JPS62130706A - Camber control method for plate rolling - Google Patents

Camber control method for plate rolling

Info

Publication number
JPS62130706A
JPS62130706A JP60269113A JP26911385A JPS62130706A JP S62130706 A JPS62130706 A JP S62130706A JP 60269113 A JP60269113 A JP 60269113A JP 26911385 A JP26911385 A JP 26911385A JP S62130706 A JPS62130706 A JP S62130706A
Authority
JP
Japan
Prior art keywords
difference
rolling
plate
wedge
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60269113A
Other languages
Japanese (ja)
Other versions
JPH036843B2 (en
Inventor
Yuji Tanaka
田中 佑児
Kazuo Omori
大森 和郎
Takanori Miyake
三宅 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60269113A priority Critical patent/JPS62130706A/en
Publication of JPS62130706A publication Critical patent/JPS62130706A/en
Publication of JPH036843B2 publication Critical patent/JPH036843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To prevent occurrence of camber by obtaining a difference between a calculated and a measured values of the difference between the right and left plate thicknesses at the (i) path, obtaining an estimated value by correcting a calculated difference between the right and left plate thicknesses at the (i+1) path based on the obtained difference at the (i) path, and adjusting a screw down position based on the difference between the estimated value and the target value. CONSTITUTION:When the stop end of a plate 16 is detected by a device 32 at the (i) path, a wedge calculating device 36 calculates the wedge of the plate 16 based on rolling loads PW and PD detected by load cells 22A and 22B and screw down positions SW and SD detected by detectors 26A and 26B. A right and a left plate thickness are measured by a thickness gage 30 to obtain a measured wedge. And then, a device 40 calculates a wedge corrective value at the (i+1) path based on the measured and the calculated wedge. The target wedge is also calculated. The rolling load and the screw down position are detected at the (i+1) path and the device 40 calculates an estimated wedge value. Then, a difference between a right and a left screw down position is obtained and is inputted into a hydraulic screwdown device 14. The device 14 controls the hydraulic cylinder, changes a roll opening difference of a rolling mill, bring the wedge of the plate 16 to be closer to the target value, and corrects a chamber of the plate 16.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、板圧延におけるキャンバ1111陣方法に係
り、特に、厚板圧延時に該厚板に発生り°るキャンバを
防止し若しくは軽減させるように1.1−延を制役nJ
る除用いるのに好適な、板材を圧延機で複数バス圧延す
るに際し、左右板厚差を制御してキVンバを制御Jる板
圧延にお1ノるキャンバ制御方法の改良に関する。
The present invention relates to a camber 1111 method in plate rolling, and in particular, to prevent or reduce camber generated in a thick plate during rolling.
The present invention relates to an improvement in a camber control method suitable for use in plate rolling, which controls the camber by controlling the difference in thickness between the left and right plates when a plate is rolled in multiple buses using a rolling mill.

【従来の技術】[Conventional technology]

厚板を圧延するに際し、その圧延を行う圧延;幾のワー
クサイド(運転側)とドライブサイド(駆動側)との間
には、しばしばミル剛性率の相違があり、その場合、i
’+fJ記圧延はで板を圧延すると。 該圧延機の両・サイド部分においてその伸び量が異なる
。従って、前記圧延機のワークサイドとドライブサイド
を同一圧下位置にして圧にりると、前記〃仮は、ワーク
サイドとドライブサイド方向で異なった板lとなり、同
時に両サイド方向で伸び率も異なるので、前記J7板に
板の長さ方向の曲り、部もキャンバが発生する。 又、前記厚板を加熱炉で加熱する際に、加熱炉内での幅
方向の加熱が不均一で前記厚板の両サイド方向に温度差
が生じると、該両サイド方向の変形抵抗に差が生ずる。 その結果、11q記厚板を圧延する際に、圧延機両サイ
ドのミル剛性率と圧下位置を等しくしても、前記厚板の
ワーク1ナイドとドライブサイド方向の板〃に差が生じ
、やはり該厚板にキャンバが発生する。 更に、一般に圧延ロールの摩耗Qは、必ずしもロール全
体で均一ではなく、ときにはロールの両サイドの摩耗屯
に差が生じることがある。その結果、圧延機雨曇ナイド
のミル剛性率、圧下位置や、厚板の両サイドの温度が等
しくとも該厚板のワークサイドとド・ライブサイドに板
J′7差が生じ、やはり該厚板にキャンバが発生する。 以上のような原因で厚板に発生するキャンバを防止又は
低減するため、従来の厚板圧延において行われていたキ
ャンバ防止方法について以下に説明する。 即ち、この方法の1つに例えば特公昭59−26367
で開示されたキャンバの防止方法がある。 これは、圧延別近傍に被圧延材のキャンバを測定する装
置を設置し、圧延途中で該キャンバを測定し、測定結果
に基づき前記キャンバを水圧づべく、前記圧延のワーク
サイドとドライブサイドの開麿を予め差をつ
When rolling a thick plate, there is often a difference in mill rigidity between the work side (driving side) and the drive side (driving side), in which case, i
'+fJ Rolling is when a plate is rolled. The amount of elongation is different on both sides of the rolling mill. Therefore, when rolling is carried out with the work side and drive side of the rolling mill at the same rolling position, the plate 1 will be different in the work side and drive side directions, and at the same time, the elongation rate will be different in both side directions. Therefore, the J7 board bends in the length direction of the board, and camber also occurs in the part. Furthermore, when heating the thick plate in a heating furnace, if heating in the width direction in the heating furnace is uneven and a temperature difference occurs between both sides of the thick plate, there will be a difference in deformation resistance between the two sides. occurs. As a result, when rolling the thick plate described in 11q, even if the mill rigidity and rolling position on both sides of the rolling mill are equal, there is a difference between the workpiece 1 side of the thick plate and the plate in the drive side direction. Camber occurs in the thick plate. Further, generally, the wear Q of a mill roll is not necessarily uniform over the entire roll, and sometimes there is a difference in the wear level on both sides of the roll. As a result, even if the mill rigidity of the rolling mill's wet nide, the rolling position, and the temperature on both sides of the thick plate are the same, there will be a difference in plate J'7 between the work side and drive side of the thick plate. camber occurs. In order to prevent or reduce camber that occurs in thick plates due to the above reasons, a camber prevention method that has been used in conventional thick plate rolling will be described below. That is, one of these methods is, for example, Japanese Patent Publication No. 59-26367.
There is a method for preventing camber disclosed in . This involves installing a device to measure the camber of the rolled material near each rolling mill, measuring the camber during rolling, and hydraulically compressing the camber based on the measurement results by opening the work side and drive side of the rolling mill. Maro in advance

