuel cell system
JP2007026784A (en) Fuel cell, fuel cell system and operation method for fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase