JPS6213054B2 - - Google Patents

Info

Publication number
JPS6213054B2
JPS6213054B2 JP54040107A JP4010779A JPS6213054B2 JP S6213054 B2 JPS6213054 B2 JP S6213054B2 JP 54040107 A JP54040107 A JP 54040107A JP 4010779 A JP4010779 A JP 4010779A JP S6213054 B2 JPS6213054 B2 JP S6213054B2
Authority
JP
Japan
Prior art keywords
plate
catalyst
shaped
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54040107A
Other languages
Japanese (ja)
Other versions
JPS55132640A (en
Inventor
Kunihiko Konishi
Meiji Ito
Masao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4010779A priority Critical patent/JPS55132640A/en
Publication of JPS55132640A publication Critical patent/JPS55132640A/en
Publication of JPS6213054B2 publication Critical patent/JPS6213054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は板状触媒の配設構造に係り、特にガス
状物質を処理するための板状触媒の配設構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a structure for disposing a plate-shaped catalyst, and particularly to a structure for disposing a plate-shaped catalyst for treating gaseous substances.

〔従来の技術とその問題点〕[Conventional technology and its problems]

ガス状物質の処理に用いられる触媒は、古くか
ら有機化学や無機工業化学の分野で広く使用され
ている。最近では、例えば、排ガス中の窒素酸化
物(以下、NOx)と略記する)をアンモニアによ
り還元して無害な窒素ガスにする、いわゆる脱硝
用の触媒が開発され、その中のいくつかはすでに
実用化されている。
Catalysts used to treat gaseous substances have been widely used in the fields of organic chemistry and inorganic industrial chemistry for a long time. Recently, so-called denitrification catalysts have been developed, which reduce nitrogen oxides (hereinafter abbreviated as NO x ) in exhaust gas with ammonia to harmless nitrogen gas, and some of these catalysts have already been developed. It has been put into practical use.

これらの触媒は反応器内に充填され、この反応
器内にガスを流通させることにより、触媒上でガ
スの反応が起こり、ガス中の有害成分が除去され
る。充填される触媒の形状としては粒状と板状と
に大別されるが、反応器内の圧力損失が少なく、
排ガス中に含まれるダストの影響を受け難いもの
として、特に板状触媒が好適である。このような
板状触媒は、ほとんどのものが平板の基板に触媒
を塗布したものか、または触媒を平板に成形した
ものである。このような板状触媒は、反応器のガ
ス流路内のガス流れ方向に平行に間隔をおいて複
数配列されて用いられる。
These catalysts are filled in a reactor, and by passing gas through the reactor, a reaction of the gas occurs on the catalyst, and harmful components in the gas are removed. The shape of the catalyst to be filled can be roughly divided into granular and plate-like, but the pressure loss inside the reactor is small,
A plate-shaped catalyst is particularly suitable as it is less susceptible to the influence of dust contained in exhaust gas. Most of these plate-shaped catalysts are those in which the catalyst is coated on a flat substrate, or the catalyst is formed into a flat plate. A plurality of such plate-shaped catalysts are arranged at intervals in parallel to the gas flow direction in the gas flow path of the reactor.

上記板状触媒は、平板全体が触媒に覆われてい
るが、触媒の有効面積が平面に限られるため、基
板表面に凹凸を設けて有効面積を増す工夫がなさ
れている。しかし、単位投影面積当りのマクロ的
な表面積の増加には限度がある。また特に深い凹
凸形状を与えたものは、ダストによる目づまり等
を生じ、経時的な有効表面積の減少は避けること
ができない。またダストによる目づまりまたは堆
積によりガス流路の一部が閉塞すると、反応器内
にガスの偏流を生じ、反応効率が低下するという
欠点がある。
In the above-mentioned plate-shaped catalyst, the entire flat plate is covered with the catalyst, but since the effective area of the catalyst is limited to a flat surface, a device has been devised to increase the effective area by providing irregularities on the substrate surface. However, there is a limit to the increase in macroscopic surface area per unit projected area. In addition, if a particularly deep uneven shape is provided, clogging due to dust may occur, and a decrease in effective surface area over time cannot be avoided. Further, if a part of the gas flow path is blocked due to clogging or accumulation of dust, there is a drawback that a biased flow of gas occurs in the reactor and the reaction efficiency decreases.