【ブて設定
して、次バスの圧延を行うという方法である。 しかしながら、前記のように圧延は近1力でキャンバを
測定すると雰囲気の悪さからその測定精度が悪く、又、
前記キャンバを測定する装置の価格が高く、更に、たと
え設置したとしてもキャンバを測定するために厚板をわ
ざわざ前記装置付近まで運搬しなければならず圧延能率
の低下を招いてしまう。 以上のような問題をm消するため、例えば特公昭60−
3882において、前記のようなキャンバ測定装置を使
わない圧延制御方法が提案されている。この圧延制御方
法においては、次バス予測圧延荷重に実績圧延荷重とそ
のワークサイド、ドライブサイドの差又は比を乗じて、
次バスのワークサイドとドライブ1ノイドの圧延荷重差
を予測し、更にワークサイド、ドライブサイドそれぞれ
め次パス予測圧砥面”11@fil出し、算出された次
パス予洞圧延荷重から両サイドそれぞれの圧下位”iX
*算出して圧下設定し、キャンバを防1ヒづ°る。この
圧延制御方法を用いればキャンバ測定装首を不要とする
ことができる。 【発明が解決しようとする問題点】 ところで、前記特公昭60−3882でJ:?案された
圧延制御方法において、前バスの圧延荷重差又はこれま
での圧延荷車差の経時変化から次バスの圧下位ηを決定
する際に、それらのバスでキャンバのないあるいはウェ
ッジ(ワークサイドとドライブサイド・の板厚差)のな
い厚板が作られていれば、次バスでもキャンバ防止効果
が期待できる。 しかしながら、前記圧延制御方法においては、厚板の実
際のキャンバ又は板厚を見ておらず、従って、もし−巳
キャンバやウェッジが厚板に発生した場合、前記のよう
にして次バスの圧下位置を決めても再度厚板にキャンバ
やウェッジが発生するだけである。 即ち、前記圧延制御方法においては、一旦良好な状態(
厚板にキャンバやウェッジが発生しないV%態)に圧延
シリ御が行われたりと長時間その状態を維持できるが、
逆に、一旦悪い状r$(厚板にキャンバやウェッジが発
生ずる状態)に各バスの圧延制御が入ってしまうと、こ
れを脱出するのが非常に難しくなってしまうという問題
点を右していた。
[This is a method of setting the number of buses and then rolling the next bus. However, as mentioned above, when measuring camber with near 1 force in rolling, the measurement accuracy is poor due to the poor atmosphere.
The cost of the apparatus for measuring camber is high, and furthermore, even if installed, the thick plate must be specially transported to the vicinity of the apparatus in order to measure the camber, resulting in a decrease in rolling efficiency. In order to eliminate the above problems, for example,
No. 3,882 proposes a rolling control method that does not use the camber measuring device as described above. In this rolling control method, the next bus predicted rolling load is multiplied by the difference or ratio between the actual rolling load and its work side and drive side,
Predict the rolling load difference between the work side and drive 1 noid of the next bus, and then calculate the next pass predicted rolling surface "11@fil" for each of the work side and drive side, and use the calculated next pass pre-slot rolling load for both sides. The lower pressure of “iX”
*Calculate and set the reduction to prevent camber. By using this rolling control method, it is possible to eliminate the need for a camber measurement neck. [Problems to be solved by the invention] By the way, in the aforementioned Japanese Patent Publication No. 60-3882, J:? In the proposed rolling control method, when determining the rolling height η of the next bus based on the rolling load difference of the previous bus or the change over time in the past rolling cart difference, it is necessary to If a thick plate is made that does not have a difference in thickness between the drive side and the drive side, it can be expected to have a camber prevention effect on the next bus. However, the rolling control method does not look at the actual camber or thickness of the plate, and therefore, if a camber or wedge occurs in the plate, the rolling position of the next bus is determined as described above. Even if you decide on this, camber or wedge will only occur on the plank again. That is, in the rolling control method, once a good state (
Rolling sill control is performed in the V% state in which no camber or wedge occurs in the thick plate, and this state can be maintained for a long time.
On the other hand, once the rolling control of each bus gets into a bad state (a state where camber or wedge occurs in the thick plate), it becomes very difficult to escape from this situation. was.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点に漏みてなされたものであ
って、板Hの左右板厚差をなくし、あるいは目標通りの
左右板厚差を板材に生じさせて該&Oのキャン、バの発
生を確実に防止することのできる板圧延におけるキA7
ンバ制御方法を提供することを目的とりる。
The present invention has been made to address the above-mentioned conventional problems, and eliminates the difference in thickness between the left and right sides of the plate H, or creates a target difference in thickness between the left and right sides of the plate material, thereby improving the camber and bar of the &O. Ki A7 in plate rolling that can reliably prevent occurrence
The purpose of this study is to provide a method for controlling the server.

