WO2020045444A1 - Method and apparatus for inspection using terahertz wave - Google Patents

Method and apparatus for inspection using terahertz wave Download PDF

Info

Publication number
WO2020045444A1
WO2020045444A1 PCT/JP2019/033540 JP2019033540W WO2020045444A1 WO 2020045444 A1 WO2020045444 A1 WO 2020045444A1 JP 2019033540 W JP2019033540 W JP 2019033540W WO 2020045444 A1 WO2020045444 A1 WO 2020045444A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz wave
working space
inspection
terahertz
gas
Prior art date
Application number
PCT/JP2019/033540
Other languages
French (fr)
Japanese (ja)
Inventor
南出 泰亜
耕二 縄田
佑馬 瀧田
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Publication of WO2020045444A1 publication Critical patent/WO2020045444A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to an apparatus and a method for inspecting an inspection object using terahertz waves.
  • Terahertz waves are electromagnetic waves having a frequency of about 1 terahertz (10 12 Hz). Terahertz waves have the property of transmitting various substances. Terahertz waves are generated by making excitation light incident on a nonlinear optical crystal. An apparatus for inspecting a substance using terahertz waves is described in, for example, Patent Document 1.
  • the generated terahertz wave is incident on the measurement sample, and the spectrum of the terahertz wave absorbed by the measurement sample is obtained based on the terahertz wave transmitted through the measurement sample.
  • a terahertz wave it is possible to inspect whether or not an inspection target (for example, gas, solid, or the like) contains a target component. That is, a terahertz wave is introduced into a test object, a spectrum of the terahertz wave absorbed by the test object is obtained, and the presence or absence of the target component can be inspected based on the spectrum. In this case, it is desired to increase the detection accuracy of the target component.
  • an inspection target for example, gas, solid, or the like
  • a gas to be inspected (hereinafter also referred to as an inspection target gas) contains a target component
  • the terahertz wave is used to check whether or not the target component exists in the gas in the space area without propagating the terahertz wave to a space area through which a person passes (a ticket gate at a station, a security gate at an airport or a building, etc.). It is desired. In that case, it is desired that the inspection and discrimination of the target component be performed at a high speed so as not to hinder traffic and the like.
  • a device for inspecting a test object (gas, solid, or the like) using a terahertz wave is not only a terahertz wave generator that generates a terahertz wave, but also a terahertz for detecting a terahertz wave after interacting with the test object.
  • a wave detection device is provided.
  • the terahertz wave generator includes an excitation light source, a nonlinear optical crystal that generates a terahertz wave by excitation light from the excitation light source, and the like.
  • the terahertz wave detection device includes a non-linear optical crystal that generates a signal light by the terahertz wave and the excitation light after interacting with the inspection target, a detector that detects the signal light, and the like.
  • the device for inspecting the inspection object using the terahertz wave includes the terahertz wave generator and the terahertz wave detector each including a plurality of components, the total number of components increases. Therefore, it is desired to make the configuration of the device for inspecting the terahertz wave more compact.
  • a first object of the present invention is to increase the detection sensitivity of a target component included in a test object.
  • a second object of the present invention is to enable high-speed inspection of gas in a space region to be inspected by the terahertz wave without transmitting the terahertz wave to the space region to be inspected.
  • a third object of the present invention is to make the configuration of an inspection apparatus using terahertz waves more compact.
  • an inspection apparatus using a terahertz wave includes: A terahertz wave generator for generating a terahertz wave, An interaction unit having an operation space in which the terahertz wave is introduced and an inspection target is present; A terahertz wave detection device that generates detection data based on the terahertz wave that has interacted with the test object in the working space (transmitted, reflected, scattered) and passed through the working space, and outputs the detected data,
  • the interaction unit has a reflecting surface that reflects the terahertz wave in the working space, and the terahertz wave passes through the working space a plurality of times by being reflected by the reflecting surface, and The light is incident on the terahertz wave detection device located outside the space.
  • the inspection method using terahertz waves in the inspection method using terahertz waves according to the first aspect of the present invention, (A) generating a terahertz wave, (B) introducing the terahertz wave into the working space where the test object is present, and causing the terahertz wave to interact with the test object in the working space; (C) generating detection data based on the terahertz wave from the working space, outputting the detection data, In (B), the terahertz wave passes through the working space a plurality of times by being reflected by a reflecting surface in the working space.
  • an inspection apparatus using a terahertz wave comprises: A terahertz wave generator for generating a terahertz wave, The terahertz wave and the gas to be tested are introduced, and an interaction unit having an action space for allowing the two to interact with each other, A terahertz wave detection device that generates detection data based on the terahertz wave that has passed through the working space and outputs the detection data,
  • the interaction unit includes a space forming body that forms the working space, The working space has an inlet communicating with the outside, and an external gas can flow into the working space as the test gas through the inlet.
  • the inspection method using terahertz waves according to the second aspect of the present invention, (A) generating a terahertz wave, (B) introducing the terahertz wave into the working space where the gas to be tested is present, and allowing the terahertz wave to interact with the gas to be tested in the working space; (C) generating detection data based on the terahertz wave from the working space, outputting the detection data,
  • the working space has an inlet communicating with the outside, and an external gas flows into the working space through the inlet as a gas to be inspected.
  • an inspection apparatus using a terahertz wave includes: A terahertz wave generator that generates a terahertz wave and introduces the terahertz wave into an inspection target area; A terahertz wave detection device that outputs detection data based on the terahertz wave that has passed through the inspection target area,
  • the terahertz wave generator includes an excitation light source that generates excitation light, and a nonlinear optical crystal that generates a terahertz wave when the excitation light is incident so as to satisfy an angle phase matching condition for generation.
