JPS6213102B2 - - Google Patents

Info

Publication number
JPS6213102B2
JPS6213102B2 JP54106311A JP10631179A JPS6213102B2 JP S6213102 B2 JPS6213102 B2 JP S6213102B2 JP 54106311 A JP54106311 A JP 54106311A JP 10631179 A JP10631179 A JP 10631179A JP S6213102 B2 JPS6213102 B2 JP S6213102B2
Authority
JP
Japan
Prior art keywords
alloy
temperature
mold
grid
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106311A
Other languages
Japanese (ja)
Other versions
JPS5630071A (en
Inventor
Sadao Fukuda
Hidemi Fukunaga
Katsuhiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10631179A priority Critical patent/JPS5630071A/en
Publication of JPS5630071A publication Critical patent/JPS5630071A/en
Publication of JPS6213102B2 publication Critical patent/JPS6213102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉛蓄電池用格子の製造法に関し、鋳
造法により格子を製造する際に、所定の合金成分
および組成において、その合金の特長および得ら
れた格子を電池に使用した時の電池特性を最大限
に発揮できるような鋳造条件を規定することを目
的とする。 鉛蓄電池用格子(以下、単に格子と称する)の
鋳造において、その鋳造条件は合金成分、組成に
よつて異なる。これは合金成分および組成により
その合金の融点が異なることにより溶融合金
(湯)の流れ易さあるいは冷却速度などが大きく
左右されるからであり、またこれらの条件が異な
ることにより合金の特性およびこれらを使用した
電池の特性が大きく変動することもある。例えば
Pb−Sb系合金において、湯や鋳型の温度を高く
すると、機械的強度が非常に悪くなる。すなわち
“焼け”現象を起こすことがある。また、一般的
には湯あるいは鋳型の温度が高くなると鋳造した
格子中の結晶粒径が大きくなり、腐食が激しくな
る。一方湯の温度や鋳型の温度をあまり下げると
所定の形状の格子が鋳造できなくなつたり、また
合金成分がPbとの間であるいは合金成分同志の
間で金属間化合物を作るような場合、その金属間
化合物により湯流れなどの鋳造性が左右される場
合がある。すなわちそれぞれの合金において、鋳
造条件にはそれぞれ個有の良好な範囲がある。 最近Pb―Sn―As系合金が提案された。この合
金はこれまで最も多く使用されているPb―Sb系
合金およびPb―Ca合金のそれぞれの欠点を改善
した総合的に優れた合金である。すなわち、水素
過電圧の低いSbを含まないため、自己放電が少
なくまた充電時の電解液の減少も少なく、また
Caを含まないため、あるいはSnを含有している
ため過放電に強いという特長がある。PbにSnあ
るいはAsを単独で添加した場合の融点は既に測
定されているが、PbにSnおよびAsを添加した三
元合金の融点はまだ明らかでなく、さらにPbに
SnあるいはAsを単独で添加した場合には機械的
強度は大きく向上しないが、SnとAsとを添加す
ると機械的強度が向上する。これはSnとAsが化
合して金属間化合物を生成することによるものと
考えられている。このような合金において鉛蓄電
池用格子を鋳造する最適な条件はまだ明らかにな
つていない。 本発明はPb―Sn―As合金を使用して鉛蓄電池
用格子を有効的に製造する方法に関するもので、
湯流れ性、耐食性、焼け現象および機械的性質な
どの観点から格子として最も良好な条件を規定し
たものである。鋳造性に影響を与える因子として
考えられるのは、溶融合金の温度と鋳型の温度お
よび合金組成であり、これらを検討して最も良好
な条件を見い出した。以下一実施例に従つて本発
明を説明する。 使用する鉛合金は予備検討の結果からSn0.3〜
3.0重量%(以下単に%という)As0.1〜0.3%残
部がPbよりなる合金を使用した。すなわちSnが
0.3%よりも少量では、これらの合金を鉛蓄電池
用格子に使用した場合は過放電特性が悪く、逆に
3.1%以上では充放電サイクル中に短絡を起こし
やすい。一方、Asについては0.09%以下では充
分な機械的強度がなく、0.31%以上では有毒ガス
であるアルシンの発生が多くなるために上記範囲
の合金を使用した。また当然の事ながら、本発明
の条件で製造した電池の特性についても測定し
た。 合金組成については代表例についてのみ示す。
純Pbを所定の温度に加熱して溶融させる。溶融
させる手段は電力でもガスその他のいずれでもよ
い。次に、この溶融純Pb中に所定の添加濃度に
なるようにSnおよびAsを添加する。Snの添加は
金属状態のSnで、Asの添加は予め高濃度のAsを
含有したPb合金を希釈して行つた。次にこの湯
を通常の形状を有した鋳型に流し込んで鋳造し
た。また鋳型から離型後の操作は次のようにし
た。
The present invention relates to a method for manufacturing a grid for lead-acid batteries, and when manufacturing the grid by a casting method, the characteristics of the alloy and the battery characteristics when the resulting grid is used in a battery are evaluated using a predetermined alloy component and composition. The purpose is to specify casting conditions that will maximize performance. In casting grids for lead-acid batteries (hereinafter simply referred to as grids), the casting conditions vary depending on the alloy components and composition. This is because the melting point of the alloy differs depending on the alloy components and composition, which greatly affects the ease of flow of the molten alloy (molten metal) or the cooling rate.Differences in these conditions also affect the properties of the alloy and their The characteristics of batteries using these materials may vary significantly. for example
In Pb-Sb alloys, when the temperature of the hot water or mold is raised, the mechanical strength becomes extremely poor. In other words, a "burning" phenomenon may occur. Additionally, in general, as the temperature of the hot water or the mold increases, the crystal grain size in the cast lattice increases, leading to severe corrosion. On the other hand, if the temperature of the hot water or the mold is lowered too much, it may become impossible to cast a lattice of the specified shape, or if the alloy components form intermetallic compounds with Pb or between alloy components. Intermetallic compounds may affect castability such as melt flow. That is, each alloy has its own favorable range of casting conditions. Recently, Pb-Sn-As alloys have been proposed. This alloy is a comprehensively superior alloy that improves the shortcomings of the Pb-Sb alloy and Pb-Ca alloy, which have been the most widely used to date. In other words, since it does not contain Sb, which has a low hydrogen overvoltage, there is little self-discharge and less loss of electrolyte during charging.
Because it does not contain Ca or contains Sn, it has the advantage of being resistant to overdischarge. The melting point when Sn or As is added alone to Pb has already been measured, but the melting point of a ternary alloy in which Sn and As are added to Pb is not yet clear.
When Sn or As is added alone, the mechanical strength does not improve significantly, but when Sn and As are added, the mechanical strength improves. This is thought to be due to the combination of Sn and As to form an intermetallic compound. Optimal conditions for casting grids for lead-acid batteries in such alloys have not yet been determined. The present invention relates to a method for effectively manufacturing a lead-acid battery grid using a Pb-Sn-As alloy.
This specifies the best conditions for a grid from the viewpoints of flowability, corrosion resistance, burning phenomenon, mechanical properties, etc. Factors that can be considered to influence castability are the temperature of the molten alloy, the temperature of the mold, and the alloy composition, and the most favorable conditions were found by examining these factors. The present invention will be explained below based on one example. The lead alloy to be used is Sn0.3~ based on the results of preliminary study.
An alloy consisting of 3.0% by weight (hereinafter simply referred to as %) As, 0.1 to 0.3% and the balance Pb was used. In other words, Sn
At smaller amounts than 0.3%, these alloys have poor overdischarge characteristics when used in lead-acid battery grids;
Above 3.1%, short circuits are likely to occur during charge/discharge cycles. On the other hand, with regard to As, if it is less than 0.09%, it does not have sufficient mechanical strength, and if it is more than 0.31%, arsine, which is a toxic gas, will be generated in large quantities, so an alloy within the above range was used. Naturally, the characteristics of the battery manufactured under the conditions of the present invention were also measured. Regarding the alloy composition, only representative examples are shown.
Pure Pb is heated to a predetermined temperature and melted. The means for melting may be electric power, gas, or other means. Next, Sn and As are added to this molten pure Pb to a predetermined concentration. Sn was added using Sn in a metallic state, and As was added by diluting a Pb alloy containing a high concentration of As in advance. This hot water was then poured into a mold with a conventional shape and cast. The operations after releasing from the mold were as follows.