【問題点を解決するだめの手段】[Means to solve the problem]

本発明は、板材を圧延(戊で複数バス圧延するに際し、
左右板厚差を制御しキャンバを制御する板圧延における
キVンバ制郊方法において、第1図にその要旨を示すよ
うに、あるiバスにおける前記板材の左右板厚差を実測
し、前記iバスにおける前記圧延機の左右圧下位置及び
左右圧延前mを測定し、測定された左右圧下位置及び左
右圧下位置に基づき、前記板厚差の実測された位置と同
位買における左右板厚差を算出し、実測された左右(反
厚差と算出された左右板厚差との差を求め、求められた
差に基づき、次のi+1パスで11n記iバスと同様に
算出される板材の左右板厚差を補正して左右板厚差の(
「定値を求め、求められた推定値とi+1バスにおける
前記板材の左右板厚差の目標値との差に基づき、前記圧
延機の1+1バスにおける圧下位置を調整することによ
り、前記目的を)¥成したものである。 又、本発明の実71I!態様は、前記i+1バスで前記
iバスと同様に算出される板Hの左右板厚差を、前記実
測された左右板厚差と算出された左右板厚差との差の移
動平均値で補正して前記左右板厚差の11(定値を求め
るようにしたものである。
In the present invention, when rolling a plate material (multiple bus rolling in a machine),
In the control method for plate rolling in which the left and right plate thickness difference is controlled to control the camber, the difference in the left and right plate thickness of the plate material in a certain i-bus was actually measured, and the Measure the left-right rolling position and the left-right rolling front m of the rolling mill in the bus, and calculate the left-right plate thickness difference at the same level as the actual measured position of the plate thickness difference based on the measured left-right rolling position and left-right rolling position. Then, find the difference between the actually measured left and right (reverse thickness difference) and the calculated left and right board thickness difference, and based on the difference, calculate the left and right boards of the board material in the same way as the 11n i bus in the next i+1 pass. Correct the thickness difference and calculate the left and right plate thickness difference (
"By determining a fixed value and adjusting the rolling position in the 1+1 bus of the rolling mill based on the difference between the determined estimated value and the target value of the difference in thickness between the left and right plates of the plate material in the i+1 bus, the above purpose is achieved) In addition, the actual 71I! aspect of the present invention is to calculate the left and right plate thickness difference of the plate H calculated in the same manner as the i+1 bus with the actually measured left and right plate thickness difference. 11 (constant value) of the left and right plate thickness difference is calculated by correcting the moving average value of the difference between the left and right plate thicknesses.

