JPS6050034B2 - Lead alloy for lead-acid batteries - Google Patents
Lead alloy for lead-acid batteriesInfo
- Publication number
- JPS6050034B2 JPS6050034B2 JP55040970A JP4097080A JPS6050034B2 JP S6050034 B2 JPS6050034 B2 JP S6050034B2 JP 55040970 A JP55040970 A JP 55040970A JP 4097080 A JP4097080 A JP 4097080A JP S6050034 B2 JPS6050034 B2 JP S6050034B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- lead
- discharge
- corrosion resistance
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/68—Selection of materials for use in lead-acid accumulators
- H01M4/685—Lead alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Description
【発明の詳細な説明】
本発明は鉛蓄電池用鉛合金に関するもので、鉛(Pb
)一錫(Sn)−ヒ素(As)合金に第3合金元素とし
て硫黄(S)を添加することにより、Pb−Sn−As
合金における耐食性の向上を図ることを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lead alloy for lead-acid batteries.
) By adding sulfur (S) as a third alloying element to the tin (Sn)-arsenic (As) alloy, Pb-Sn-As
The purpose is to improve the corrosion resistance of alloys.
従来から主に鉛蓄電池に使用されている鉛合金はPb
−Sb系で、特にPb−Sb−As合金が最も多く使用
されている。The lead alloy traditionally used mainly in lead-acid batteries is Pb.
-Sb-based alloys, in particular Pb-Sb-As alloys, are most commonly used.
しかしPb−Sb系合金はSbの水素過電圧が小さいた
めに自己放電が大きく、さらに充電時の水電解電圧が低
いために電解液中の水の減少が大きく、保守が複雑であ
る。これを改善するためにPb−Ca系あるいはPb−
Br系合金が開発されて実用化されているが、これらの
合金を使用した電池は、放電終止電圧が低くなるまで放
電した場合、たとえば5時間率程度の放電電流で1セル
当たりIV以下まで放電するような条件ではサイクル寿
命が極端に短くなつたり、充電ができにくくなつたりす
る。そのために実用的には、放電終止電圧を回路的に制
御するような装置を使用 する必要があり、この装置や
充電器の価格を含めた電源としてのコストが高くなる欠
点があつた。 これらの観点から最近Pb−Sn−As
合金が提案された。この合金はSbのような水素過電圧
の小さい金属を含有していないため、自己放電や、電解
液中の水分の減少はPb−Ca合金並で、またSnを含
有しているため過放電性の劣化も非常に小さい長所を有
している。 しかし、この合金は従来から耐食性鉛合金
の代表とされているPb−Ag合金に比較すると耐食性
は劣る。However, Pb-Sb alloys have a large self-discharge due to the low hydrogen overvoltage of Sb, and furthermore, the water electrolysis voltage during charging is low, resulting in a large decrease in water in the electrolytic solution, making maintenance complicated. To improve this, Pb-Ca system or Pb-
Br-based alloys have been developed and put into practical use, but when batteries using these alloys are discharged until the end-of-discharge voltage is low, for example, at a discharge current of about 5 hours, one cell can be discharged to below IV. Under such conditions, the cycle life will be extremely short and charging will become difficult. For this purpose, in practical terms, it is necessary to use a device that controls the discharge end voltage using a circuit, which has the disadvantage of increasing the cost of the power source, including the price of this device and the charger. From these points of view, recently Pb-Sn-As
Alloys were proposed. Since this alloy does not contain metals with low hydrogen overvoltage such as Sb, self-discharge and water loss in the electrolyte are comparable to Pb-Ca alloys, and since it contains Sn, it is less likely to overdischarge. It also has the advantage of very little deterioration. However, this alloy has inferior corrosion resistance compared to Pb-Ag alloy, which has been considered to be a typical corrosion-resistant lead alloy.