  • the terahertz wave detection device the non-linear optical crystal that generates signal light from the terahertz wave and the excitation light by being incident so that the terahertz wave from the inspection target area satisfies the angular phase matching condition for detection
  • a detector that outputs detection data based on the signal light,
  • the nonlinear optical crystal is shared by the terahertz wave generator and the terahertz wave detector.
  • the inspection method using terahertz waves in the inspection method using terahertz waves according to the third aspect of the present invention, (A) generating a terahertz wave, (B) introducing the terahertz wave into a region to be inspected, (C) generating detection data based on the terahertz wave passed through the inspection target area, outputting the detection data,
  • the terahertz wave is generated by the excitation light being incident on the nonlinear optical crystal so as to satisfy the angle phase matching condition for generation
  • the terahertz wave from the inspection target region is incident on the nonlinear optical crystal so as to satisfy the angle phase matching condition for detection, so that signal light is generated from the terahertz wave and the excitation light.
  • Generating the detection data based on the signal light The non-linear optical crystal is shared between (A) and (C).
  • the terahertz wave introduced into the working space passes through the working space a plurality of times by being reflected by the reflection surface, so that the terahertz wave transmits through the working object a plurality of times in the working space. Or it can be reflected or scattered by the test object.
  • the presence or absence of the target component included in the inspection target can be inspected based on the terahertz wave that has interacted more with the inspection target (such as a gas or a solid). Therefore, the detection sensitivity of the target component is increased.
  • an external gas can flow into the working space through the inlet as the gas to be inspected. Therefore, even if the terahertz wave is not propagated to the space region to be inspected, the gas in the space region can be inspected by the terahertz wave by flowing the gas in the external space region into the working space through the inlet as the gas to be inspected. . Further, in the inspection using terahertz waves, the gas can be inspected at high speed because the gas need not be pre-processed.
  • the non-linear optical crystal is used for both the generation of the terahertz wave to be introduced into the inspection target region and the generation of the signal light by the terahertz wave passing through the inspection target region. Therefore, since it is not necessary to provide a nonlinear optical crystal for each of the generation of the terahertz wave and the generation of the signal light, the configuration of the inspection apparatus using the terahertz wave can be made more compact.
  • FIG. 1 shows a configuration of an inspection device according to a first embodiment of the present invention.
  • 3 shows a relationship between wave number vectors according to the first embodiment.
  • FIG. 3 is a sectional view taken along line III-III of FIG. 1. It is explanatory drawing of the effect
  • 5 shows a configuration of an inspection device according to a second embodiment of the present invention. 9 shows a relationship between wave number vectors in the second embodiment. The configuration when a resonator is provided is shown. 7 shows a configuration of an inspection device according to a modification.
  • FIG. 10 is a view taken in the direction of arrows XX in FIG. 9.
  • FIG. 1 shows a configuration of an inspection apparatus 100 according to a first embodiment of the present invention.
  • the inspection apparatus 100 is an apparatus for inspecting an inspection target gas using the terahertz wave Lt. That is, the inspection apparatus 100 is an apparatus that generates a terahertz wave Lt, introduces the terahertz wave Lt into the inspection target gas, and generates and outputs detection data based on the terahertz wave Lt that has passed through the inspection target gas.
  • This detection data includes information on the components of the gas to be inspected. Therefore, the components of the gas to be inspected can be detected based on the detection data.
  • the inspection device 100 includes a terahertz wave generation device 10, an interaction unit 20, and a terahertz wave detection device 30.
  • the terahertz wave generator 10 generates a terahertz wave Lt, and introduces the terahertz wave Lt into a later-described working space 7 of the interaction unit 20.
  • the terahertz wave generator 10 includes an excitation light source 1, a nonlinear optical crystal 3, and an introduction optical system 5. Is provided.
  • the excitation light source 1 generates the excitation light Lp and causes the excitation light Lp to enter the nonlinear optical crystal 3.
  • the excitation light Lp is also called pump light.
  • the excitation light source 1 generates near-infrared light as the excitation light Lp.
  • Pumping light Lp excitation light source 1 is produced, which may have a spectral peak occurs at a predetermined wavelength (corresponding to the angular frequency omega p1 below), for example, it may have a single wavelength.
  • the excitation light Lp may be pulsed light.
  • the time width of this pulsed light may be on the order of sub-nanoseconds (for example, a value of 1 ⁇ 10 ⁇ 10 seconds or more and less than 1 ⁇ 10 ⁇ 9 seconds).
  • the excitation light source 1 may be, for example, a Q-switched Nd: YAG laser, but is not limited to this.
  • the nonlinear optical crystal 3 generates the terahertz wave Lt and the idler light Li when the excitation light Lp is incident from the excitation light source 1 so as to satisfy an angle phase matching condition for generation described below.
  • the angle phase matching condition for generation includes the following energy conservation law and momentum conservation law.
  • Energy conservation law: ⁇ p1 ⁇ i1 + ⁇ T1
  • Law of conservation of momentum: k p1 ki 1 + k T1
  • ⁇ p1 is the angular frequency of the pump light Lp
  • ⁇ i1 is the angular frequency of the idler light Li
  • ⁇ T1 is the angular frequency of the terahertz wave Lt.
  • k p1 is a wave vector of the excitation light Lp
  • ki 1 is a wave vector of the idler light Li
  • k T1 is a wave vector of the terahertz wave Lt.
  • FIG. 2 shows a part of FIG. FIG. 2 shows the relationship between wave number vectors k p1 , k i1 , and k T1 .