【作用] 以下、本発明の原理について詳細に説明する。 圧延機で板材を複数バス圧延するに際し、第iバス目に
測定される圧延様のワークナイド、ドライブサイドそれ
ぞれの圧延荷車をPwi、Poi、圧下位置をSw+、
Sotとする。又このどきの出側板厚をh w i 、
h o tとすると、公知のゲージメータ式により次式
(1)(2)の関係が成立する。 hwi=swi+Pwi/Mw   −・−(1)h 
o i =So i +Po i/Mo   −(2)
但し、M W % M oはそれぞれ圧延機のワークサ
イド、ドライブサイドのミル剛性率である。 従って、iバスにおける圧延機出側の板材の左右板厚差
の算出値(計qウェッジ>11c+riは、次式(3)
で算出することができる。なお、ロール間度差5dri
は次式(4)で表せる。 hc+ri=bwi  Iloi =(Swi  5oi) + (Pw i/Mw−Po i/Mo)=Sc+ f
 i + (Pw i/Mw−Po i/Mo)   
 −(3) Sdri=Swi  Soi     −(4)一方、
前記iバスにおける厚ざ計で実測した板材の板厚(第i
バス出側板厚)をワークサイド、ハ     ハ トライブサイドそれぞれh W I 、” Oiと記述
すると、実測した板厚に暴づく出側板厚の両すイドハ の差(実測ウェッジ)hdriは、次式(5)で表せる
。 八 そして、前記実測ウェッジhdrtと計算つエツジhd
tiとのIi;i差Δhdr+は、次式(6)%式% 又、この偏差Δhaftの経時変化を考嶋した移動平均
値Δhdrtは、次式(7)で求めることができる。 Δ1ldfi◆18α0Δl1dri+(1−α)×Δ
h d r bl    ・・・(7)但し、αは移動
平均値Δ11dr iを求めるための重み係数である。 先の(6)式から実際に測定した実測ウェッジ△ hdriは、次式(8)で表すことができる。そこで、
(7)式で求めた移動平均値Δh d f i*Iを用
いて、i+1バスにおけるウェッジ推定IITThdf
 i++を次式(9)のように記述することができる。 <ari−hcrti+Δhdti ・・・(8)=S
 dr t+++ (Pwl++ / M w −P o +−+ / M o )+Δh
dfμm     ・・・(9)この(9)式で求めた
ウェッジ推定値h d f illとi+1バスのウェ
ッジ目a ll’T h d f =1 ’とから、例
えば次式(10)により両者の偏差値Δhdfi11 
’ を求め、この偏差値へhdt+++’ を用いてi
+1バスにおける圧延別の圧下位置を調整して板材の左
右板厚差のailJ御を行う。 Δh dfi+1’ −h dfiφl−11dfi畢
18・・・(10) 前記圧延機のi+1バスの圧延においては、例えば移動
平均値Δhd f illと前記ミル剛性率Mw、MC
)が既知であり、又、前記ロール開度差5drklと前
記ワークサイド、ドライブサイドそれぞれの圧延荷m 
P w ill、P o H,+は、それぞれ例えば圧
延機に備えられたセンサから検出することができる。従
って、第2図に示づ゛ような、前記(1)〜(10)式
と本発明法を反映させた制御系を構成1れば、圧延機1
0のi+1バスにおける圧下位置を修正して板材の全長
に亘ってその左右板厚差(ウェッジ)をウェッジ目標l
ih dt ill ’にすることができる。 即も、第2図において、i+1バスにおける圧延uM 
10の左右の圧延荷m P W ill、P o il
lと、ロール開度差S dt illと、移動平均値Δ
l+ 61国に基づき、加停5点P1で(9)式の演q
を行い、ウェッジ推定値h d f illを求める。 次いで、前記ウェッジ目標値11dfi++’と該ウェ
ッジ推定1iffh、+f illに基づき、加算点P
2で(10)式の演算を行い、前記偏差値Δ’1dfi
*+’を求める。そして、コントローラ12は、前記偏
差値Δhdf−′に基づき、例えば比例、積分、微分(
PID)演算して圧延機10の左右圧下位置の目標変化
QΔSd f ill ”を油圧圧下制御装置14に出
力する。すると、油圧圧下制御装置14は、圧延v41
0のロール開度差S d t illと前記目標変化量
ΔS d f kl×に基づき該圧延+ff110の圧
下を制御して板1tA 1ところで、例えば発明者らが
既に特開昭6〇−24211で提案しているキャンバメ
ータを用いたキャンバa11tIlに上記したような本
発明法を用いて制御を行うと、板材のキャンバの制御に
対して絶大な効果を発揮することができる。又、キャン
バメータがなくとも常に目標ウェッジhdf”を0とし
て圧延すれば、キャンバのない板材を本発明法により作
り出すことができる。 【実施例】 以下、本発明に係る板圧延におけるキャンバ制御方法が
採用されたキャンバ制御装置の実施例について詳細に説
明する。 この実施例は、第3図に示すような圧延機10に備えら
れ、その圧下位置を調整して圧延される板4416の左
右板Prp差を制御し、そのキャンバの発生を防止する
キャンバ制御装428に本発明が採用されたものである
。 前記圧延機10には、前記板材16を圧延する上下のワ
ー〇−ル18A、18Bと、該ワークロール18Δ、1
8Bに上下方向から圧延圧力を加える上下のバックアッ
プロール2OA、20Bと、前記圧延機10のワークサ
イド、ドライブサイドの圧延荷重を検出するため、前記
上方のバックアップロール20Aの左右の支持軸に付設
されたロードセル22A、22Bと、fir記板材16
に圧下を加えるため、下方のバックアップロール20B
の両側の支持軸に取付けられた油圧シリンダ24A、2
4Bと、圧下位置を検出するため適宜の位置に配設され
る圧下位を検出器26Δ、26Bとが備えられている。 又、前記キャンバi、II御装首28には、前出コント
ローラ(制御演算装置)12と、前出油圧圧下Lll 
lit装ri14がa、tうtt、更ニ、m ’l 図
ニ示’J’ にうに、板材16の進行方向に沿って先方
に配設され、板材16のli右の板〃を測定する板厚兵
130と、前記圧延1ffi10から板材16の進行方
向に距M L離れて配設され、板材16の0無を検出す
る板材検出装f!32と、前記板厚計30から板材16
の進行方向に距1!iL離れて配設され、板材16のイ
J無を検出1゛る板材検出装置34と、前出(3)式に
基づき板材16の計算ウェッジ1ldfを計−するウェ
ッジa1算装置36と、前記板厚計30からの検出信乃
に基づき、板材16の実測ウエッジ’hdrを弾出する
ウェッジ実測装置38と、前記ウェッジ計算装置36及
びウェッジ実測装置38からの出力信号に基づき、圧延
に先qつで前出(9)式で示した次バスのウェッジ推定
1flhdril+の補正量として前出(7)式に示さ
れた移動平均値Δhdfを計算する補正L4計算装置4
0が備えられている。 以下、本実施例の作用について説明する。 第4図において、被圧延材である板材16を圧延+a1
Oで複数バス圧延する際に、第iバスにおける前記板材
16の先端が板材検出装置32を通過するのを該板材検
出装置32で検出する。前記先端が検出されると、ウェ
ッジ計算装置FT36は、このときのO−ドセル22A
、22Bで検出された圧延伺ffiPwiSPoiと、
圧下位費検出器26A、26Bで検出された圧下位置S
wi、S。 iに基づいてロール間反差5driを記憶し、前出(3
)式に従って前記板材16の51Ωウエツジh dri
を計算する。この計算ウェッジ11dFiは、板材16
先端からちょうど距離し離れた所で測定される。 続いて、前記板材16の先端が板厚計30の前方にある
板材検出装置34を通過するのを該(反相検出装置34
.で検出する。前記先端が検出されると前記板り計30
で前記板材16の左右の板厚を実測し、前出(5)式に
阜づぎ実11ウエツジhdtiを求める。 その後、補TE m H1算装置40で前記実測ウエツ
ハ ジh driと前記計算ウェッジhdt:から、前出(
6)<7>式に基づき、i+1パスにおけるウェッジ補
正量である移動平均値Δhdf国を計qする。又、前記
板材16のキー7ンバ形状を測定1ノ、その測定形状に
基づいて第i→−1バスでの目標ウェッジh d f 
ill xを別途針材しておく。なお、この目標ウェッ
ジ1lclrr4+xは、板材16の部分によってその
値が変化してもよい。 第i+1バス目で前記圧延様が前記板材16を噛み込む
と同時に、第3図に示すコントローラ12が機能し、前
記ロードセル22A、22Bで検出される圧延荷重P 
W ill s P D b+や、前記圧下位置検出装
置ff126A、26Bで検出される圧下位置S W 
kl、S o illに基づくロール間反差S a t
 i41から、刻々ウェッジ推定WShat国を前出(
9)式に基づき計算、する(第3図中の加算点Pl)。 そして、該ウェツジ1F定1fthdr国と前記目標ウ
ェッジh dr +−hxト(1)&差Δh d r 
r−+’ 全1JVZ計算しく加算点P2)、これに応
じてコントローラ12が左右圧下位2の目標変化nΔS
 dr ill ’を決める。 その後、現在の左右圧下位置差即ちロール間反差S d
 f illに前記目標変化量ΔS dr ill x
が加えられ、目標となる左右圧下位置差S d f i
ll ’が求められて油圧圧下制御装置14に入力され
る。すると、該油圧圧下制御装「14は、その目標とな
る左右圧下位置差Sdf国東を前記圧延機10に具体化
するため、油圧シリンダ24A、24Bを制御して、圧
延機100ロール開疫差S dr rや盲を変化させる
。この結果、前記板材16のウェッジ(左右板圧差)は
、前記目標ウェッジhd f ill ”に近付き、そ
のため、前記板材16のキ鬼7ンバが修正されることに
なる。 ここで、発明者らは実際に本発明法により板材16のモ
デルを一3正した場合と、修正を行わなかった場合各々
、について、キャンバを測定して比較してみた。いずれ
も目標ウェッジをOmmとして圧延した。比較した結果
は、第5図に承りようになり、図からモデル法王を行っ
た場合(A>の方が、モデル修正を行わなかった場合(
B)よりキャンバの発生を抑14できることがわかる。 なお、この場合、板材の寸法は長さ30mのものに統一
しており、同じ条件でいずれも40本づつ圧延を制御し
た。 なお、前記実施例においては、前出(7)式で求めた移
動平均値Δhdr国を補正量として用いて、ウェッジ測
定1直hir’+4+’を修正した。しかしながら、補
正長を求める式は(7)式に限定されず、他の式あるい
は方法により求めてもよい。
[Operation] The principle of the present invention will be explained in detail below. When rolling a plate material in multiple buses in a rolling mill, the rolling carts of the work side and drive side of the rolling mode measured at the i-th bus are set as Pwi and Poi, and the rolling position is set as Sw+,
Let it be Sot. Also, the exit side plate thickness at this time is h w i ,
When h o t, the following equations (1) and (2) are established using the well-known gauge meter equation. hwi=swi+Pwi/Mw −・−(1)h
o i = So i + Po i/Mo − (2)
However, M w % M o is the mill rigidity of the work side and drive side of the rolling mill, respectively. Therefore, the calculated value of the difference in the left and right plate thickness of the plate material on the exit side of the rolling mill in the i-bus (total q wedge > 11c + ri is calculated using the following formula (3)
It can be calculated as follows. In addition, the degree difference between rolls is 5dri
can be expressed by the following equation (4). hc+ri=bwi Iloi=(Swi 5oi) + (Pwi/Mw-Po i/Mo)=Sc+ f
i + (Pw i/Mw-Po i/Mo)
−(3) Sdri=Swi Soi −(4) On the other hand,
The thickness of the plate material actually measured by the thickness meter in the i bus (i-th
When the work side and live side (bus exit side plate thickness) are written as hWI, ”Oi, respectively, the difference in the width of the exit side plate thickness (actually measured wedge) hdri, which is revealed by the actually measured plate thickness, is calculated by the following formula ( 5).8 And, the measured wedge hdrt and the calculated wedge hd