耐食性が劣る鉛合金を鉛蓄電池の格子やリード部に使用
した場合、特に正極用に使用した場合に電池寿命が短く
なる。これは合金の腐食による表面積の減少、断線など
により格子あるいはリードとしての役割である集電効果
が劣化することと、格子においては機械的強度が酸化物
になつたことにより弱くなり、活物質の保持ができなく
なることによる。すなわち鉛蓄電池用鉛合金として耐食
性は良好であればあるほど好ましい。 本発明者らは、
Pb−Sn−As合金の上記の特性が改善できれば、さ
らに優秀な鉛合金になると考え、耐食性を改善するため
に第3の添加元素について検討した。添加する元素は電
池性能に害を与えず、価格が安く、人体に特に有害でな
いことなどが必須条件であり、これらの観点から添加量
については比較的少ない領域について検討した結果、S
が効果があることがわかつた。If a lead alloy with poor corrosion resistance is used for the grid or lead portion of a lead-acid battery, the battery life will be shortened, especially when used for the positive electrode. This is because the current collecting effect, which plays a role as a lattice or lead, deteriorates due to a decrease in surface area due to corrosion of the alloy, wire breakage, etc., and the mechanical strength of the lattice is weakened by the oxide, which causes the active material to become weaker. Due to the inability to hold it. That is, as a lead alloy for lead-acid batteries, the better the corrosion resistance, the better. The inventors
We thought that if the above-mentioned properties of the Pb-Sn-As alloy could be improved, it would become an even more excellent lead alloy, and we investigated a third additive element to improve the corrosion resistance. It is essential that the elements to be added do not harm battery performance, be cheap, and be not particularly harmful to the human body.From these points of view, as a result of considering relatively small amounts of added elements, we found that S
was found to be effective.
以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.
ベースにするPb−Sn−As合金のSnおよびAsと
Sの相互作用が考えられるため、SnおよびAsの含有
量もいくつかについて測定した。まず、純Pbを加熱溶
融した。Since the interaction between Sn and As of the base Pb-Sn-As alloy and S is considered, the contents of Sn and As were also measured for some samples. First, pure Pb was heated and melted.
加熱源はガス、石油、電熱いずれでも良いが、耐食性に
は溶融物の温度あるいは鋳型の温度が影響を及ぼすので
、温度制御は可能な限り精度の良いものが好ましい。溶
融温度を500゜Cとし、第1表に示すようにSn,A
sおよびSを添加し、良く攪拌して約150℃に加熱し
た鋳型で、大きさ20×100TnIIL)厚さ2Tf
UrLの板を鋳造して冷却した。なお、Asの添加は、
予め高濃度のMを含有したPb−As合金を希釈して使
用した。The heating source may be gas, petroleum, or electric heat, but since corrosion resistance is affected by the temperature of the molten material or the temperature of the mold, it is preferable to control the temperature as accurately as possible. The melting temperature was 500°C, and Sn,A
Add s and S, stir well and heat to about 150°C in a mold, size 20 x 100TnIIL) thickness 2Tf
A plate of UrL was cast and cooled. Note that the addition of As is
A Pb-As alloy containing a high concentration of M in advance was diluted and used.
Sについては直接単体で添加してもよいが、含有量の制
御が困難なため、Mと同様に予め高濃度のSを含有した
Pb−S合金を作製し、これを希釈して使用した。Sに
ついてはPb,SnあるいはAsとSと化合物で添加し
てもよい。これらの鋳造試片について、耐食性を比較す
るため以下のようにして酸化減量を測定した。S may be added directly as a single substance, but since it is difficult to control the content, similarly to M, a Pb-S alloy containing a high concentration of S was prepared in advance, and this was diluted before use. S may be added as a compound of Pb, Sn, or As and S. For these cast specimens, oxidation loss was measured as follows in order to compare the corrosion resistance.
すなわち、対極に純Pb板、電解液に比量1.28のル
SO,を使用し、10wLA/dの定電流て陽極酸化し
、全通電々気量が10Ahになつた時点で試料を取り出
し、アルカリ、マニトール浴中て酸化物を除去し、金属
状態での重量減を測定した。この結果を第1表に示す。
なお第1表には、Sを単体で添加した母合金を希釈して
使用したPb−Sn−As−S合金の結果について示し
たが、化合物で添加した同組成のPb一Sn一厄−S合
金の耐食性の結果も第1表とほぼ同様であつた。That is, using a pure Pb plate as the counter electrode and SO with a ratio of 1.28 as the electrolyte, anodization was carried out at a constant current of 10 wLA/d, and the sample was taken out when the total current carrying capacity reached 10 Ah. The oxides were removed in an alkali or mannitol bath, and the weight loss in the metallic state was measured. The results are shown in Table 1.
Table 1 shows the results for a Pb-Sn-As-S alloy using a diluted master alloy to which S is added alone, but Pb-Sn-As-S with the same composition added as a compound The results of the corrosion resistance of the alloys were also almost the same as in Table 1.
また第1表ではMとSnの代表例についてのみ示したが
、Snの含有量が増加すると酸化減量が少なく、すなわ
ち耐食性が向上するが、Mは含有量が増加すると耐食性
は減少する。またSについては、Pb−Sn−M合金に
Sを0.001〜0.05重量%添加すると無添加品に
比較して耐食性が向上することがわかる。このSの効果
はPb−Sn−As合金のSnあるいはAsの含有量に
特に関係がなく、SO.OOl〜0.05重量%の範囲
で効果がある。特にSが0.1重量%になると耐食性は
逆に低下する傾向にある。第1表には示していないが、
これらの合金の機械的強度の1つてある抗折力について
測定した結果ては、Sを0.001〜0.05重量%添
加したPb−Sn一As合金においては特に変化がなか
つた。Table 1 shows only typical examples of M and Sn, but as the Sn content increases, the oxidation loss decreases, that is, the corrosion resistance improves, but as the M content increases, the corrosion resistance decreases. Regarding S, it can be seen that when 0.001 to 0.05% by weight of S is added to the Pb-Sn-M alloy, the corrosion resistance is improved compared to a product without the addition. This effect of S is not particularly related to the content of Sn or As in the Pb-Sn-As alloy; It is effective in the range of OOl to 0.05% by weight. In particular, when the S content is 0.1% by weight, the corrosion resistance tends to decrease. Although not shown in Table 1,
As a result of measuring the transverse rupture strength, which is one of the mechanical strengths of these alloys, there was no particular change in the Pb-Sn-As alloy to which 0.001 to 0.05% by weight of S was added.
すなわち、機械的強度の点からはSを添加する条件下;
においてSnO.l重量%、ASO.l重量%以上の合
金が好ましい。ただしAsについては、有毒ガスである
アルシンの発生の点から0.踵量%以下が好ましい。S
nの上限については合金試片から判定することは難しい
。次にこれらの合金からなる格子を実際の電池に適用し
た場合の性能の比較結果を説明する。That is, from the point of view of mechanical strength, under the conditions of adding S;
In SnO. % by weight, ASO. % by weight or more of the alloy is preferred. However, regarding As, 0. Heel weight % or less is preferable. S
It is difficult to determine the upper limit of n from alloy specimens. Next, we will explain the performance comparison results when grids made of these alloys are applied to actual batteries.
それぞれの合金組成の原料を約500℃に加熱溶融し、
約150℃に加熱した鋳型で、巾25Twt、長さ36
TWt1厚さ2.57r$tおよび1.8?の通常の構
造をした格子を鋳造し、水冷した後約120℃で20時
間加熱した後冷却した。この格子に通常の方法で活物質
を練塗し、化成した極板を作製した。なお正極板には2
.5TTUTL厚さ、負極板には1.8TWL厚の格子
を使用した。次にこれらの正極板4枚と負極板5枚およ
びセパレータを用いて極板群を組み立て、電解液として
比重1.28のH2SO4を使用して電池を構成し、こ
れらの電池を240rnAの電流で1?間充電し、48
0mAで放電して初期容量を確認した。The raw materials of each alloy composition are heated and melted at approximately 500°C,
A mold heated to about 150℃, width 25Twt, length 36
TWt1 thickness 2.57r$t and 1.8? A grid with a conventional structure was cast, water-cooled, heated at about 120° C. for 20 hours, and then cooled. An active material was coated on this grid using a conventional method to produce a chemically formed electrode plate. In addition, there are 2 on the positive electrode plate.
