JPH0988558A - Nox removal system - Google Patents

Nox removal system

Info

Publication number
JPH0988558A
JPH0988558A JP7252190A JP25219095A JPH0988558A JP H0988558 A JPH0988558 A JP H0988558A JP 7252190 A JP7252190 A JP 7252190A JP 25219095 A JP25219095 A JP 25219095A JP H0988558 A JPH0988558 A JP H0988558A
Authority
JP
Japan
Prior art keywords
exhaust gas
reactor
denitration
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7252190A
Other languages
Japanese (ja)
Inventor
Tsugio Kaneko
次雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7252190A priority Critical patent/JPH0988558A/en
Publication of JPH0988558A publication Critical patent/JPH0988558A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of an NOx removal effect caused by non- uniform of gas density due to drift and turbulent flow of exhaust gas led to flow into the reactor of an NOx removal system. SOLUTION: A rectifying layer 15 is arranged in a reactor 1 so that gas flow velocity is uniformed as well as to rectify drift and turbulent flow of exhaust gas led to flow into the reactor 1 which is positioned between an exhaust gas introducing part 9 and an NOx removing agent 2, in an NOx removal system in which the NOx removing agent 2 consisting of a catalyst formed in a honeycomb-shape is laminated and arranged inside the reactor 1, and the exhaust gas G is led to flow from the introducing part 9, and at the same time, a reducing agent is sprayed from a nozzle 14 so that nitrogen oxides in the exhaust gas is removed on the basis of a contact reduction process. An upper plate 16 and a lower plate 17 to which many holes are opened are arranged on the rectifying layer 15 at a predetermined interval, and many spherical bodies 18, 18 are arranged to be stratified in parallel within this interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関等における
排気ガス中に含まれている窒素酸化物(NOX)を除去
するための脱硝装置に関するものである。
The present invention relates to relates to a denitration apparatus for removing nitrogen oxides contained in the exhaust gas of an internal combustion engine or the like (NO X).

【0002】[0002]

【従来の技術】従来からNOX処理技術は種々の分野で
必要とされてきており、例えばディーゼル機関等の排気
ガス中に存在するNOXは人体に有害であって酸性雨の
発生原因ともなるので、これら排気ガス中のNOXを効
果的に処理する技術が望まれている。
2. Description of the Related Art Conventionally, NO X treatment technology has been required in various fields. For example, NO X present in exhaust gas of a diesel engine or the like is harmful to the human body and causes acid rain. since a technique for processing the NO X in these exhaust gases efficiently is desired.

【0003】一般に上記NOXの処理方法は排煙脱硝技
術として実用化されている。この排煙脱硝技術は乾式法
と湿式法に大別されるが、現在では乾式法の一つである
選択接触還元法が技術的に先行しており、有力な脱硝方
法として注目されている。
Generally, the above-mentioned NO X treatment method has been put into practical use as a flue gas denitration technique. This flue gas denitration technology is roughly classified into a dry method and a wet method. At present, the selective catalytic reduction method, which is one of the dry methods, has been technically preceded, and is attracting attention as an effective denitration method.

【0004】上記選択接触還元法の主反応は以下の通り
である。
The main reaction of the selective catalytic reduction method is as follows.

【0005】 4NO+4NH3+O2 → 4N2+6H2O・・・・・・・・・・・・・(1) この反応は還元剤としてアンモニア,炭化水素,一酸化
炭素が使用され、特にアンモニアは酸素が共存しても選
択的にNOXを除去するため、ディーゼル機関等の排気
ガス中に含まれているNOXの除去に用いて有効であ
る。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1) In this reaction, ammonia, hydrocarbon, and carbon monoxide are used as a reducing agent. since oxygen is removed selectively NO X even coexist, it is effectively used to remove of the NO X contained in the exhaust gas such as a diesel engine.

【0006】上記脱硝装置の一例として、図4に示した
ように密閉型の反応器1内部にハニカム状に構成された
触媒で成る脱硝剤2,2を多数個並べて積層しておき、
該反応器1の上方から排気ガスGが流入されると同時に
ノズル3,3からタンク4に貯留された還元剤を散布し
て、上記(1)式に基づく接触還元を行う手段が多用さ
れている。尚、脱硝剤2を構成する触媒としてプラチナ
等の貴金属とかアルミナ,酸化チタン(TiO2)等に
担持された各種金属酸化物が使用される。
As an example of the above-mentioned denitrification apparatus, as shown in FIG. 4, a large number of denitrification agents 2 and 2 made of a honeycomb catalyst are arranged and laminated inside a closed reactor 1.
The exhaust gas G is introduced from above the reactor 1, and at the same time, the reducing agent stored in the tank 4 is sprayed from the nozzles 3 and 3 to perform the catalytic reduction based on the above formula (1). There is. As a catalyst constituting the denitration agent 2, a noble metal such as platinum or various metal oxides supported on alumina, titanium oxide (TiO 2 ) or the like is used.

【0007】上記例において、排気ガスGの拡散効果を
高めるためとノズル3,3の過熱を防止するため、該ノ
ズル3,3の上流側にパンチングメタルと称される多数
の孔部が開口された板体を適宜の間隔をあけて複数枚配
置しておき、排気ガスを該板体中の孔部を通過させるよ
うにした例も知られている。
In the above example, in order to enhance the diffusion effect of the exhaust gas G and to prevent the nozzles 3 and 3 from overheating, a large number of holes called punching metal are opened on the upstream side of the nozzles 3 and 3. There is also known an example in which a plurality of plate bodies are arranged at appropriate intervals and exhaust gas is allowed to pass through the holes in the plate bodies.

【0008】[0008]

【発明が解決しようとする課題】しかしながらこのよう
な従来の脱硝装置例では、反応器1内に流入する排気ガ
スGの偏流とか乱流によるガス密度の不均一に起因し
て、該排気ガスの拡散状態が不十分になり易く、排気ガ
ス全体に対して触媒に基づく均一な脱硝効果を得ること
ができない場合があるという難点がある。
However, in such an example of the conventional denitration apparatus, the exhaust gas G flowing into the reactor 1 is unevenly distributed due to the uneven flow or turbulent flow of the exhaust gas G, and There is a drawback that the diffusion state tends to be insufficient, and a uniform denitration effect based on the catalyst may not be obtained for the entire exhaust gas.

【0009】例えば反応器1内に排気ガスGを送り込む
配管は、周囲のスペースとかレイアウトの都合上から直
管状に形成することはほとんどなく、通常は配管の中途
部が曲折されているのが通例であり、特に反応器1内に
流入する直前で急角度に曲げられることも多いため、排
気ガスGが反応器1内に偏流状態もしくは乱流状態とし
て流入する。するとこの偏流,乱流状態が反応器1の出
口まで残ってしまうため、反応器1内でのガスの流れが
均一にならず、それに伴って脱硝効率が低下する原因と
なる。
For example, the pipe for feeding the exhaust gas G into the reactor 1 is rarely formed in a straight pipe shape due to the surrounding space and layout, and normally the middle portion of the pipe is usually bent. In particular, since the exhaust gas G is often bent at a steep angle immediately before flowing into the reactor 1, the exhaust gas G flows into the reactor 1 in a nonuniform flow state or a turbulent flow state. Then, the unbalanced or turbulent state remains up to the outlet of the reactor 1, so that the gas flow in the reactor 1 is not uniform, which causes a decrease in the denitration efficiency.

【0010】上記に対処して、排気ガスGを送り込む配
管の内部に案内板等を設置して排気ガスGの流れを整え
る手段も考えられるが、上流に位置する配管の曲がり具
合とか反応器1内に流入してからの流路拡大等の各種要
因によって排気ガスGの流入状態が不定となってしまう
ので、安定した脱硝作用が得られない上、装置の設置条
件によって設計変更をすることが要求されることにな
り、コスト増大を招来する原因となる。
In order to deal with the above, a means for adjusting the flow of the exhaust gas G by installing a guide plate or the like inside the pipe for feeding the exhaust gas G may be considered, but the bending of the pipe located upstream or the reactor 1 Since the inflow state of the exhaust gas G becomes indefinite due to various factors such as the expansion of the flow path after it has flowed into the interior, a stable denitration action cannot be obtained, and the design may be changed depending on the installation conditions of the device. It will be required, which will cause an increase in cost.

【0011】更にノズル3の上流側に多数の孔部が開口
された板体を複数枚配置する手段を採用した場合には、
処理すべき排気ガスGの量が多い場合に該板体によって
通風抵抗が増大してしまい、エンジン等のNOX発生源
の動作に悪影響を及ぼす惧れがある。通風抵抗の増大を
避けるためには孔部による通風面積を高める必要がある
が、それには反応器1自体を大型化しなければならない
ため、広い設置スペースが要求されるという難点が生じ
る。
Further, when a means for arranging a plurality of plate bodies having a large number of holes on the upstream side of the nozzle 3 is adopted,
When the amount of the exhaust gas G to be treated is large, the ventilation resistance increases due to the plate body, which may adversely affect the operation of the NO x generation source such as the engine. In order to avoid an increase in ventilation resistance, it is necessary to increase the ventilation area by the holes, but this requires the reactor 1 itself to be large in size, which causes a problem that a large installation space is required.

【0012】そこで本発明はこのような従来の脱硝装置
が有している課題を解消して、反応器内に流入する排気
ガスの偏流とか乱流によるガス密度の不均一に起因する
脱硝効果の低下を防止することができる脱硝装置を提供
することを目的とするものである。
Therefore, the present invention solves the problem of such a conventional denitration device and eliminates the denitration effect due to the non-uniformity of the gas density due to the uneven flow or turbulent flow of the exhaust gas flowing into the reactor. It is an object of the present invention to provide a denitration device capable of preventing a decrease.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題を解決
するために、密閉型の反応器内部にハニカム状に構成さ
れた触媒で成る脱硝剤を積層配置し、導入部から該反応
器内に内燃機関の排気ガスを流入すると同時に該排気ガ
ス中に還元剤を噴霧して、接触還元法に基づいて排気ガ
ス中の窒素酸化物を除去し、排出部から放出するように
した脱硝装置において、上記排気ガスの導入部と脱硝剤
との間に位置する反応器内に、流入する排気ガスの偏流
及び乱流を整流するとともにガスの流速を均一化する整
流層を配設してある。
In order to solve the above-mentioned problems, the present invention has a denitrifying agent composed of a honeycomb-shaped catalyst laminated inside a hermetically sealed reactor, and the inside of the reactor is introduced from an inlet. In a denitration device in which the exhaust gas of an internal combustion engine is introduced into the exhaust gas and at the same time a reducing agent is sprayed into the exhaust gas to remove nitrogen oxides in the exhaust gas based on the catalytic reduction method and to release the nitrogen oxides from the exhaust portion. A rectifying layer for rectifying the uneven flow and the turbulent flow of the inflowing exhaust gas and for uniformizing the flow velocity of the gas is disposed in the reactor located between the introduction portion of the exhaust gas and the denitration agent.

【0014】この整流層は、多数の孔部が開口された上
板及び下板を所定間隙を保って配置し、この間隙内に多
数個の球状体を層状に並列して配置した構成体であり、
球状体として、前記ハニカム状脱硝剤を構成する触媒と
同材質の球体を用いた例を提供する。更に球状体の球面
上に多数個の突起を付設したことにより、該突起が相互
に接触して空間部を確保するように構成する。
The rectifying layer is a structure in which an upper plate and a lower plate having a large number of holes are arranged with a predetermined gap, and a large number of spherical bodies are arranged in layers in the gap. Yes,
Provided is an example in which a spherical body made of the same material as the catalyst constituting the honeycomb denitration agent is used as the spherical body. Further, by providing a large number of projections on the spherical surface of the spherical body, the projections are in contact with each other to secure a space.

【0015】かかる脱硝装置によれば、内燃機関からガ
ス密度が不均一な偏流及び乱流状態として脱硝装置に送
り込まれた排気ガスが反応器に流入するのと同時に噴霧
された還元剤のガスと一体となり、整流層に形成された
上板の孔部から層状に並列して配置された球状体内を通
過した後、下板の孔部から抜けて脱硝剤を通過し、選択
接触還元法の均一な主反応に基づいて排気ガスG中に含
まれている窒素酸化物(NOX)が除去されてから外方
に放出される。
According to such a denitration device, the exhaust gas sent from the internal combustion engine to the denitration device in the state of uneven flow and turbulent flow with a non-uniform gas density flows into the reactor and at the same time as the atomized reducing agent gas. After passing through the spherical body arranged in parallel from the hole of the upper plate formed in the rectifying layer in a layered manner, it passes through the hole of the lower plate and passes through the denitrification agent to achieve the uniformity of the selective catalytic reduction method. The nitrogen oxides (NO x ) contained in the exhaust gas G are removed based on such a main reaction and then released to the outside.

【0016】このような動作時に、反応器に流入する排
気ガスに偏流が存在すると、ガス流速の二乗に比例した
抵抗を受けて、整流層内でのガス流速が大きい部位の空
気抵抗が大きくなる一方で、ガス流速が小さい部位の空
気抵抗は小さくなり、排気ガスは抵抗の大きい部位から
抵抗の小さい部位に向けて流れる結果、整流層を通過し
たガスの流速はほぼ均一化されるとともに排気ガスの持
つ偏流とか乱流の整流効果が得られてガス密度が平均化
されるという動作態様が得られる。
[0016] During such operation, if there is a drift in the exhaust gas flowing into the reactor, it receives a resistance proportional to the square of the gas flow velocity, and the air resistance of the portion of the rectifying layer where the gas flow velocity is high increases. On the other hand, the air resistance in the area where the gas flow velocity is low becomes small, and the exhaust gas flows from the area where the resistance is high to the area where the resistance is low. It is possible to obtain an operation mode in which the gas density is averaged by obtaining the rectifying effect of the uneven flow and the turbulent flow.

【0017】又、前記球状体として、鋼球等に代えて脱
硝剤を構成する触媒と同材質の球体を採用することによ
り、整流作用に加えて選択接触還元法の主反応が効率良
く進行して脱硝効果が高められる。更に該球状体の球面
上に多数個の突起を付設したことにより、各球状体自体
の表面積が大きくなるとともに整流層内で突起が相互に
接触して空間部が確保され、排気ガスの量が多い場合で
も通風抵抗の増大がないという作用が得られる。
Further, by adopting, as the spherical body, a spherical body made of the same material as the catalyst constituting the denitration agent instead of the steel balls etc., the main reaction of the selective catalytic reduction method efficiently proceeds in addition to the rectifying action. The denitration effect is enhanced. Further, by providing a large number of protrusions on the spherical surface of the spherical body, the surface area of each spherical body itself is increased and the protrusions are in contact with each other in the rectifying layer to secure a space, and the amount of exhaust gas is reduced. Even if the number is large, the effect that the ventilation resistance does not increase can be obtained.

【0018】[0018]

【発明の実施の形態】以下図面に基づいて本発明にかか
る脱硝装置の実施例を、前記従来の構成部分と同一の構
成部分に同一の符号を付して詳述する。図1は本発明に
かかる脱硝装置10の具体的実施例を示す要部断面図で
あって、5は外郭、6は外郭5の内側に配置された断熱
材、7は断熱材6の内側に張設されたマッフルであり、
この外郭5と断熱材6及びマッフル7によって反応器1
が構成されている。9は排気ガスGの導入部、11は同
排出部である。本実施例ではマッフル7としてステンレ
ス板が用いられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the denitration apparatus according to the present invention will be described in detail below with reference to the drawings, in which the same reference numerals are given to the same components as those of the conventional one. FIG. 1 is a cross-sectional view of an essential part showing a concrete example of a denitration device 10 according to the present invention, in which 5 is an outer shell, 6 is a heat insulating material arranged inside the outer shell 5, and 7 is an inner wall of the heat insulating material 6. It is a stretched muffle,
The outer shell 5, the heat insulating material 6, and the muffle 7 make the reactor 1
Is configured. Reference numeral 9 is an exhaust gas G introduction portion, and 11 is an exhaust portion thereof. In this embodiment, a stainless plate is used as the muffle 7.

【0019】反応器1の内部には、ハニカム状に構成さ
れた多数個の触媒で成る脱硝剤2,2が積層配置されて
いる。各脱硝剤2,2の間には、断熱性と耐衝撃性を持
たせるためのスペーサ12,12が挿入されている。
Inside the reactor 1, denitration agents 2 and 2 composed of a large number of honeycomb-shaped catalysts are laminated and arranged. Spacers 12 and 12 for providing heat insulation and impact resistance are inserted between the respective denitration agents 2 and 2.

【0020】上記排気ガスGの導入部9の近傍部分に
は、外方から壁部を貫通して還元剤の流通管13が挿通
され、この流通管13の内方先端部にノズル14が固定
されているとともに該流通管13の他端部に還元剤が貯
留されたタンク4が配置されている。尚、ノズル14に
連結された還元剤の流通管13に加えて、圧縮空気の流
通管をも連結した2流体タイプのものを用いることも可
能である。
In the vicinity of the portion 9 for introducing the exhaust gas G, a reducing agent flow pipe 13 is inserted from the outside through the wall portion, and a nozzle 14 is fixed to the inner tip of the flow pipe 13. In addition, the tank 4 storing the reducing agent is arranged at the other end of the flow pipe 13. In addition to the reducing agent flow pipe 13 connected to the nozzle 14, it is also possible to use a two-fluid type in which a compressed air flow pipe is also connected.

【0021】そして排気ガスGの導入部9と脱硝剤2,
2との間に位置する反応器1内に、本発明の特徴的構成
体である整流層15が配設されている。この整流層15
は、図2に拡大して示したように多数の孔部16a,1
6aが開口された上板16と、同様に多数の孔部17
a,17aが開口された下板17とが所定間隙hを保っ
て配置されていて、この所定間隙h内に多数個の球状体
18,18が層状に並列して配置された構造を有してい
る。
Then, the introduction portion 9 for the exhaust gas G and the denitration agent 2,
A rectifying layer 15, which is a characteristic structure of the present invention, is disposed in the reactor 1 located between the rectifying layer 15 and the reactor 1. This rectifying layer 15
Is a large number of holes 16a, 1 as shown in FIG.
The upper plate 16 having the opening 6a and a large number of holes 17 similarly.
a and 17a are arranged with a lower plate 17 opened to maintain a predetermined gap h, and a large number of spherical bodies 18, 18 are arranged in layers in the predetermined gap h. ing.