【表】 な評価を行なつた。 (1) 湯流れ、正常な形状の格子に対して欠損して
いる格子の骨の本数で評価した。 (2) 焼け、 機械的強度が極端に悪くなつたかど
うかで評価した。 (3) 機械的性質、機械的性質の1つである抗折力
を抗折力試験器で測定した。 (4) 耐食性、 対極として純Pb板、電解液とし
て比重128のH2SO4を使用し、定電流で一定電
気量酸化した後、この酸化物を除去して重量減
を測定した。 測定結果の1例を第1表および第2表に示す。
[Table] We conducted an evaluation. (1) Water flow was evaluated based on the number of missing bones in the lattice compared to the normal shape of the lattice. (2) Burning: Evaluation was made based on whether the mechanical strength deteriorated significantly. (3) Mechanical properties, transverse rupture strength, which is one of the mechanical properties, was measured using a transverse rupture strength tester. (4) Corrosion resistance A pure Pb plate was used as a counter electrode, and H 2 SO 4 with a specific gravity of 128 was used as an electrolyte. After oxidation was carried out at a constant current with a constant amount of electricity, the oxide was removed and the weight loss was measured. Examples of measurement results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】【table】

【表】 す。
第1表において抗折力と酸化減量の値は、鋳造
後水冷、熱処理した試料の結果について示す。第
1表から、Sn0.3〜3.0%、As0.1〜0.3%残部Pbよ
りなる合金において湯流れ性は、溶湯温度400℃
以上、鋳型温度120℃以上が良好であり、焼け現
象は逆に高温になるほど生じやすく、溶湯温度
600℃以下、鋳型温度210℃以下で生じ難くなる。
抗折力は溶湯温度、鋳型温度が高いほど大きくな
り、酸化減量は逆に溶湯、鋳型温度とも低い方が
良好である。以上を総合的に評価すると、溶湯の
温度は400〜600℃、鋳型の温度は120〜210℃が良
好であるが、これらの範囲において抗折力は溶
湯、鋳型の温度によつて大きな差がなく、酸化減
量については、温度による差が比較的大きい。す
なわち溶湯、鋳型温度共に低い方が良好であるの
で上記範囲内で、溶湯は400〜500℃、鋳型は120
〜180℃がさらに好ましい。 次にこれらの製造法で製造した格子を実際の電
池に使用した場合の特性の1例を示す。以下代表
例についてのみ示す。純Pbを600℃に加熱し、こ
れにSn1.0%、As0.3%添加し、これらを210℃、
180℃、120℃の各温度に保つた鋳型で通常の形状
を有した格子を鋳造した。また別に400℃に加熱
した純PbにSn1.0%、As0.3%を添加し、これら
を210℃、180℃、120℃にそれぞれ加熱して、鋳
型で同様に格子を鋳造した。これら格子の機械的
強度を向上させるために120℃で20時間加熱した
後室温大気中で冷却し、これらの格子に通常の方
法でペースト状活物質を練塗し、化成して極板と
した。なお正極板の厚さは2.5mm、負極板の厚み
は1.7mmとし、電解液には比重1.28のH2SO4を使
用し、10時間率放電で約2.4Ahの電池を試作し、
次のような特性を評価した。 (イ) 自己放電率 完全充電後、40℃の雰囲気中に放置して1ケ
月および3ケ月後の容量を確認し、自己放電率
を測定した。 (ロ) 過放電サイクル寿命 240mAの定電流で16時間充電し、1セル当
り5Ωの抵抗で8時間放電する充放電サイクル
を繰り返えして、放電時間が初期の1/2になる
までのサイクル数を測定した。この場合の放電
持続時間とは1セル当り1.8Vになるまでの時
間を意味し、8時間放電末期の電池電圧は、1
セル当り約0.1〜0.6Vになつた。 (ハ) 過放電放置後の容量回復性 完全充電後50℃で1セル当り50Ωで開路にし
て1ケ月間放置した後、1セル当り2.5Vの定
電圧で24時間充電し、次に480mAの電流で放
電し容量の回復性を調べた。 (ニ) 過充電―過放電サイクル寿命 240mAで1週間連続充電し、その後1セル
当り5Ωの抵抗で8時間放電するサイクルを繰
り返えし、放電時の電池電圧が1セル当り
1.8Vまでの放電持続時間が初期の1/2になるま
でのサイクル数を求めた。 これらの結果を第3表に示す。
【represent.
In Table 1, values of transverse rupture strength and oxidation loss are shown for samples that were water-cooled and heat treated after casting. From Table 1, the flowability of an alloy consisting of 0.3 to 3.0% Sn, 0.1 to 0.3% As, and the balance Pb is as follows:
As mentioned above, a mold temperature of 120℃ or higher is good; conversely, the higher the temperature, the more likely the burning phenomenon is to occur, and the temperature of the molten metal is
It is less likely to occur at temperatures below 600℃ and mold temperatures below 210℃.
The transverse rupture strength increases as the molten metal temperature and mold temperature are higher, and oxidation loss is better as the molten metal and mold temperature are lower. Comprehensively evaluating the above, a temperature of 400 to 600℃ for the molten metal and a temperature of 120 to 210℃ for the mold is good, but within these ranges, the transverse rupture strength varies greatly depending on the temperature of the molten metal and the mold. However, there is a relatively large difference in oxidation loss depending on temperature. In other words, the lower the temperature of both the molten metal and the mold, the better, so within the above ranges, the temperature of the molten metal is 400 to 500℃, and the temperature of the mold is 120℃.
-180°C is more preferred. Next, an example of the characteristics when a grid manufactured by these manufacturing methods is used in an actual battery will be shown. Only representative examples are shown below. Pure Pb was heated to 600℃, 1.0% Sn and 0.3% As were added, and these were heated to 210℃.
Grids with normal shapes were cast in molds kept at temperatures of 180°C and 120°C. Separately, 1.0% Sn and 0.3% As were added to pure Pb heated to 400°C, and these were heated to 210°C, 180°C, and 120°C, respectively, and a lattice was similarly cast in a mold. In order to improve the mechanical strength of these gratings, they were heated at 120°C for 20 hours and then cooled in the air at room temperature. Paste-like active materials were coated on these gratings using the usual method and formed into electrode plates. . The thickness of the positive electrode plate was 2.5 mm, the thickness of the negative electrode plate was 1.7 mm, and H 2 SO 4 with a specific gravity of 1.28 was used as the electrolyte. A battery with a capacity of approximately 2.4 Ah at a 10-hour rate discharge was prototyped.
The following characteristics were evaluated. (a) Self-discharge rate After being fully charged, the battery was left in an atmosphere at 40°C, and the capacity was checked after one month and three months, and the self-discharge rate was measured. (b) Over-discharge cycle life: Repeat the charge-discharge cycle of charging at a constant current of 240 mA for 16 hours and discharging for 8 hours with a resistance of 5 Ω per cell, until the discharge time becomes 1/2 of the initial value. The number of cycles was measured. The discharge duration in this case means the time it takes for each cell to reach 1.8V, and the battery voltage at the end of 8 hours of discharge is 1.8V per cell.
It became about 0.1-0.6V per cell. (c) Capacity recovery after over-discharging After being fully charged and left open at 50 Ω per cell for 1 month, charged at a constant voltage of 2.5 V per cell for 24 hours, then at 480 mA The capacity recovery was examined by discharging with a current. (d) Overcharge-overdischarge cycle life: Repeat the cycle of continuously charging at 240mA for one week, then discharging for 8 hours with a resistance of 5Ω per cell, until the battery voltage at the time of discharge is
The number of cycles until the discharge duration to 1.8V became 1/2 of the initial value was determined. These results are shown in Table 3.