そこで、従来においても、基板に多数の孔を貫
設した板状触媒を積層したものが提供されている
(特開昭50−24178号公報等)。しかし、その板状
触媒を反応器内に配設する構造が、その基板面を
処理ガスの流れ方向に対して直交させたものであ
つたため、処理ガスの全部が基板に貫設した孔を
通過することとなり、該処理ガス中に含まれるダ
ストが板状触媒間の隙間に堆積し、触媒としての
接触面積が経時的に減少し、遂には孔が閉塞され
るおそれがある問題があつた。
Therefore, in the past, catalysts in which plate-shaped catalysts having a large number of holes penetrating the substrate are laminated have been provided (Japanese Patent Laid-Open No. 50-24178, etc.). However, because the structure in which the plate-shaped catalyst was arranged in the reactor was such that the substrate surface was perpendicular to the flow direction of the processing gas, all of the processing gas passed through the holes penetrated through the substrate. As a result, dust contained in the process gas accumulates in the gaps between the plate-shaped catalysts, and the contact area of the catalyst decreases over time, resulting in a problem that the pores may eventually be clogged.

本発明の目的は、ダストの堆積により触媒とし
ての接触面積が経時的に減少することのない板状
触媒の配設構造を提供するにある。
An object of the present invention is to provide a structure in which a plate-shaped catalyst is arranged in which the contact area of the catalyst does not decrease over time due to dust accumulation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、金属薄板を基板とし該基板に多数の
孔を貫通しその全表面に触媒を塗布した板状触媒
を、反応器内に処理ガスの流れ方向に対して基板
面が平行に複数互いに離間させて近接配置させた
ものである。
The present invention uses a thin metal plate as a substrate, and a plurality of plate-shaped catalysts in which a large number of holes are penetrated through the substrate and the catalyst is coated on the entire surface thereof are placed in a reactor, and the substrate surface is parallel to the flow direction of the processing gas. They are spaced apart and placed close to each other.

〔作用〕[Effect]

上記構成により、処理ガスは各板状触媒間の隙
間に形成される流路を通過しつつ、板状触媒に貫
設された孔内を通過するようにして、板状触媒の
表面にダストが堆積しないようにしたものであ
る。
With the above configuration, the processing gas passes through the flow paths formed in the gaps between the plate-shaped catalysts and through the holes formed through the plate-shaped catalysts, so that dust is not deposited on the surface of the plate-shaped catalysts. This is to prevent it from accumulating.

〔実施例〕〔Example〕

先ず、本発明における板状触媒について説明す
る。本発明において、基板に設ける孔の寸法とし
ては1ないし30mm(好ましくは2ないし5mm)が
有効であり、その間隔は基板の剛性に応じて決め
られる。また孔の配列は規則もしくは不規則いず
れのものでもよい。これら寸法形状に関しては、
対象とする処理ガスの性状、特にダスト量や孔開
け加工技術の難易性を考慮して適宜決定すること
ができる。さらに、基板の材質および板厚に関し
ては、腐食性のガスを処理する場合においては、
ステンレス鋼のような耐食合金鋼板が好ましい
が、他に低合金鋼板や炭素鋼板を用いることがで
き、またその板厚は0.2ないし1mm、好ましくは
0.3mm前後が適している。
First, the plate-shaped catalyst in the present invention will be explained. In the present invention, the effective size of the holes provided in the substrate is 1 to 30 mm (preferably 2 to 5 mm), and the interval between them is determined depending on the rigidity of the substrate. Further, the arrangement of the holes may be regular or irregular. Regarding these dimensions and shapes,
It can be determined as appropriate by taking into consideration the properties of the target processing gas, particularly the amount of dust and the difficulty of the hole-drilling technique. Furthermore, regarding the material and thickness of the board, when processing corrosive gases,
Corrosion-resistant alloy steel plates such as stainless steel are preferred, but low-alloy steel plates and carbon steel plates can also be used, and the plate thickness is preferably 0.2 to 1 mm.
Around 0.3mm is suitable.

また触媒の有効表面積をさらに大にするには、
基板の孔に接する板面に傾斜をもたせることが有
効である。上記のように加工された基板には、触
媒の保持性をあげるために金属溶射で代表される
粗面化処理を施すことがのぞましい。このように
加工された基板は、脱硝の場合には酸化チタン―
酸化バナジウムのような触媒のスラリーまたはペ
ーストを塗布した後、焼成処理することによつて
本発明の板状触媒が得られる。
In addition, to further increase the effective surface area of the catalyst,
It is effective to provide an inclination to the plate surface that contacts the hole in the substrate. It is desirable that the substrate processed as described above be subjected to surface roughening treatment, typified by metal spraying, in order to improve the retention of the catalyst. In the case of denitrification, the substrate processed in this way is treated with titanium oxide.
The plate-shaped catalyst of the present invention is obtained by applying a slurry or paste of a catalyst such as vanadium oxide and then performing a calcination treatment.