.. A grid with a thickness of 5TTUTL and a thickness of 1.8TWL was used for the negative electrode plate. Next, an electrode plate group was assembled using these four positive electrode plates, five negative electrode plates, and a separator, and a battery was constructed using H2SO4 with a specific gravity of 1.28 as the electrolyte, and these batteries were heated at a current of 240 rnA. 1? Charge for 48
The initial capacity was confirmed by discharging at 0 mA.
その結果、初期容量は合金の組成に関係なくほぼ2.4
Ahであつた。これらの電池を使用して次のような試験
を行つた。As a result, the initial capacity is approximately 2.4 regardless of alloy composition.
Ah, it was hot. The following tests were conducted using these batteries.
(1)自己放電特性
完全充電後、40℃の雰囲気中に放置し、1力月および
3力月後の容量を確認して、自己放電率を測定した。(1) Self-discharge characteristics After being fully charged, the battery was left in an atmosphere at 40°C, and the capacity was checked after 1 month and 3 months to measure the self-discharge rate.
(2)過放電サイクル寿命特性
240m.Aの電流で川時間充電し、1セル当たり5Ω
の抵抗で8時間放電するサイクルを繰り返して放電持続
時間が初期の112になるまでのサイクル数を測定した
。(2) Overdischarge cycle life characteristics 240m. Charged for 1 hour with a current of A, 5Ω per cell
A cycle of discharging for 8 hours was repeated with a resistance of 1, and the number of cycles until the discharge duration reached the initial value of 112 was measured.
この場合の放電持続時間は1セル当たり1.8Vになる
までの時間で評価した。なおこの試験において、8時間
放電の末期電圧は1セル当たり約0.1〜0.6Vにな
つた。この試験により過放電特性が判定できる。(3)
過放電放置後の容量回復性完全充電後、50℃で1セル
当たり50Ωの抵抗で5日間連続放電し、その後50℃
で開路にして1力月放置した後、1セル当たり2.5V
の定電圧で2碕間充電し、次に480wLAで放電して
容量の回復率を測定した。The discharge duration in this case was evaluated as the time required for each cell to reach 1.8V. In this test, the final voltage after 8 hours of discharge was approximately 0.1 to 0.6 V per cell. This test allows the overdischarge characteristics to be determined. (3)
Capacity recovery after overdischarging After being fully charged, discharge continuously for 5 days at 50℃ with a resistance of 50Ω per cell, and then discharge at 50℃
After opening the circuit and leaving it for one month, 2.5V per cell.
The battery was charged for two hours at a constant voltage of 480 wLA, and then discharged at 480 wLA to measure the capacity recovery rate.
この試験も過放電特性の評価になる。(4)過充電一過
放電サイクル寿命特性
240T1,Aで1週間連続充電し、1セル当たり5Ω
の抵抗で8時間放電するサイクルを繰り返し、放電電圧
が1セル当たり1.8■までの放電持続時間が初期の1
ノ2になるまでのサイクル数を測定した。This test also evaluates overdischarge characteristics. (4) Overcharge and overdischarge cycle life characteristics Continuously charged for one week at 240T1,A, 5Ω per cell
Repeat the cycle of discharging for 8 hours with a resistance of
The number of cycles until reaching No. 2 was measured.
この試験により使用した合金の耐食性が比較できる。す
なわこの試験における寿命の主原因は正極に使用した格
子の腐食によるためであることによる。これらの結果の
代表例を第2表に示す。This test allows comparison of the corrosion resistance of the alloys used. In other words, the main cause of the lifespan in this test was corrosion of the grid used for the positive electrode. Representative examples of these results are shown in Table 2.