The difference Δhdr+ with Ii; Δ1ldfi◆18α0Δl1dri+(1-α)×Δ
h dr bl (7) where α is a weighting coefficient for determining the moving average value Δ11dri. The actually measured wedge Δ hdri based on the above equation (6) can be expressed by the following equation (8). Therefore,
Using the moving average value Δh d f i*I obtained by equation (7), wedge estimation IITThdf on i+1 bus
i++ can be written as shown in the following equation (9). <ari-hcrti+Δhdti...(8)=S
dr t+++ (Pwl++ / M w −P o +−+ / M o ) +Δh
dfμm ...(9) From the wedge estimated value h d fill obtained by this equation (9) and the wedge all'T h d f =1' of the i+1 bus, for example, calculate both using the following equation (10). Deviation value Δhdfi11
', and use hdt+++' to this deviation value to i
AilJ control of the difference in thickness between the left and right sides of the plate material is performed by adjusting the rolling position for each rolling process in the +1 bus. Δh dfi+1′ −h dfiφl−11dfi畢18 (10) In the rolling of the i+1 bus of the rolling mill, for example, the moving average value Δhd fill and the mill rigidity Mw, MC
) is known, and the roll opening difference 5drkl and the rolling load m of the work side and drive side, respectively.
P will, P o H, + can each be detected, for example, from a sensor provided in a rolling mill. Therefore, if a control system reflecting the above-mentioned equations (1) to (10) and the method of the present invention is configured as shown in FIG.
Correct the rolling position in the i+1 bus of 0 and set the left and right plate thickness difference (wedge) over the entire length of the plate as the wedge target l.
ih dtill'. Immediately, in Fig. 2, the rolling uM on the i+1 bus
10 left and right rolling loads m P will, P o ill
l, roll opening difference S dt ill, and moving average value Δ
l+ Based on 61 countries, the operation q of equation (9) with addition and stopping 5 points P1
and calculate the wedge estimated value h d fill. Next, based on the wedge target value 11dfi++' and the wedge estimate 1iffh, +fill, the addition point P is calculated.
2, calculate the equation (10) and obtain the deviation value Δ'1dfi
Find *+'. Then, the controller 12 calculates, for example, proportional, integral, differential (
PID) and outputs the target change QΔSd fill ” of the left and right rolling positions of the rolling mill 10 to the hydraulic pressure reduction control device 14. Then, the hydraulic pressure reduction control device 14 controls the rolling v41
The reduction of the rolling +ff110 is controlled based on the roll opening difference S dt ill of 0 and the target change amount ΔS d f kl×, and the plate 1tA 1 is obtained. If the camber a11tIl using the proposed camber meter is controlled using the method of the present invention as described above, it can be extremely effective in controlling the camber of the plate material. Further, even without a camber meter, if rolling is performed with the target wedge "hdf" always set to 0, a sheet material without camber can be produced by the method of the present invention. An embodiment of the adopted camber control device will be described in detail.This embodiment is provided in the rolling mill 10 as shown in FIG. The present invention is adopted in a camber control device 428 that controls the difference and prevents the occurrence of camber. , the work roll 18Δ,1
Upper and lower backup rolls 2OA and 20B apply rolling pressure to 8B from above and below, and in order to detect rolling loads on the work side and drive side of the rolling mill 10, rollers are attached to the left and right support shafts of the upper backup roll 20A. Load cells 22A, 22B and fir plate material 16
In order to apply pressure to the lower backup roll 20B
Hydraulic cylinders 24A, 2 attached to support shafts on both sides of
4B, and lower pressure detectors 26Δ and 26B disposed at appropriate positions to detect the lowered position. Further, the camber i and II mounts 28 are equipped with the aforementioned controller (control calculation device) 12 and the aforementioned hydraulic pressure lowering Lll.
The lit device 14 is disposed forward along the traveling direction of the plate 16 as shown in the figure 'J', and measures the plate on the right of the plate 16. A plate thickness sensor 130 and a plate detection device f!, which is disposed a distance M L away from the rolling 1ffi10 in the direction of movement of the plate 16, and detects whether the plate 16 is zero or not. 32, and the plate material 16 from the plate thickness gauge 30.
Distance 1 in the direction of travel! A plate material detection device 34 which is arranged iL apart and detects whether or not the plate material 16 is present; a wedge a1 calculation device 36 which calculates the calculation wedge 1ldf of the plate material 16 based on the above-mentioned equation (3); Based on the detection signal from the plate thickness meter 30, a wedge measuring device 38 ejects a measured wedge 'hdr' of the plate material 16, and based on output signals from the wedge calculation device 36 and the wedge measuring device 38, a A correction L4 calculation device 4 that calculates the moving average value Δhdf shown in the above equation (7) as a correction amount for the wedge estimation 1flhdril+ of the next bus shown in the above equation (9).
0 is provided. The operation of this embodiment will be explained below. In FIG. 4, the plate material 16, which is the material to be rolled, is rolled + a1
When rolling multiple buses at O, the plate detecting device 32 detects that the tip of the plate 16 in the i-th bus passes through the plate detecting device 32. When the tip is detected, the wedge calculation device FT36 calculates the current O-dossel 22A.
, the rolling contact ffiPwiSPoi detected at 22B,
Roll-down position S detected by roll-down cost detectors 26A, 26B