  • the wave vector k i1 of the idler light Li is a wave vector of the idler light Li before being reflected, assuming that the idler light Li is reflected at the reflection position Pr.
  • the excitation light Lp from the excitation light source 1 is incident on the side surface 3a of the nonlinear optical crystal 3 and totally reflected at the reflection position Pr on the end surface 3b.
  • the terahertz wave Lt and the idler light Li are generated according to the angle phase matching condition for generation.
  • the nonlinear optical crystal 3 may be, for example, a LiNbO 3 crystal.
  • the nonlinear optical crystal 3 has a trapezoidal shape when viewed from a direction perpendicular to the plane of the drawing.
  • each surface of the nonlinear optical crystal 3 that intersects with the plane of FIG. 1 may be a plane orthogonal to the plane of FIG.
  • the wavelength of the idler light Li has a certain width because a seed light or a resonator described later is not used. Since the traveling direction of the idler light Li complies with the angular phase matching condition for generation for each wavelength, the idler light Li has a certain spread as shown in FIG. Further, according to each wavelength of the idler light Li, the wavelength of the terahertz wave Lt has a certain width according to the angle phase matching condition for generation. Since the direction in which the terahertz wave Lt is emitted from the end face 3b is in accordance with the angle phase matching condition for generation for each wavelength, the terahertz wave Lt has a certain extent as shown in FIG. The terahertz wave component having the center wavelength in the wavelength width of the terahertz wave Lt may be emitted from the end face 3b in a direction substantially orthogonal to the end face 3b.
  • the introduction optical system 5 introduces the terahertz wave Lt emitted from the nonlinear optical crystal 3 into the working space 7.
  • the introduction optical system 5 includes a reflection mirror 5a and a lens 5b.
  • the reflection mirror 5 a reflects the terahertz wave Lt from the nonlinear optical crystal 3 so as to guide it to the working space 7.
  • the lens 5b adjusts the degree of convergence (spread) of the terahertz wave Lt.
  • the lens 5b may be a condenser lens.
  • FIG. 3 is a sectional view taken along the line III-III of FIG.
  • the interaction unit 20 has the working space 7 into which the terahertz wave Lt and the gas to be tested are introduced. In the working space 7, the terahertz wave Lt and the gas to be inspected interact.
  • the interaction unit 20 has the reflecting surface 8 that reflects the terahertz wave Lt in the working space 7.
  • the terahertz wave Lt introduced into the working space 7 is reflected by the reflecting surface 8 so as to pass through the working space 7 a plurality of times and enter the terahertz wave detecting device 30 located outside the working space 7. It has become.
  • the reflection surface 8 (an inner peripheral surface 8 described later) is formed of a material (for example, metal) that reflects a terahertz wave.
  • the interaction unit 20 includes the space forming body 9, the introduction path forming body 11, the discharge path forming body 13, the gas flow generating device 15, and the rectifying section 16.
  • the space forming body 9 forms the working space 7 inside. Further, the space forming body 9 has an introduction portion 9a into which the terahertz wave Lt is introduced.
  • the introduction portion 9a is formed of a material through which the terahertz wave Lt passes.
  • the working space 7 has an inlet 7a and an outlet 7b communicating with the outside. External gas can flow into the working space 7 through the inlet 7a as a gas to be inspected. Further, the gas in the working space 7 can flow out to the outside through the outlet 7b.
  • the inlet 7a and the outlet 7b are located, for example, so as to sandwich a region through which the terahertz wave Lt passes in the working space 7.
  • the working space 7 may be sealed to the outside except for the inlet 7a and the outlet 7b.
  • the space forming body 9 has an inner peripheral surface as the above-mentioned reflecting surface 8.
  • the inner peripheral surface 8 extends so as to surround the working space 7 and divides the working space 7.
  • the inner peripheral surface 8 is circular when viewed from the central axis direction of the inner peripheral surface 8 (a direction perpendicular to the paper surface of FIG. 1), and defines a cylindrical area.
  • the terahertz wave Lt is sequentially reflected at a plurality of positions (positions P1 to P8 in the example of FIG. 1) on the inner peripheral surface 8 in the working space 7, and then enters the terahertz wave detection device 30.
  • the terahertz wave Lt that has passed through the working space 7 a plurality of times propagates to the terahertz wave detecting device 30 located outside the working space 7 by passing through the introduction portion 9a.
  • “to pass through the working space 7 a plurality of times” means that a terahertz wave is transferred from one position on a surface (the inner peripheral surface 8 and the introduction portion 9a) defining the working space 7 to another position on the surface. This means that the propagation of the wave Lt is performed twice or more.
  • the introduction path forming body 11 forms an introduction path 11a extending from the introduction port 7a.
  • the introduction path 11a has an intake port 11b that opens to the outside on the side opposite to the introduction port 7a.
  • the introduction path forming body 11 may be a deformable (for example, deformable) pipe. In this case, the pipe 11 is connected to the space forming body 9.
  • the introduction path forming body 11 is not limited to this, and may be any as long as the introduction path 11a is formed inside.
  • the discharge path forming body 13 forms a discharge path 13a extending from the discharge port 7b.
  • the discharge path 13a has an outlet 13b that opens to the outside on the side opposite to the discharge port 7b.
  • the discharge path forming body 13 may be a deformable (for example, deformable) pipe. In this case, the pipe 13 is connected to the space forming body 9.
  • the discharge path forming body 13 is not limited to this, and may be any as long as the discharge path 13a is formed inside.
  • the gas flow generator 15 generates a gas flow that flows into the working space 7 from the outside through the inlet 7a.
  • the gas flow generator 15 may be, for example, a blower (fan).
  • the blower 15 is provided on the discharge path forming body 13.
  • the blower 15 is a suction device that sucks gas from the outside into the working space 7 through the introduction port 7a by sending the gas in the working space 7 to the outside from the outlet 13b through the outlet 7b and the discharge path 13a. Function.
  • the blower 15 may be provided in the introduction path forming body 11 (for example, the intake port 11b), or in the working space 7 in a region that does not interfere with the terahertz wave Lt (for example, the introduction port 7a or (Near the discharge port 7b).
  • the rectifying unit 16 is provided in the working space 7 between a region through which the terahertz wave Lt passes (hereinafter, simply referred to as a passing region) and the inlet 7a.
  • the rectification unit 16 reduces the difference in the flow rate of the gas to be inspected between the positions in the passage area.
  • the flow straightening unit 16 may be, for example, a plate-like or mesh-like member (for example, a metal mesh) having a large number of holes formed therein.
  • a plate-like or mesh-like member extends two-dimensionally in parallel with the propagation direction of the terahertz wave Lt in the working space 7 and is arranged so as to separate the passage area and the area on the inlet 7a side. .
  • the interaction unit 20 may include a rectification unit 17 in addition to the rectification unit 16.
  • the rectifying section 17 is provided in the working space 7 between the passage area and the outlet 7b.
  • the rectifying unit 17 reduces the difference in the flow rate of the gas to be inspected between the positions in the passage area.
  • Such a rectifier 17 may have the same configuration as the rectifier 16. That is, the flow regulating unit 17 is, for example, a plate-shaped or mesh-shaped member having a large number of holes formed therein. It may be arranged so as to extend two-dimensionally in parallel with the propagation direction of the terahertz wave Lt in the working space 7 and to separate the passage area from the area on the outlet 7b side.
  • FIG. 4 is an explanatory diagram of the operation of the inner peripheral surface 8 described above. 4 corresponds to the propagation direction of the terahertz wave Lt. Further, in FIG. 4, broken lines indicate respective positions P0 to P9 in the propagation direction of the terahertz wave Lt. That is, P0 indicates the position of the condenser lens 5b in FIG. 1, P1 to P8 indicate the position (local region) of the inner peripheral surface 8 as shown in FIG. 1, and P9 indicates the position of the condenser lens 18e described later. Indicates the position. In FIG. 4, a polygonal line indicated by a solid line indicates a propagation path of the terahertz wave Lt.
  • the terahertz wave Lt emitted from the nonlinear optical crystal 3 propagates so as to focus on an intermediate point between adjacent pairs of positions P1 to P9. Therefore, the terahertz wave Lt is reflected on the inner peripheral surface 8 while its spread is being adjusted, so that even if it is reflected many times on the inner peripheral surface 8, the terahertz wave Lt is stably guided to the terahertz wave detection device 30.
  • Each of the local regions P1 to P8 has an arc shape when viewed in the central axis direction of the inner peripheral surface 8.
  • each of the local regions P1 to P8 may have another shape that reflects terahertz such that the terahertz is focused at the center between each pair of adjacent local regions as described above.
  • the inner peripheral surface 8 may not be circular when viewed in the direction of the central axis.
  • each of the local regions P1 to P8 may be a plane.
  • the inner peripheral surface 8 may be a polygon including the planes P1 to P8 when viewed in the direction of the central axis.
  • the shape of the inner peripheral surface 8 is set so that the terahertz wave introduced into the working space 7 from the introduction part 9a passes through the working space 7 a plurality of times and then propagates outside the working space 7 through the introduction part 9a. It should just be done.
  • the terahertz wave detection device 30 outputs detection data based on the terahertz wave Lt generated by the terahertz wave generation device 10 and having passed through the working space 7 a plurality of times.
  • the terahertz wave detection device 30 includes the excitation light source 1, the nonlinear optical crystal 3, the incident optical system 18, and the detector 19.
  • the excitation light source 1 and the nonlinear optical crystal 3 are shared by the terahertz wave generator 10 and the terahertz wave detector 30 and have the above-described configuration.
  • the nonlinear optical crystal 3 When the terahertz wave Lt from the working space 7 is incident on the nonlinear optical crystal 3 so as to satisfy the angle phase matching condition for detection, the nonlinear optical crystal 3 generates the terahertz wave Lt and the pump light generated by the pump light source 1.
  • the signal light Ls is generated from Lp.
  • the angle phase matching condition for detection includes the following energy conservation law and momentum conservation law.
  • ⁇ p2 is the angular frequency of the pump light Lp and is equal to ⁇ p1 described above.
  • the excitation light Lp is the excitation light Lp reflected by the reflection mirror 21 in the example of FIG.
  • ⁇ s2 is the angular frequency of the signal light Ls
  • ⁇ T2 is the angular frequency of the terahertz wave Lt, and is equal to ⁇ T1 described above.
  • k p2 is a wave vector of the pump light Lp
  • k s2 is a wave vector of the signal light Ls
  • k T2 is a wave vector of the terahertz wave Lt incident on the nonlinear optical crystal 3.
  • FIG. 2 shows the relationship between these wave number vectors k p2 , k s2 , and k T2 .
  • the reflection mirror 21 is a component of the terahertz wave detection device 30, and reflects the excitation light Lp emitted from the excitation light source 1 and reflected at the reflection position Pr to the reflection position Pr again.
  • the excitation light Lp reflected by the reflection mirror 21 is reflected again at the reflection position Pr and is absorbed by the isolator 23. Note that the isolator 23 transmits the excitation light Lp from the excitation light source 1 toward the reflection position Pr.