【0022】球状体18,18として単に鋼球等の球体
を用いてもよいが、前記脱硝剤2,2を構成する触媒と
同材質の球体を採用することも好適である。
Although spherical bodies such as steel balls may be used as the spherical bodies 18, 18, spherical bodies made of the same material as the catalyst forming the denitration agents 2 and 2 are also preferably used.

【0023】かかる構成に基づく本実施例の動作を以下
に説明する。即ち、内燃機関から発生する排気ガスG
は、導入部9からガス密度が不均一な偏流もしくは乱流
状態として反応器1内に送り込まれるが、この排気ガス
Gの流入と同時に還元剤の流通管13を介してタンク4
内に貯留された還元剤をノズル14に供給して、還元剤
を排気ガスGの下流側に向けて噴霧する。
The operation of this embodiment based on the above configuration will be described below. That is, the exhaust gas G generated from the internal combustion engine
Is sent from the introduction part 9 into the reactor 1 as a nonuniform flow or turbulent flow with a non-uniform gas density. At the same time when the exhaust gas G flows in, the tank 4 passes through the reducing agent flow pipe 13.
The reducing agent stored inside is supplied to the nozzle 14, and the reducing agent is sprayed toward the downstream side of the exhaust gas G.

【0024】すると排気ガスGは還元剤のガスと一体と
なり、整流層15に形成された孔部16aから層状に並
列して配置された球状体18,18内を通過した後、孔
部17aを抜けてから脱硝剤2,2内を通過する。そし
て選択接触還元法の主反応(前記の1式を参照)に基づ
いて、排気ガスG中に含まれている窒素酸化物(N
X)が均一な脱硝反応により除去され、排出部11か
ら外方に放出される。
Then, the exhaust gas G becomes integral with the reducing agent gas, passes through the spherical bodies 18, 18 arranged in parallel in layers from the holes 16a formed in the rectifying layer 15, and then the holes 17a After passing through, it passes through the denitration agents 2 and 2. Then, based on the main reaction of the selective catalytic reduction method (see the above formula 1), the nitrogen oxides (N
O X) is removed by uniform denitration reaction, it is discharged from the discharging section 11 to the outside.

【0025】このような動作時に、特に反応器1の一方
側から流入する排気ガスGに偏流が存在するとガス流速
の二乗に比例した抵抗を受けるため、整流層15内での
ガス流速が大きい部位の空気抵抗が大きくなる一方で、
ガス流速が小さい部位の空気抵抗は小さくなることか
ら、排気ガスGは抵抗の大きい部位から抵抗の小さい部
位に向けて流れることになり、その結果として整流層1
5を通過したガスの流速はほぼ均一化されることにな
る。従ってこの整流層15によって排気ガスGの持つ偏
流とか乱流の整流効果が得られ、ガス密度が平均化され
るという動作態様が得られる。
During such an operation, if there is a drift in the exhaust gas G flowing from one side of the reactor 1, resistance is proportional to the square of the gas flow velocity, so that the gas flow velocity in the rectifying layer 15 is large. While the air resistance of the
Since the air resistance of the portion where the gas flow velocity is low becomes small, the exhaust gas G flows from the portion where the resistance is high to the portion where the resistance is low, and as a result, the rectification layer 1
The flow velocity of the gas that has passed through 5 is almost uniform. Therefore, the rectifying layer 15 can provide a rectifying effect of the turbulent flow and the uneven flow of the exhaust gas G, and an operation mode in which the gas density is averaged is obtained.

【0026】又、整流層15内の球状体18,18とし
て、鋼球等に代えて脱硝剤2,2を構成する触媒と同材
質の球体を採用することにより、整流作用に加えて選択
接触還元法の主反応が効率良く進行するので、脱硝効果
をより一層高めることができる。
Further, as the spherical bodies 18, 18 in the rectifying layer 15, spheres made of the same material as the catalyst constituting the denitration agents 2, 2 are adopted in place of steel balls or the like, so that the rectifying action and the selective contact can be achieved. Since the main reaction of the reduction method proceeds efficiently, the denitration effect can be further enhanced.