wi, S. Based on i, the roll difference 5dri is stored and the above (3
) 51Ω wedge h dri of the plate material 16 according to the formula
Calculate. This calculation wedge 11dFi is the plate material 16
Measured just a distance away from the tip. Subsequently, when the tip of the plate material 16 passes through the plate material detection device 34 located in front of the plate thickness gauge 30, the (antiphase detection device 34
.. Detect with. When the tip is detected, the plate gauge 30
The thickness of the left and right sides of the plate material 16 is actually measured, and the wedge hdti of the actual plate 11 is determined using the above equation (5). After that, the supplementary TE m H1 calculating device 40 calculates the above ((
6) Based on the formula <7>, calculate the moving average value Δhdf, which is the wedge correction amount in the i+1 path. Further, the shape of the key 7 member of the plate material 16 is measured, and the target wedge h d f at the i-th→-1 bus is determined based on the measured shape.
Separately prepare needle material for ill x. Note that the value of this target wedge 1lclrr4+x may vary depending on the portion of the plate material 16. At the same time that the rolling member bites into the plate material 16 at the i+1th bus, the controller 12 shown in FIG. 3 functions, and the rolling load P detected by the load cells 22A and 22B
Will s P D b+ and the rolled down position SW detected by the rolled down position detection device ff126A, 26B
kl, S o ill based on roll reversal S a t
From i41, every moment wedge estimation WShat country is mentioned (
9) Calculate based on the formula (addition point Pl in FIG. 3). Then, the wedge 1F constant 1fth dr country and the target wedge h dr +-hxt (1) & difference Δh dr
r-+' total 1JVZ calculated addition point P2), and the controller 12 accordingly adjusts the target change nΔS of the lower 2 left and right pressure points.
Decide 'drill'. After that, the current left and right rolling position difference, that is, the roll reversal difference S d
The target change amount ΔS dr ill x
is added, and the target left and right lowering position difference S d f i
ll' is determined and input to the hydraulic pressure reduction control device 14. Then, the hydraulic pressure reduction control device 14 controls the hydraulic cylinders 24A and 24B to realize the target left and right reduction position difference Sdf Kunisaki in the rolling mill 10, and controls the rolling mill 100 roll spread difference Sdf. dr r and blindness are changed. As a result, the wedge (left and right plate pressure difference) of the plate material 16 approaches the target wedge hd fill '', and as a result, the width of the plate material 16 is corrected. . Here, the inventors actually measured and compared the camber in the case where the model of the plate material 16 was corrected by the method of the present invention and in the case where no correction was made. In both cases, rolling was performed with a target wedge of 0 mm. The results of the comparison are shown in Figure 5, and from the figure, the case where the model was corrected (A> is better, and the case where no model correction is made (
It can be seen from B) that the occurrence of camber can be suppressed. In this case, the dimensions of the plates were unified to 30 m in length, and rolling of 40 pieces at a time was controlled under the same conditions. In the above embodiment, the moving average value Δhdr calculated using the equation (7) above was used as the correction amount to correct the wedge measurement 1st shift hir'+4+'. However, the formula for determining the correction length is not limited to formula (7), and may be determined using other formulas or methods.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、バスfuに左右板
厚差の目4!¥値の誤差を補正することができるため、
板材に目標とする左右板厚差を確実に生じさせることが
できる。従って、該板材のキャンバの防止あるいはキャ
ンバの修正を確実に行うことが可能とな、す、該キA7
ンバが低減して板材の品質向上に寄与するところが大と
なる等の優れた効果を右する。
As explained above, according to the present invention, there is a difference in the left and right plate thickness in the bus fu! Since it is possible to correct errors in the ¥ value,
It is possible to reliably create a target thickness difference between the left and right sides of the plate material. Therefore, it is possible to reliably prevent or correct camber of the plate material.
This results in excellent effects such as a reduction in energy consumption and a greater contribution to improving the quality of the plate material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の要旨を示ず流れ因、第2図は、本発
明の詳細な説明するための、本発明に係る板圧延におけ
るキiyンバa、II御方法が採用された制御系の構成
の一例を示す、一部斜視図を含むブロック線図、第3図
は、本発明に係る板す制御におけるキャンバ制御方法が
採用された実施例の構成を示す、一部所面図を含むブロ
ック線図、第4図は、前記実施例のキャンバ制御I装置
の構成を示す、一部配?図を含むブロック線図、第5図
(A)(B)は、前記実施例の作用を説明するための線
図である。 10・・・圧延機、 12・・・制御演算装置(コントローラ)、14・・・
油圧圧王制陣装置、 16・・・板材、 18A、18.8・・・ワークロール、20A、20B
・・・バックアップロール、22A、22B・・・ロー
ドセル、 24A、24B・・・油圧シリンダ、 26A、26B・・・圧下位置検出器、30・・・板厚
計、 32.34・・・板材検出装冒、 36・・・ウェッジ計算装置、 38・・・ウェッジ実副装E1 40・・・ウェッジの補正叩計算装置。
Fig. 1 shows the flow factors without showing the gist of the present invention, and Fig. 2 shows the control method in which the key control method is adopted in plate rolling according to the present invention. FIG. 3 is a block diagram including a partial perspective view showing an example of the configuration of the system; FIG. FIG. 4 is a block diagram showing the configuration of the camber control I device of the embodiment described above. The block diagram including FIGS. 5A and 5B are diagrams for explaining the operation of the embodiment. 10... Rolling mill, 12... Control calculation device (controller), 14...
Hydraulic pressure formation device, 16... Plate material, 18A, 18.8... Work roll, 20A, 20B
...Backup roll, 22A, 22B...Load cell, 24A, 24B...Hydraulic cylinder, 26A, 26B...Down position detector, 30...Plate thickness gauge, 32.34...Plate material detection Equipment, 36... Wedge calculation device, 38... Wedge implementation sub-equipment E1 40... Wedge correction hit calculation device.