なお比較のためにPb−Sb−As合金、Pb−Ca合
金およびSを添加しないPb−Sn−As合金の代表例
についても示す。これらの結果から、自己放電特性につ
いてはPb−Sb−As合金を使用した電池に比較して
、Pb一Ca合金とPb−Sn−As系合金を使用した
電池は著しく良好であり、Pb−Sn−As合金にSを
添加したことにより自己放電特性は悪化しないこと、過
放電サイクル寿命については、Pb−Sn−M系合金に
おいてSn5J重量%含有品の寿命はやや短いが、それ
以外はPb−Ca合金に比較して著しく改善てきること
、またSを添加したことにより過放電サイクルは劣化し
ないことが明らかである。For comparison, representative examples of a Pb-Sb-As alloy, a Pb-Ca alloy, and a Pb-Sn-As alloy to which S is not added are also shown. These results show that batteries using Pb-Ca alloy and Pb-Sn-As alloy have significantly better self-discharge characteristics than batteries using Pb-Sb-As alloy, and - The addition of S to the As alloy does not deteriorate the self-discharge characteristics, and regarding the overdischarge cycle life, the life of the Pb-Sn-M alloy containing 5J weight % is somewhat short, but other than that, the Pb- It is clear that this is significantly improved compared to the Ca alloy, and that the addition of S does not deteriorate the overdischarge cycle.
Claims (1)
量%、S0.001〜0.05重量%、残部Pbよりな
ることを特徴とする鉛蓄電池用鉛合金。1 A lead alloy for a lead-acid battery, comprising 0.3 to 3.0% by weight of Sn, 0.1 to 0.3% by weight of As, 0.001 to 0.05% by weight of S, and the balance Pb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55040970A JPS6050034B2 (en) | 1980-03-28 | 1980-03-28 | Lead alloy for lead-acid batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55040970A JPS6050034B2 (en) | 1980-03-28 | 1980-03-28 | Lead alloy for lead-acid batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56136465A JPS56136465A (en) | 1981-10-24 |
JPS6050034B2 true JPS6050034B2 (en) | 1985-11-06 |
Family
ID=12595312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55040970A Expired JPS6050034B2 (en) | 1980-03-28 | 1980-03-28 | Lead alloy for lead-acid batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050034B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5320818U (en) * | 1976-07-30 | 1978-02-22 |
-
1980
- 1980-03-28 JP JP55040970A patent/JPS6050034B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56136465A (en) | 1981-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Calábek et al. | Resistance changes and premature capacity loss in lead battery plates | |
Schumacher et al. | Some Physical and Metallurgical Properties of Lead‐Calcium Alloys for Storage Cell Grids and Plates | |
JPS6050034B2 (en) | Lead alloy for lead-acid batteries | |
JPS6051546B2 (en) | Lattice alloy for lead-acid batteries | |
JPS5894770A (en) | Leakage-less closed type lead battery | |
JP2002008644A (en) | Production method of positive electrode plate for lead storage battery | |
JPS6213102B2 (en) | ||
JP2523585B2 (en) | Sealed lead acid battery | |
JPS6048867B2 (en) | lead acid battery | |
JPH0433110B2 (en) | ||
JPS58117658A (en) | Sealed lead-acid battery | |
JPH10294113A (en) | Positive electrode plate for sealed lead-acid battery | |
JPH01189859A (en) | Lead-acid battery | |
JPH02119055A (en) | Lead-acid battery | |
JPH0193058A (en) | Lead-acid battery | |
JP3496241B2 (en) | How to charge lead storage batteries | |
JPS5832468B2 (en) | Grid for lead acid batteries | |
JP3582068B2 (en) | How to charge lead storage batteries | |
JPS6043633B2 (en) | Grid for lead acid battery | |
JPS5948945B2 (en) | Alloy for lead-acid battery grid | |
JPH01117279A (en) | Lead-acid battery | |
JPH01117272A (en) | Lead-acid battery | |
JPS6322428B2 (en) | ||
JPH01281683A (en) | Lead storage battery | |
JPS63254680A (en) | Lead storage battery |