  • the incident optical system 18 guides the terahertz wave Lt from the working space 7 to the nonlinear optical crystal 3 and causes the terahertz wave Lt to enter the nonlinear optical crystal 3 so that the angle phase matching condition for detection is satisfied.
  • the incident optical system 18 causes the terahertz wave Lt from the working space 7 to enter the reflection position Pr on the nonlinear optical crystal 3.
  • the direction in which the incident optical system 18 causes the terahertz wave Lt to enter the nonlinear optical crystal 3 is opposite (directly opposite) to the direction in which the terahertz wave Lt generated in the nonlinear optical crystal 3 is emitted from the nonlinear optical crystal 3. .
  • the incident optical system 18 may be configured to have a plurality of reflecting mirrors 18a to 18c and a beam splitter 18d, for example, as shown in FIG.
  • the plurality of reflection mirrors 18a to 18c sequentially reflect the terahertz waves Lt from the working space 7 and make the terahertz waves Lt incident on the beam splitter 18d.
  • the beam splitter 18d makes a part of the terahertz wave Lt incident from the reflecting mirror 18c enter the reflecting mirror 5a, and transmits the rest of the terahertz wave Lt.
  • the reflection mirror 5a causes the terahertz wave Lt from the beam splitter 18d to enter the nonlinear optical crystal 3.
  • the reflection mirror 5a is shared by the introduction optical system 5 and the incident optical system 18.
  • the incident optical system 18 may further include a lens 18e for adjusting the degree of convergence (spread) of the terahertz wave Lt.
  • the lens 18e may be a condenser lens.
  • a part of the terahertz wave Lt emitted from the non-linear optical crystal 3 and reflected by the reflection mirror 5a toward the working space 7 is transmitted through the beam splitter 18d and introduced into the working space 7, and the rest is transmitted to the beam splitter 18d. And is absorbed by the isolator 25. Note that the isolator 25 transmits the terahertz wave Lt traveling from the reflection mirror 18c to the beam splitter 18d.
  • the detector 19 outputs detection data based on the signal light Ls.
  • the detection data may be spectrum data of the terahertz wave Lt.
  • the spectrum data represents the intensity of each wavelength component of the terahertz wave Lt.
  • Each wavelength of the terahertz wave Lt corresponds to each wavelength of the signal light Ls on a one-to-one basis.
  • the direction in which the signal light Ls is emitted from the nonlinear optical crystal 3 differs depending on the wavelength component of the signal light Ls. Therefore, the detector 19 has a large number of light detection elements 19a arranged on the detection surface as shown in FIG.
  • the light detection element 19a may be, for example, a CCD (Charge Coupled Device).
  • the positions of the large number of light detecting elements 19a correspond to the large number of wavelengths of the terahertz wave Lt, respectively, and this correspondence is determined in advance and set in the detector 19.
  • the detector 19 generates the spectrum data of the terahertz wave Lt based on the intensity of the signal light Ls detected by each light detection element 19a and the wavelength of the terahertz wave Lt corresponding to the light detection element 19a.
  • the spectrum data output from the detector 19 may be displayed on, for example, a display (not shown).
  • FIG. 5 shows the spectral characteristics of the terahertz wave.
  • the horizontal axis indicates the frequency of the terahertz wave
  • the vertical axis indicates the intensity of the terahertz wave.
  • the spectrum A in FIG. 5 shows the spectrum of the terahertz wave after passing through the air in which water vapor exists, and each thin line segment extending from the horizontal axis (that is, the position where the intensity is zero) to the vertical axis is in the air.
  • 2 shows an absorption spectrum of a terahertz wave Lt due to water vapor. At the frequency corresponding to each absorption spectrum, the intensity of spectrum A decreases.
  • the spectrum before passing through water vapor corresponding to spectrum A as shown in FIG. 5 has intensity over a continuous wide frequency range.
  • the terahertz wave generator 10 of FIG. 1 can change the frequency of the generated terahertz wave Lt over such a wide frequency range. This change of the frequency is performed, for example, by adjusting the frequency of the pump light Lp.
  • the spectrum of the terahertz wave Lt generated by the terahertz wave generator 10 has a certain wavelength width as described above, but the wavelength of the pump light Lp generated by the pump light source 1 is By changing the terahertz wave Lt, the terahertz wave Lt having the center wavelength different from each other may be generated a plurality of times.
  • a range in which these wavelength widths are combined can be a wide wavelength range (that is, the wide frequency range described above).
  • the target component absorbs the terahertz wave Lt at a plurality (for example, a large number) of specific frequencies in the spectrum of the terahertz wave Lt, for example. Therefore, a combination of absorbed wavelengths can be detected based on the detected spectrum data of the terahertz wave Lt, and the presence or absence of the target component can be inspected based on the combination.
  • the target component may be a solid component of particles suspended in the test target gas or a gas component.
  • target components include explosive components (NH 3 , NO, N 2 O, etc.), nerve gas (Sarin, VX, etc.), and toxic or deleterious components (TBM, CHCH 3 OH, H 2 S, HCl, HCN). , NH 3 , SO 2 , UF 6 ), components related to drug crime (drugs, evacuated herbs, thinners, etc.), components related to natural disasters (eg, volcanic gas: H 2 S, CO 2 , SO 2, etc.), and environmental issues component (freon and greenhouse gases: HFCs, PFCs, CO 2, CH 4, N 2 O, SF , etc. 6) may be.
  • the terahertz wave Lt introduced into the working space 7 passes through the working space 7 a plurality of times by being reflected by the reflection surface 8.