Claims (2)

【特許請求の範囲】[Claims] (1)板材を圧延機で複数バス圧延するに際し、左右板
厚差を制御してキヤンバを制御する板圧延におけるキヤ
ンバ制御方法において、 あるiバスにおける前記板材の左右板厚差を実測し、 前記iバスにおける前記圧延機の左右圧下位置及び左右
圧延荷重を測定し、 測定された左右圧下位置及び左右圧延荷重に基づき、前
記板厚差の実測された位置と同位置における左右板厚差
を算出し、 実測された左右板厚差と算出された左右板厚差との差を
求め、 求められた差に基づき、次のi+1バスで前記iバスと
同様に算出される板材の左右板厚差を補正して左右板厚
差の推定値を求め、 求められた推定値とi+1バスにおける前記板材の左右
板厚差の目標値との差に基づき、前記圧延機のi+1バ
スにおける圧下位置を調整することを特徴とする板圧延
におけるキヤンバ制御方法。
(1) In a camber control method in plate rolling, in which the camber is controlled by controlling the difference in thickness between the left and right plates when a plate is rolled in multiple buses in a rolling mill, the difference in thickness between the left and right sides of the plate in a certain i-bus is actually measured, and the Measure the left and right rolling positions and the left and right rolling loads of the rolling mill in the i-bus, and calculate the left and right thickness difference at the same position as the actual measured position of the plate thickness difference based on the measured left and right rolling positions and left and right rolling loads. Then, find the difference between the actually measured left and right plate thickness difference and the calculated left and right plate thickness difference, and based on the calculated difference, calculate the left and right plate thickness difference for the next i+1 bus in the same way as the i bus. is corrected to obtain an estimated value of the left and right plate thickness difference, and based on the difference between the obtained estimated value and a target value of the left and right plate thickness difference of the plate material at the i+1 bus, adjust the rolling position in the i+1 bus of the rolling mill. A camber control method in plate rolling characterized by:
(2)前記i+1バスで前記iバスと同様に算出される
板材の左右板厚差を、前記実測された左右板厚差と算出
された左右板厚差との差の移動平均値で補正して前記左
右板厚差の推定値を求めるようにした特許請求の範囲第
1項記載の板圧延におけるキヤンバ制御方法。
(2) Correct the left and right plate thickness difference of the plate materials calculated in the same way as the i bus on the i+1 bus using the moving average value of the difference between the actually measured left and right plate thickness difference and the calculated left and right plate thickness difference. 2. The camber control method in plate rolling according to claim 1, wherein the estimated value of the difference in thickness between the left and right plates is determined by using the method.
JP60269113A 1985-11-29 1985-11-29 Camber control method for plate rolling Granted JPS62130706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60269113A JPS62130706A (en) 1985-11-29 1985-11-29 Camber control method for plate rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60269113A JPS62130706A (en) 1985-11-29 1985-11-29 Camber control method for plate rolling