以下、図面に示した実施例により詳細に説明す
る。
Hereinafter, a detailed description will be given with reference to embodiments shown in the drawings.

基板1として0.3mm厚さのステンレス鋼板を選
び、これに第1図A,B,Cに示すような円形、
方形または扇形の孔3を、それぞれ直径3mm、3
mm角および2mm×3mmの大きさで、6mm間隔に規
則的に開けた。このうち、扇形のものは第3図に
示すように、孔3に接する板部を傾斜させた。な
お、第2図は、第1図A、Bの各断面図、第3図
は、第1図Cの断面図である。基板に対する触媒
成分2の塗布は、金属板に溶射加工を施して粗面
化した後、行なつた。すなわち、酸化物形に焼成
処理した触媒粉末(例えば酸化チタン―酸化バナ
ジウム)を水を加えて流動性を有するペースト状
にし、これに上記の溶射処理基板を浸漬して触媒
成分を付着させた。触媒ペーストにより孔3の多
くに目づまりを生じた場合は、風を吹き付けるこ
とにより、これを除去することができる。このよ
うにして得られた板状触媒は、更に風乾および焼
成処理することにより、触媒成分の活性を有する
最終製品とすることができる。第4図および第5
図は、扇形に孔3を開け、板面に傾斜をもたせて
得られた基板1を用いて製造された板状触媒の断
面図および反応器内への配設構造を示すもので、
基板1の表面には触媒成分2が均一に被覆され、
孔3に接する板面が傾斜している。板状触媒は反
応器(図示せず)内に処理ガスの流れ方向に対し
て基板面が平行に複数互いに間隔をおいて近接配
置されている。孔部を通して矢印方向にガスが流
通するので、触媒の有効面積が大きくなることが
わかる。
A stainless steel plate with a thickness of 0.3 mm was selected as the substrate 1, and a circular shape as shown in Fig. 1 A, B, and C was formed on it.
Square or fan-shaped holes 3, each with a diameter of 3 mm and 3
They were mm square and 2 mm x 3 mm in size, and were opened regularly at 6 mm intervals. Among these, the fan-shaped one has a plate portion in contact with the hole 3 inclined as shown in FIG. 2 is a sectional view of FIGS. 1A and 1B, and FIG. 3 is a sectional view of FIG. 1C. The catalyst component 2 was applied to the substrate after the metal plate was roughened by thermal spraying. That is, a catalyst powder (for example, titanium oxide-vanadium oxide) calcined into an oxide form was made into a fluid paste by adding water, and the above thermal sprayed substrate was immersed in the paste to adhere the catalyst component. If many of the holes 3 are clogged by the catalyst paste, this can be removed by blowing air. The plate-shaped catalyst thus obtained can be further air-dried and calcined to produce a final product having the activity of the catalyst components. Figures 4 and 5
The figure shows a cross-sectional view of a plate-shaped catalyst manufactured using a substrate 1 obtained by opening fan-shaped holes 3 and giving an inclined plate surface, and the arrangement structure in a reactor.
The surface of the substrate 1 is uniformly coated with the catalyst component 2,
The plate surface in contact with the hole 3 is inclined. A plurality of plate-shaped catalysts are arranged close to each other at intervals in a reactor (not shown) with the substrate surface parallel to the flow direction of the processing gas. It can be seen that the effective area of the catalyst increases because the gas flows in the direction of the arrow through the holes.

次に触媒成分として酸化チタン―酸化バナジウ
ム系の触媒を選び、上記のように作成した本発明
の多孔板状触媒と、同一組成の触媒を付着させた
従来の平板状触媒の触媒活性を比較した。厚さ1
mmで200mm角の板状触媒をガス流に平行して5mm
の間隔で39枚装填した反応器内に、150ppmの
NOxを含む排ガスを導入し、反応器の上流で注入
される同濃度のアンモニアガスと混合した。反応
温度は350℃とし、ガスの空間速度は3000h-1とし
た。
Next, a titanium oxide-vanadium oxide catalyst was selected as the catalyst component, and the catalytic activity of the porous plate-shaped catalyst of the present invention prepared as described above was compared with that of a conventional plate-shaped catalyst to which a catalyst of the same composition was attached. . Thickness 1
Place a 200mm square plate catalyst 5mm parallel to the gas flow.
In a reactor loaded with 39 sheets at intervals of 150 ppm
Exhaust gas containing NO x was introduced and mixed with the same concentration of ammonia gas injected upstream of the reactor. The reaction temperature was 350°C, and the gas space velocity was 3000 h -1 .