【0027】図3は本発明で採用した前記球状体18に
代えて、該球状体18の球面上に多数個の突起18a,
18aを付設した他の実施例を示す。このような突起1
8a,18aを付設したことにより、該突起18a,1
8aが相互に接触して空間部を確保するので、単に球状
体18を並列に配置した場合に較べて各球状体18自体
の表面積が大きくなるとともに該球状体18,18間の
間隙を広くとることができるので、処理すべき排気ガス
Gの量が多い場合でも通風抵抗の増大がなく、エンジン
等のNOX発生源の動作に悪影響を及ぼすことがないと
いう作用が得られる。
FIG. 3 shows that, instead of the spherical body 18 employed in the present invention, a large number of protrusions 18a,
Another embodiment in which 18a is attached is shown. Such a protrusion 1
By attaching 8a, 18a, the protrusions 18a, 1
Since 8a are in contact with each other to secure a space, the surface area of each spherical body 18 itself becomes large and the gap between the spherical bodies 18 is widened as compared with the case where the spherical bodies 18 are simply arranged in parallel. Therefore, even if the amount of the exhaust gas G to be treated is large, the ventilation resistance does not increase and the operation of the NO x generation source such as the engine is not adversely affected.

【0028】尚、本実施例では整流層15を排気ガスG
の導入部9よりも拡管された反応器1内に配設した例と
して説明したが、整流層15を拡管前の配管中に配設し
た場合には、管の拡がりに対しても別途に格子状の整流
器が必要となる。又、ノズル14よりも下流側に整流層
15を配設したことにより、ガス流が乱れている状態の
方が還元剤の混合が効率良く行われること、及び噴霧さ
れた還元剤が気化するために必要とする時間を考慮する
と、ノズル14はかなり上流側に設置することがことが
好ましく、且つ混合ガスが整流されるのと同時に還元剤
との混合が促進されることからも整流層15とノズル1
4は必然的に図1に示した位置に配置するのが好まし
い。
In this embodiment, the rectifying layer 15 is set to the exhaust gas G.
Although it has been described as an example in which the rectification layer 15 is arranged in the pipe before the pipe expansion, the grid is separately provided for the pipe expansion. Shaped rectifier is required. Further, by disposing the rectifying layer 15 on the downstream side of the nozzle 14, the reducing agent is mixed more efficiently when the gas flow is disturbed, and the sprayed reducing agent is vaporized. In consideration of the time required for the above, it is preferable to install the nozzle 14 at a considerably upstream side, and since the mixed gas is rectified, the rectification layer 15 and the rectification layer 15 are also promoted because mixing with the reducing agent is promoted. Nozzle 1
Inevitably, 4 is preferably arranged in the position shown in FIG.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明にか
かる脱硝装置によれば、反応器に流入する排気ガスに偏
流とか乱流が存在しても、整流層を通過したガスの流速
はほぼ均一化されるとともに排気ガスの持つ偏流及び乱
流の整流効果が得られてガス密度が平均化され、排気ガ
ス全体に対して触媒に基づく均一な脱硝効果を得ること
ができる。従って周囲のスペースとかレイアウトの都合
上から反応器内に排気ガスを送り込む配管を曲折した
り、反応器内に流入する直前で急角度に曲げた場合に生
じやすい排気ガスの偏流もしくは乱流の状態にも的確に
対処可能となり、偏流,乱流状態が反応器の出口まで残
ることがなく、排気ガスがノズルから噴霧された還元剤
と充分に混合されて脱硝剤内を通過するので、還元剤濃
度が均一となって脱硝効率を向上させることができる。
As described in detail above, according to the denitration apparatus of the present invention, even if the exhaust gas flowing into the reactor has a drift or a turbulent flow, the flow velocity of the gas passing through the rectifying layer is It is possible to obtain a uniform denitration effect based on the catalyst for the entire exhaust gas, because the gas density is averaged by obtaining the rectification effect of the uneven flow and the turbulent flow of the exhaust gas. Therefore, due to the surrounding space or layout, the piping for sending the exhaust gas into the reactor may be bent, or the exhaust gas may have a lopsided or turbulent flow condition when it is bent at a steep angle immediately before it enters the reactor. The exhaust gas is mixed with the reducing agent sprayed from the nozzle and passes through the denitration agent without any unbalanced or turbulent flow remaining at the outlet of the reactor. The concentration becomes uniform and the denitration efficiency can be improved.