  • the sum can be increased.
  • the detection sensitivity of the target component contained in the test target gas can be increased.
  • the gas to be inspected contains various components and the amount of the target component is very small, there is no need to pretreat the gas to be inspected. Inspection can be performed at high speed (in real time). Further, for example, by introducing a large amount of the gas to be inspected into the working space 7 from the inlet 7a, it is possible to inspect the large amount of the gas to be inspected for the presence of the target component. Further, since the inlet 7a is indirectly communicated with the outside via the inlet 11b, the inlet 11b is arranged in the space region R (FIG. 3) to be inspected, so that the space region R can be inspected. Can be introduced into the working space 7 as a gas to be inspected.
  • the inlet 11b of the gas detection device is arranged in a ticket gate which is a doorway of a person at a train station. Or at an airport, a building, or a security gate in a building.
  • a gas to be inspected containing a target component (suspended particles or gas) from a person passing through a ticket gate or a security gate, or clothes or belongings of the person is introduced into the working space 7 from the intake port 11b and is inspected at high speed. can do.
  • the intake 11b When the target component is a component related to a natural disaster, the intake 11b is arranged near a volcano (crater) that needs to be monitored, and the presence or absence of the component is checked to determine the activity status of the volcano. Can be monitored. When the target component is a component relating to an environmental problem, the intake port 11b can be arranged at a monitoring location of the component.
  • the introduction path forming body 11 is a deformable (for example, deformable) pipe
  • the pipe 11 is deformed in accordance with the space region R to be inspected, so that the intake port 11b at the tip of the pipe 11 is formed.
  • the space region R is inside a bag or suitcase carried by a person
  • the bag or the suitcase is opened at the security gate, and the intake port 11b of the pipe 11 is easily arranged inside the bag or the suitcase.
  • the gas inside the bag or the suitcase can be introduced into the working space 7 as the gas to be inspected by the gas flow generator 15.
  • the configuration of the inspection apparatus 100 can be made compact.
  • FIG. 6 shows a configuration of an inspection device 100 according to the second embodiment of the present invention.
  • the terahertz wave generator 10 may be configured to generate a single-wavelength terahertz wave Lt and introduce the terahertz wave Lt into the working space 7. Therefore, in the second embodiment, the terahertz wave generator 10 further includes a seed light source 29 in addition to the configuration of the first embodiment.
  • the points that are not described are the same as those in the first embodiment, and thus description thereof is omitted.
  • the wavelength of the excitation light Lp generated by the excitation light source 1 is kept constant, and the wavelength of the seed light L seed generated by the seed light source 29 is continuously changed.
  • the wavelength of the terahertz wave Lt can be continuously changed.
  • the wavelength range combining the respective wavelengths of the terahertz wave Lt can be set to a wide wavelength range (for example, the wide frequency range in FIG. 4).
  • a terahertz wave Lt of the wavelength is introduced into the working space 7 by the terahertz wave generator 10 for each wavelength in the wavelength range, and the terahertz wave Lt having passed through the working space 7 a plurality of times. Based on the terahertz wave Lt, the detected intensity of the terahertz wave Lt is generated and output as detection data by the terahertz wave detection device 30.
  • Such a configuration is described in more detail below.
  • the seed light source 29 generates seed light L seed having a single wavelength, and causes the seed light L seed to enter the nonlinear optical crystal 3.
  • a part of the seed light L seed from the seed light source 29 is reflected by the beam splitter 31 and enters the nonlinear optical crystal 3.
  • the nonlinear optical crystal 3 generates the terahertz wave Lt by satisfying the next angle phase matching condition for generation.
  • the angle phase matching condition for this generation includes the following energy conservation law and momentum conservation law.
  • Energy conservation law: ⁇ p1 ⁇ seed + ⁇ T1
  • Momentum conservation law: k p1 k seed + k T1
  • ⁇ seed is the angular frequency of the seed light L seed
  • k seed is the wave vector of the seed light L seed .
  • FIG. 7 shows a part of FIG. FIG. 7 shows the relationship among wave number vectors k p1 , k seed , and k T1 .
  • k seed is a wave number vector immediately before the seed light L seed is reflected at the reflection position Pr.
  • the nonlinear optical crystal 3 generates the terahertz wave Lt having a single wavelength by the excitation light Lp and the seed light L seed that satisfy the angle phase matching condition for generation, and emits the terahertz wave Lt.
  • the terahertz wave Lt may be emitted from the end face 3b in a direction substantially orthogonal to the end face 3b of the nonlinear optical crystal 3, as shown in FIG.
  • the terahertz wave Lt emitted from the nonlinear optical crystal 3 is introduced into the working space 7 by the introduction optical system 5 and reflected a plurality of times at a plurality of positions P1 to P8 on the inner peripheral surface 8 as in the first embodiment.
  • the light passes through the working space 7 a plurality of times, and is again incident on the nonlinear optical crystal 3 by the incident optical system 18.
  • the signal light Ls is generated according to the angle phase matching condition for detection, as in the first embodiment, and the signal light Ls enters the detector 19.
  • the angle phase matching conditions for detection are the same as those in the first embodiment, and the wave vectors k p2 , k s2 , and k T2 of the excitation light Lp, the signal light Ls, and the terahertz wave Lt in the momentum conservation law. Is shown in FIG.
  • a part of the signal light Ls from the nonlinear optical crystal 3 passes through the beam splitter 31 and enters the detector 19, and the rest is reflected by the beam splitter 31 and absorbed by the isolator 33.