その結果、NOxのアンモニアによる還元率、す
なわち脱硝率は、従来の無孔板触媒の場合で80%
であつたが、本発明のうちの扇形孔多孔板触媒に
おいては85%となり、また円形および方形多孔板
触媒においては82%となつた。
As a result, the reduction rate of NO
However, it was 85% in the fan-shaped perforated plate catalyst of the present invention, and 82% in the circular and square perforated plate catalysts.

上記結果から明らかなように、本発明による板
状触媒の配設構造においては、ガス流の一部が各
板状触媒間に形成される流路を通過し、残部が多
孔部を通過してガス流の乱れることにより、全体
として処理ガスが触媒と接触すると共に、ダスト
の触媒表面への堆積が防止される。特に、板面に
傾斜をもたせた扇形多孔板触媒においては、第5
図に示すように多孔部をガスが通過しやすいため
矢印方向のガス流の乱れを生じ易く、その効果は
さらに著しいものとなる。
As is clear from the above results, in the arrangement structure of plate-shaped catalysts according to the present invention, a part of the gas flow passes through the flow path formed between each plate-shaped catalyst, and the remaining part passes through the porous portion. The turbulence of the gas flow brings the entire process gas into contact with the catalyst and prevents dust from accumulating on the catalyst surface. In particular, in a fan-shaped perforated plate catalyst with an inclined plate surface, the fifth
As shown in the figure, since the gas easily passes through the porous portion, the gas flow tends to be disturbed in the direction of the arrow, and the effect becomes even more remarkable.

上記実施例は、乾式脱硝に用いる板状触媒につ
いて述べたものであるが、本発明の板状触媒は、
勿論、他の反応にも同様に適用することができ
る。
The above example describes a plate-shaped catalyst used for dry denitrification, but the plate-shaped catalyst of the present invention
Of course, it can be applied to other reactions as well.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多数の孔を貫設した板状触媒
を反応器内に処理ガスの流れ方向に対して基板面
が平行に複数互いに離間させて近接配置したの
で、処理ガスは各板状触媒間の隙間に形成される
流路を通過しつつ、更に板状触媒の多孔部を通過
するので、処理ガス中に含まれるダストはその慣
性力によつて前記流路を主として通過することに
なり、また処理ガスの流れ方向に遮蔽部はなく常
に開放状態にて板状触媒の全表面と接触すること
になり、従つて、触媒表面に処理ガス中に含まれ
るダストが堆積するおそれが少ない。従つて、板
状触媒の触媒としての有効面積が経時的に減少す
ることがない。
According to the present invention, a plurality of plate-shaped catalysts having a large number of holes penetrated through them are arranged close to each other in a reactor so that the substrate surface is parallel to the flow direction of the processing gas. Since the process gas passes through the flow path formed in the gap between the catalysts and also through the porous portion of the plate-shaped catalyst, the dust contained in the process gas mainly passes through the flow path due to its inertial force. In addition, there is no shielding part in the flow direction of the processing gas, and it is always in contact with the entire surface of the plate-shaped catalyst in an open state, so there is little risk of dust contained in the processing gas accumulating on the catalyst surface. . Therefore, the effective area of the plate-shaped catalyst as a catalyst does not decrease over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B,Cは、それぞれ円形、方形、お
よび扇形の孔を開けた本発明に用いる板状基板の
実施例を示す平面図、第2図は、第1図A,Bの
板状基板の断面図、第3図は、第1図Cの板状基
板の断面図、第4図は、扇形の孔を開け基板に傾
斜をもたせたものに触媒を塗布した板状触媒の断
面図、第5図は、本発明の板状触媒の配設構造を
示す断面図である。 1…基板、2…触媒、3…孔。
FIGS. 1A, B, and C are plan views showing embodiments of plate-like substrates used in the present invention having circular, square, and fan-shaped holes, respectively. FIG. 2 is the plate of FIGS. 1A and B. Figure 3 is a cross-sectional view of the plate-shaped substrate shown in Figure 1C, and Figure 4 is a cross-section of a plate-shaped catalyst in which a catalyst is coated on a sloped substrate with fan-shaped holes. 5 are sectional views showing the arrangement structure of the plate-shaped catalyst of the present invention. 1... Substrate, 2... Catalyst, 3... Hole.