【0030】前記球状体として、鋼球等に代えて脱硝剤
を構成する触媒と同材質の球体を採用することにより、
整流作用に加えて選択接触還元法の主反応が効率良く進
行して脱硝効果を高めることができる。更に該球状体の
球面上に多数個の突起を付設したことにより、各球状体
自体の表面積が大きくなるとともに整流層内で突起が相
互に接触して空間部が確保されるので、排気ガスの量が
多い場合でも通風抵抗の増大がないという効果が得られ
る。更に装置自体に設置条件に伴う格別の設計変更を要
しない上、広い設置スペースは不要であって、設置に要
するコスト増大を招来する惧れはない。
By adopting, as the spherical body, a spherical body made of the same material as the catalyst constituting the denitration agent instead of the steel balls,
In addition to the rectifying action, the main reaction of the selective catalytic reduction method efficiently proceeds to enhance the denitration effect. Further, by providing a large number of projections on the spherical surface of the spherical body, the surface area of each spherical body itself is increased and the projections are in contact with each other in the rectifying layer to secure a space, so that exhaust gas Even if the amount is large, the effect that the ventilation resistance does not increase can be obtained. Further, the device itself does not require any special design change according to the installation conditions, and a large installation space is not required, so that the cost required for installation is not likely to increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した脱硝装置の一実施例の構成を
示す要部断面図。
FIG. 1 is a cross-sectional view of essential parts showing the configuration of an embodiment of a denitration device to which the present invention has been applied.

【図2】図1の要部を拡大して示す斜視図。FIG. 2 is a perspective view showing an enlarged main part of FIG.

【図3】図1で用いた球状体の変形例を示す正面図。FIG. 3 is a front view showing a modified example of the spherical body used in FIG.

【図4】従来の脱硝装置の構成を示す概要図。FIG. 4 is a schematic diagram showing the configuration of a conventional denitration device.

【符号の説明】[Explanation of symbols]

1…反応器 2…脱硝剤 4…(還元剤の)タンク 5…外郭 6…断熱材 7…マッフル 9…導入部 10…脱硝装置 11…排出部 12…スペーサ 13…(還元剤の)流通管 14…ノズル 15…整流層 16…上板 17…下板 16a,17a…孔部 18…球状体 18a…突起 DESCRIPTION OF SYMBOLS 1 ... Reactor 2 ... Denitration agent 4 ... (reducing agent) tank 5 ... Outer shell 6 ... Thermal insulation material 7 ... Muffle 9 ... Introducing part 10 ... Denitration device 11 ... Discharging part 12 ... Spacer 13 ... (reducing agent) distribution pipe 14 ... Nozzle 15 ... Straightening layer 16 ... Upper plate 17 ... Lower plate 16a, 17a ... Hole part 18 ... Spherical body 18a ... Protrusion

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 B01D 53/34 129E ZAB 53/36 101A 3/28 301 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01N 3/24 B01D 53/34 129E ZAB 53/36 101A 3/28 301

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 密閉型の反応器内部にハニカム状に構成
された触媒で成る脱硝剤を積層配置し、導入部から該反
応器内に内燃機関の排気ガスを流入すると同時に該排気
ガス中に還元剤を噴霧して、接触還元法に基づいて排気
ガス中の窒素酸化物を除去し、排出部から放出するよう
にした脱硝装置において、 上記排気ガスの導入部と脱硝剤との間に位置する反応器
内に、流入する排気ガスの偏流及び乱流を整流するとと
もに、ガスの流速を均一化する整流層を配設したことを
特徴とする脱硝装置。
1. A denitrifying agent comprising a honeycomb-shaped catalyst is laminated in a closed reactor, and exhaust gas of an internal combustion engine is introduced into the reactor from an introduction portion and is simultaneously introduced into the exhaust gas. In a denitration device in which a reducing agent is sprayed to remove nitrogen oxides in exhaust gas based on the catalytic reduction method and is discharged from an exhaust portion, a denitration device is placed between the introduction portion of the exhaust gas and the denitration agent. A denitration device having a rectifying layer for rectifying the uneven flow and the turbulent flow of the inflowing exhaust gas and for uniformizing the gas flow velocity in the reactor.
【請求項2】 前記整流層は、多数の孔部が開口された
上板及び下板を所定間隙を保って配置し、この間隙内に
多数個の球状体を層状に並列して配置した構成体でなる
請求項1記載の脱硝装置。
2. The rectifying layer has a structure in which an upper plate and a lower plate having a large number of holes are arranged with a predetermined gap, and a large number of spherical bodies are arranged in layers in the gap. The denitration apparatus according to claim 1, which is a body.
【請求項3】 前記球状体として、ハニカム状脱硝剤を
構成する触媒と同材質の球体を用いた請求項1,2記載
の脱硝装置。
3. The denitration device according to claim 1, wherein the spherical body is a spherical body made of the same material as the catalyst constituting the honeycomb denitration agent.
【請求項4】 前記球状体の球面上に多数個の突起を付
設したことにより、該突起が相互に接触して空間部を確
保するようにした請求項1,2,3記載の脱硝装置。
4. The denitration device according to claim 1, wherein a plurality of protrusions are provided on the spherical surface of the spherical body so that the protrusions come into contact with each other to secure a space.
JP7252190A 1995-09-29 1995-09-29 Nox removal system Pending JPH0988558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7252190A JPH0988558A (en) 1995-09-29 1995-09-29 Nox removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7252190A JPH0988558A (en) 1995-09-29 1995-09-29 Nox removal system