Publications (2)

Publication Number Publication Date
JPS62130706A true JPS62130706A (en) 1987-06-13
JPH036843B2 JPH036843B2 (en) 1991-01-31

Family

ID=17467851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60269113A Granted JPS62130706A (en) 1985-11-29 1985-11-29 Camber control method for plate rolling

Country Status (1)

Country Link
JP (1) JPS62130706A (en)

Also Published As

Publication number Publication date
JPH036843B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
JP4214150B2 (en) Rolling method and rolling apparatus for metal sheet
KR980008369A (en) Rolling method and rolling mill of plate material for reducing edge drop
JP5026091B2 (en) Rolling method and rolling apparatus for metal sheet
JP2013006195A (en) Plate thickness control method in rolling machine
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
CA2700752C (en) Rolling device and method for the operation thereof
JPS62130706A (en) Camber control method for plate rolling
JP4505550B2 (en) Rolling method and rolling apparatus for metal sheet
JPWO2010109637A1 (en) Reference position adjustment monitoring device
JP2007190579A (en) Method and equipment for rolling metallic sheet
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JPH1110215A (en) Method for controlling wedge of hot rolled stock
JPH07214131A (en) Rolling controller
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
JPH04305304A (en) Method for controlling camber in hot rolling mill
JP2004243376A (en) Device and method for controlling meandering of strip in tandem mill
JPH0521648B2 (en)
JPS6195711A (en) Method for controlling sheet camber in thick plate rolling
KR100957925B1 (en) A method for controlling a gap of strip
JP2921779B2 (en) Asymmetric rolling compensating rolling mill
JP3241585B2 (en) Plate thickness control device
JPH067819A (en) Camber and meandering control method in rolling mill
KR100805897B1 (en) Improvement of massflow balance at hot strip mill and its method
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JPS6347522B2 (en)