Claims (1)

【特許請求の範囲】[Claims] 1 金属薄板を基板とし該基板に多数の孔を貫設
しその全表面に触媒を塗布した板状触媒を、反応
器内に処理ガスの流れ方向に対して基板面が平行
に複数互いに間隔をおいて近接配置したことを特
徴とする板状触媒の配設構造。
1 A thin metal plate is used as a substrate, and a plurality of plate-shaped catalysts, each having a large number of holes penetrated through the substrate and a catalyst coated on the entire surface thereof, are placed in a reactor with the substrate surface parallel to the flow direction of the processing gas and spaced apart from each other. An arrangement structure of plate-shaped catalysts, characterized in that they are arranged close to each other.
JP4010779A 1979-04-02 1979-04-02 Plate catalyst Granted JPS55132640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4010779A JPS55132640A (en) 1979-04-02 1979-04-02 Plate catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4010779A JPS55132640A (en) 1979-04-02 1979-04-02 Plate catalyst

Publications (2)

Publication Number Publication Date
JPS55132640A JPS55132640A (en) 1980-10-15
JPS6213054B2 true JPS6213054B2 (en) 1987-03-24

Family

ID=12571627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4010779A Granted JPS55132640A (en) 1979-04-02 1979-04-02 Plate catalyst

Country Status (1)

Country Link
JP (1) JPS55132640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457946U (en) * 1990-09-21 1992-05-19
JP2006015344A (en) * 1994-11-15 2006-01-19 Babcock Hitachi Kk Catalyst structure and apparatus for purifying treatment gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3622115C1 (en) * 1986-07-02 1987-09-03 Daimler Benz Ag Metallic carrier for catalytic converters of Otto engines
JP2506909Y2 (en) * 1987-12-28 1996-08-14 臼井国際産業 株式会社 Metal support matrix for exhaust gas purification catalyst
CN118401305A (en) 2021-12-16 2024-07-26 日铁化学材料株式会社 Catalyst supporting substrate for purifying exhaust gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839361A (en) * 1971-06-02 1973-06-09
JPS5024178A (en) * 1973-07-06 1975-03-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839361A (en) * 1971-06-02 1973-06-09
JPS5024178A (en) * 1973-07-06 1975-03-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457946U (en) * 1990-09-21 1992-05-19
JP2006015344A (en) * 1994-11-15 2006-01-19 Babcock Hitachi Kk Catalyst structure and apparatus for purifying treatment gas

Also Published As

Publication number Publication date
JPS55132640A (en) 1980-10-15

Similar Documents

Publication Publication Date Title
JP4544465B2 (en) Catalyst structure and gas purification device
CA1154739A (en) Wound foil structure comprising distinct catalysts and method for manufacturing same
DE69811545T2 (en) Process for the selective reduction of NOx in exhaust gas
EP1660216B1 (en) Layered ammonia oxidation catalyst
EP0501003A1 (en) Catalyst and method for decomposing ozone by the use thereof
AT1177U2 (en) FLUE GAS PURIFICATION SYSTEM
JP3389005B2 (en) Nitrogen oxide removal catalyst
US9371765B2 (en) Metal filter for purifying exhaust gas from ship, and preparation method thereof
US4131643A (en) Catalyst for converting nitrogen oxides and method for converting nitrogen oxides in exhaust gases by using said catalyst
JPS6213054B2 (en)
US4370262A (en) Catalytic structure for treating exhaust gases and a process for making the catalytic structure
CN106975354A (en) A kind of denitration reaction tower of low air flow resistance
JPH0988558A (en) Nox removal system
JPS63123450A (en) Catalyst device for removing nitrogen oxide in exhaust gas
JP2002119868A (en) Catalytic structural body for purifying waste gas
JP3432540B2 (en) Method for producing plate-shaped catalyst and treatment liquid for forming acid-resistant and anti-corrosion film used therein
US10737258B2 (en) Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof
EP0360548B1 (en) A process for producing a denitration catalyst
JP3507538B2 (en) Exhaust gas purification catalyst and purification method
JP2004267969A (en) Exhaust gas purification equipment, catalyst for purifying exhaust gas as well as its manufacturing method
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
JP2638081B2 (en) Thin-walled denitration catalyst
JPS6113060Y2 (en)
WO2022240834A1 (en) A reactor system including a catalyst bed module and process for the selective catalytic reduction of nitrogen oxides contained in gas streams
JPS63126527A (en) Denitration method