Publications (1)

Publication Number Publication Date
JPH0988558A true JPH0988558A (en) 1997-03-31

Family

ID=17233758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7252190A Pending JPH0988558A (en) 1995-09-29 1995-09-29 Nox removal system

Country Status (1)

Country Link
JP (1) JPH0988558A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447248B1 (en) * 2002-01-22 2004-09-07 주성엔지니어링(주) Gas diffusion plate for use in ICP etcher
KR100589201B1 (en) * 2004-08-06 2006-06-14 한국과학기술연구원 Gas distributor
KR100820284B1 (en) * 2006-11-22 2008-04-07 주식회사 크린어스 Diesel particulate filter for diesel vehicles having cleaning ball for preventing plugging of diesel oxidation catalyst
JP2012167865A (en) * 2011-02-14 2012-09-06 Ulvac-Riko Inc Heat treatment device
JP2015222163A (en) * 2014-05-23 2015-12-10 三菱日立パワーシステムズ株式会社 Denitration equipment and catalytic exchange method
JP2019076897A (en) * 2019-01-09 2019-05-23 三菱日立パワーシステムズ株式会社 Denitration facility and catalytic exchange method
JP2020034530A (en) * 2018-08-31 2020-03-05 国立研究開発法人理化学研究所 Inspection device and inspection method using terahertz wave

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447248B1 (en) * 2002-01-22 2004-09-07 주성엔지니어링(주) Gas diffusion plate for use in ICP etcher
US7156950B2 (en) 2002-01-22 2007-01-02 Jusung Engineering Co., Ltd Gas diffusion plate for use in ICP etcher
KR100589201B1 (en) * 2004-08-06 2006-06-14 한국과학기술연구원 Gas distributor
KR100820284B1 (en) * 2006-11-22 2008-04-07 주식회사 크린어스 Diesel particulate filter for diesel vehicles having cleaning ball for preventing plugging of diesel oxidation catalyst
JP2012167865A (en) * 2011-02-14 2012-09-06 Ulvac-Riko Inc Heat treatment device
JP2015222163A (en) * 2014-05-23 2015-12-10 三菱日立パワーシステムズ株式会社 Denitration equipment and catalytic exchange method
JP2020034530A (en) * 2018-08-31 2020-03-05 国立研究開発法人理化学研究所 Inspection device and inspection method using terahertz wave
WO2020045444A1 (en) * 2018-08-31 2020-03-05 国立研究開発法人理化学研究所 Method and apparatus for inspection using terahertz wave
JP2019076897A (en) * 2019-01-09 2019-05-23 三菱日立パワーシステムズ株式会社 Denitration facility and catalytic exchange method

Similar Documents

Publication Publication Date Title
JP3409593B2 (en) Denitration equipment with shielding plate
KR100366679B1 (en) Static mixer
US7380395B2 (en) Exhaust gas system
CN102132016B (en) Catalytic devices for converting urea to ammonia
FI119682B (en) Katalytenhet
WO2012118331A4 (en) System for denitrifying exhaust gas having a noise-damping structure
WO2006009056A1 (en) Exhaust purification apparatus for engine
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
KR101608720B1 (en) Exhaust gas purification system
US8470253B2 (en) Exhaust flow distribution device
JPH0988558A (en) Nox removal system
JP5203446B2 (en) Apparatus for catalytic treatment of automobile exhaust gas, method for its production and use
RU2410561C2 (en) Exhaust system for waste gases with device for processing waste gases and heat exchanger in pipeline of exhaust gas recirculation (versions)
WO2013090484A1 (en) Fluid injection lance with balanced flow distribution
JP2006077576A (en) Denitration reactor
KR102150213B1 (en) Catalyst Integrated Dust Collector
EP2370676B1 (en) Baffle for distribution of exhaust flow
JP4273011B2 (en) SCR muffler
JP3686666B1 (en) Engine exhaust purification system
JP3590874B2 (en) Exhaust gas denitration equipment
KR101724429B1 (en) Exhaust gas denitrifing system having noise-reduction structure
US20050047982A1 (en) Engine emissions nox reduction
JP3409617B2 (en) Denitration equipment
WO2004060561A1 (en) Honeycomb catalyst, denitration catalyst of denitration device, and exhaust gas denitration device