  • the isolator 33 transmits the seed light L seed traveling from the seed light source 29 to the beam splitter 31.
  • the detector 19 may generate an electric signal having a magnitude indicating the intensity of the received signal light Ls as detection data and output the electric signal.
  • This detection data represents the intensity of the terahertz wave Lt.
  • the single frequency of the seed light L seed generated by the seed light source 29 is continuously changed, and the detector 19 outputs the above-described electric signal for each frequency of the seed light L seed . That is, for each frequency of the seed light L seed , a terahertz wave Lt having a single frequency corresponding to the frequency is emitted from the nonlinear optical crystal 3 and passes through the working space 7 a plurality of times. , Whereby the signal light Ls is generated, and an electric signal having a magnitude indicating the intensity of the signal light Ls is output from the detector 19.
  • Each frequency of the signal light Ls is known, and has a one-to-one correspondence with the frequency of the generated terahertz wave Lt, and this correspondence is known in advance. Therefore, based on this correspondence and the electric signal output from the detector 19 for each frequency of the seed light L seed , the spectrum data of the detected terahertz wave Lt can be generated.
  • the same effects as in the first embodiment can be obtained.
  • the terahertz wave Lt is reflected on the inner peripheral surface 8 while its spread is adjusted. Then, it is guided to the terahertz wave detection device 30.
  • the target component absorbs the terahertz wave Lt at a plurality of specific frequencies in the spectrum of the terahertz wave Lt, and the ratio of the absorption amount of the terahertz wave Lt at these specific frequencies to each other is specific. Ratio.
  • the terahertz wave is obtained. The wavelength can be changed while keeping the intensity of Lt constant.
  • the combination of the absorbed wavelengths is detected from the spectrum data based on the output data output from the detector 19 for each frequency of the terahertz wave Lt, and the ratio of the amount of absorption at each wavelength to each other is obtained.
  • the inspection apparatus 100 according to the first embodiment or the second embodiment of the present invention may not have all of the above-described plural items, and may have only some of the above-described plural items. Is also good.
  • any of the following Modifications 1 to 12 may be used alone, or an appropriate combination of two or more of Modifications 1 to 12 may be arbitrarily adopted. In this case, the points not described below are the same as those described above.
  • the single frequency of the terahertz wave Lt emitted from the nonlinear optical crystal 3 may be changed by changing the angle at which the excitation light Lp from the excitation light source 1 enters the nonlinear optical crystal 3. .
  • the angle of a reflection mirror (not shown) that reflects the excitation light Lp from the excitation light source 1 and enters the nonlinear optical crystal 3
  • the incident angle of the excitation light Lp to the nonlinear optical crystal 3 may be changed. .
  • a resonator that amplifies idler light Li may be provided instead of the seed light source 29.
  • This resonator includes, for example, first and second reflection mirrors 27a and 27b that reflect idler light Li, as shown in FIG.
  • FIG. 8 illustrates the nonlinear optical crystal 3 and the reflection mirrors 27a and 27b, illustration of other components of the inspection apparatus 100 is omitted.
  • the idler light Li generated by the excitation light Lp in the nonlinear optical crystal 3 is amplified by being repeatedly reflected by the first and second reflection mirrors 27a and 27b.
  • the single-frequency terahertz wave Lt corresponding to the amplified idler light Li is generated in the nonlinear optical crystal 3 and emitted from the nonlinear optical crystal 3 in accordance with the above-described angular phase matching condition for generation.
  • the single frequency of the terahertz wave Lt emitted from the nonlinear optical crystal 3 may be changed by changing the angle at which the excitation light Lp from the excitation light source 1 enters the nonlinear optical crystal 3.
  • the wavelength of the terahertz wave Lt emitted from the nonlinear optical crystal 3 may be changed by changing the wavelength of the excitation light Lp generated by the excitation light source 1.
  • the terahertz wave generator 10 is not limited to the configuration shown in each drawing, and can generate the terahertz wave Lt. Any device that can change the wavelength of Lt may be used.
  • the inspection target through which the terahertz wave Lt passes may be the inspection target gas as described above, or may be a solid, a powder, or a liquid. It may be.
  • the interaction unit 20 includes the space forming body 9 that forms the working space 7 in which the inspection target exists. It is not necessary to have.
  • the working space 7 is not provided with the inlet 7a and the outlet 7b, but, for example, the space forming body 9 may be formed with an opening communicating the working space 7 with the outside.
  • the test object may be arranged in the working space 7 through this opening.
  • the inspection target When the inspection target is a powder or a liquid, the powder or the liquid may be placed in a container and placed in the working space 7.
  • the inspection target may be arranged, for example, in a region where the terahertz wave Lt is reflected by the reflection surface (inner peripheral surface) 8 and passes through a plurality of times in the working space 7. Note that the opening may be formed at a location other than the inner peripheral surface 8.
  • the terahertz wave Lt is introduced into the working space 7 through the introduction part 9a and propagates outside the working space 7 through the same introduction part 9a, but the present invention is not limited to this. Not done. That is, the space forming body 9 may include an exit portion that propagates the terahertz wave Lt to the outside of the working space 7 in addition to the introduction portion 9a. The exit portion is formed of a material through which the terahertz wave Lt passes.
  • the terahertz wave Lt is introduced into the working space 7 through the introduction part 9a, passes through the working space 7 a plurality of times, and then enters the terahertz wave detection device 30 outside the working space 7 through the exit part.
  • the shape of the inner peripheral surface 8 is set so that the terahertz wave introduced into the working space 7 from the introduction portion 9a propagates through the working space 7 to the outside of the working space 7 after passing through the working space 7 a plurality of times. It should just be done.