【表】 第3表から明らかな如く、Pb―Sn―As合金を
溶湯温度400〜600℃、鋳型温度120〜210℃の範囲
で鋳造した格子を鉛蓄電池に使用し、従来のPb
―Ca合金あるいはPb―Sb―As合金を使用した電
池に比較すると過放電を伴う特性についてはPb
―Caよりも、また自己放電についてはPb―Sb―
Asよりもそれぞれ優れている。すなわち、Pb―
Ca合金、あるいはPb―Sb―As合金のそれぞれの
欠点が改善され、総合的に非常に好ましいもので
あることがわかる。 以上のごとく、Pb―Sn―As合金において、
Sn0.3〜3.0%、As0.1〜0.3%を含有する鉛合金を
鉛蓄電池用格子に鋳造する際、溶湯温度を400〜
600℃、鋳型温度を120〜210℃とすることによ
り、湯流れ性、焼け現象、機械的性質、耐食性な
どの点において最も有効である。
[Table] As is clear from Table 3, grids made of Pb-Sn-As alloy cast at a molten metal temperature of 400 to 600℃ and a mold temperature of 120 to 210℃ are used in lead-acid batteries, and conventional Pb
- Compared to batteries using Ca alloy or Pb-Sb-As alloy, Pb
―More than Ca, and for self-discharge, Pb―Sb―
Each is better than As. That is, Pb-
It can be seen that the drawbacks of the Ca alloy and the Pb-Sb-As alloy have been improved and are very preferable overall. As mentioned above, in Pb-Sn-As alloy,
When casting a lead alloy containing 0.3 to 3.0% Sn and 0.1 to 0.3% As into grids for lead-acid batteries, the molten metal temperature is
Setting the mold temperature to 600°C and 120 to 210°C is most effective in terms of flowability, burning phenomenon, mechanical properties, corrosion resistance, etc.

Claims (1)

【特許請求の範囲】 1 Snを0.3〜3.0重量%、Asを0.1〜0.3重量%含
み残部がPbよりなるPb−Sn−As合金を400〜600
℃の温度範囲で溶融し、これを120〜210℃の温度
に保つた所定形状の鋳型に注入して格子を鋳造す
ることを特徴とした鉛蓄電池用格子の製造法。 2 前記格子は、鋳造後直ちに水冷される特許請
求の範囲第1項記載の鉛蓄電池用格子の製造法。 3 前記格子は、鋳造後直ちに水冷し、次いで熱
処理される特許請求の範囲第1項記載の鉛蓄電池
用格子の製造法。
[Claims] 1. A Pb-Sn-As alloy containing 0.3 to 3.0% by weight of Sn and 0.1 to 0.3% by weight of As, the balance being Pb.
1. A method for producing a grid for lead-acid batteries, characterized by casting the grid by melting it at a temperature range of 120 to 210 °C and pouring it into a mold of a predetermined shape kept at a temperature of 120 to 210 °C. 2. The method for manufacturing a lead-acid battery grid according to claim 1, wherein the grid is water-cooled immediately after casting. 3. The method for manufacturing a lead-acid battery grid according to claim 1, wherein the grid is water-cooled immediately after casting and then heat-treated.
JP10631179A 1979-08-20 1979-08-20 Manufacture of grid for lead storage battery Granted JPS5630071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10631179A JPS5630071A (en) 1979-08-20 1979-08-20 Manufacture of grid for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10631179A JPS5630071A (en) 1979-08-20 1979-08-20 Manufacture of grid for lead storage battery

Publications (2)

Publication Number Publication Date
JPS5630071A JPS5630071A (en) 1981-03-26
JPS6213102B2 true JPS6213102B2 (en) 1987-03-24

Family

ID=14430437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10631179A Granted JPS5630071A (en) 1979-08-20 1979-08-20 Manufacture of grid for lead storage battery

Country Status (1)

Country Link
JP (1) JPS5630071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252503U (en) * 1988-10-11 1990-04-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435867A (en) * 1987-07-31 1989-02-06 Shin Kobe Electric Machinery Lead storage battery
KR20010045884A (en) * 1999-11-09 2001-06-05 조충환 Gravity Casting Method of Spine Grids for Lead Storage Battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522828A (en) * 1975-06-24 1977-01-10 Yuasa Battery Co Ltd Method of manufacture of grids for lead storage battery
JPS52150723A (en) * 1976-06-11 1977-12-14 Furukawa Battery Co Ltd Lead based alloy for storage batteries
JPS5487827A (en) * 1977-12-23 1979-07-12 Matsushita Electric Ind Co Ltd Grid for lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522828A (en) * 1975-06-24 1977-01-10 Yuasa Battery Co Ltd Method of manufacture of grids for lead storage battery
JPS52150723A (en) * 1976-06-11 1977-12-14 Furukawa Battery Co Ltd Lead based alloy for storage batteries
JPS5487827A (en) * 1977-12-23 1979-07-12 Matsushita Electric Ind Co Ltd Grid for lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252503U (en) * 1988-10-11 1990-04-16

Also Published As

Publication number Publication date
JPS5630071A (en) 1981-03-26

Similar Documents

Publication Publication Date Title
JP3555877B2 (en) Alloy for battery grid
US20210040583A1 (en) Method for preparing grid alloy of lead battery
Zhong et al. Evaluation of lead—calcium—tin—aluminium grid alloys for valve-regulated lead/acid batteries
CN112952211B (en) Liquid metal battery and preparation method thereof
US4207097A (en) Lead alloy for lead-acid batteries and process for producing the alloy
US4166155A (en) Maintenance-free battery
JP2000077076A (en) Lead base alloy for storage battery
US2694628A (en) Grid metal alloy
US2678341A (en) Storage battery and grid therefor
JPS6213102B2 (en)
CA1094359A (en) Low antimonial lead alloy for making grids for use in maintenance free batteries
JP2000315519A (en) Lead acid storage battery
US3144356A (en) Battery grid alloy
CA1041164A (en) Maintenance-free battery and method for reducing the current draw of such batteries
CN113579210B (en) Graphene-containing positive plate grid alloy, and preparation method and application thereof
JP3094423B2 (en) Lead storage battery
JPS6043633B2 (en) Grid for lead acid battery
JPH0636763A (en) Lithium alloy negative electrode for secondary battery
JPS6325061B2 (en)
CA1041166A (en) Maintenance-free battery with grids of lead-based ternary alloys
JPS6050034B2 (en) Lead alloy for lead-acid batteries
JPS5832468B2 (en) Grid for lead acid batteries
JPS58198860A (en) Lead storage battery
JPS5948945B2 (en) Alloy for lead-acid battery grid
JPS6191874A (en) Collection body for lead storage battery