  • the interaction unit 20 may not be provided. That is, the terahertz wave Lt generated by the terahertz wave generation device 10 may interact with the inspection target (gas, solid, powder, or liquid) and thereafter enter the same nonlinear optical crystal 3. . As described above, the terahertz wave Lt incident on the nonlinear optical crystal 3 may be transmitted through the inspection target in the inspection target region or reflected or scattered by the inspection target. The terahertz wave Lt interacts with the test object when transmitting through the test object or reflecting or scattering at the test object. That is, some frequency components of the terahertz wave Lt are absorbed by the inspection target.
  • one or both of the nonlinear optical crystal 3 and the excitation light source 1 may not be shared by the terahertz wave generator 10 and the terahertz wave detector 30.
  • the terahertz wave generator 10 and the terahertz wave detector 30 may have different nonlinear optical crystals, respectively.
  • the excitation light Lp from the excitation light source 1 of the terahertz wave generation device 10 may be guided and incident on the nonlinear optical crystal of the terahertz wave detection device 30 by an appropriate optical system. Excitation light Lp from a separately provided excitation light source may be incident. Thereby, the signal light Ls is generated in the terahertz wave detection device 30.
  • the introduction path forming body 11 and the discharge path forming body 13 may be omitted.
  • the blower 15 may be provided at the introduction port 7a or the discharge port 7b, or in the working space 7 in a region that does not interfere with the terahertz wave Lt. It may be provided.
  • the number of times that the terahertz wave Lt is reflected on the reflecting surface (inner peripheral surface) 8 in the working space 7 is one or more (many times). You may.
  • the shape of the inner peripheral surface 8 is the above-described shape. It is not limited to.
  • the gas flow generator 15 may not be provided. That is, when the interaction unit 20 is installed at a place where the gas to be inspected (for example, volcanic gas) naturally flows into the working space 7 through the inlet 7a and flows out to the outside through the outlet 7b (for example, outdoors). The gas flow generator 15 may not be provided.
  • the gas to be inspected for example, volcanic gas
  • the gas flow generator 15 may not be provided.
  • the terahertz wave detection device 30 may not have the nonlinear optical crystal 3.
  • the terahertz wave Lt from the working space 7 enters the detector 19.
  • the detector 19 generates and outputs an electric signal indicating the intensity of the incident terahertz wave Lt.
  • Such a detector 19 includes, for example, an absorber and a thermoelectric conversion element.
  • the absorber generates heat by absorbing the terahertz wave Lt.
  • the thermoelectric conversion element is attached to the absorber and generates and outputs the electric signal having a magnitude corresponding to the amount of heat generated by the absorber as detection data.
  • FIG. 9 shows a configuration of an inspection apparatus 100 according to a twelfth modification.
  • FIG. 10 is a view taken along the line XX in FIG.
  • the space forming body 9 is formed with an inlet 9b through which the test object T enters the working space 7 from the outside and an outlet 9c through which the test object T exits from the working space 7 to the outside.
  • the inlet 9b and the outlet 9c are located on the inner peripheral surface 8 so as to be shifted from the respective positions P1 to P8 where the terahertz wave Lt is reflected.
  • the space forming body 9 has a surface 12 that partitions the working space 7, and this surface 12 may be a horizontal plane.
  • the gas flow generator 15 may not be provided.
  • the inspection target T to be present in the working space 7 may be other than gas, for example, a person or an object.
  • the inspection object T enters the working space 7 from the inlet 9b as shown by the dashed arrow A in FIG. 9, and then goes out of the working space 7 from the outlet 9c.
  • the inspection target T may be transported by a transport device (for example, a belt conveyor) so as to enter the working space 7 from the inlet 9b and exit the working space 7 from the outlet 9c.
  • This transport device is provided so as not to interfere with the propagation path of the terahertz wave Lt in the working space 7.
  • the inspection target T is a person, the person may walk, enter the working space 7 from the entrance 9b, and go out of the working space 7 from the exit 9c.
  • a person may walk on the horizontal plane 12 of FIG.
  • the test object T after the test object T enters the working space 7, it temporarily stops at the center of the working space 7. This central portion is located on the central axis of the inner peripheral surface 8 which is circular in FIG.
  • the terahertz wave Lt is generated by the terahertz wave generator 10 in a state where the test object T is stopped at the center of the working space 7, so that the terahertz wave Lt is not transmitted through the test object T (not transmitted through the test object T). Pass many times (9 times in FIG. 9). Therefore, it is possible to inspect with high sensitivity whether or not the target component (suspended particles or gas) is contained in the air surrounding the inspection target T. That is, since the air surrounding the inspection target T includes the component generated from the inspection target T, it is possible to inspect with high sensitivity whether the component is the target component.
  • FIG. 9 shows a configuration in which the modification 12 is employed for the inspection apparatus 100 of the first embodiment. However, even if the above-described modification 12 is employed for the inspection apparatus 100 of the second embodiment. Good.
  • 1 excitation light source 3 nonlinear optical crystal, 3a side face, 3b end face, 5 introduction optical system, 5a reflection mirror, 5b lens, 7 working space, 7a introduction port, 7b exhaust port, 8 reflection surface (inner peripheral surface), 9 space Forming body, 9a inlet, 9b inlet, 9c outlet, 10 terahertz wave generator, 11 inlet forming body (tube), 11a inlet, 11b inlet, 13 outlet forming body (tube), 13a outlet, 13b outlet, 15 gas flow generator (blower), 16 rectifier, 17 ⁇ rectifier, 18 incident optical system, 18a ⁇ 18c reflector mirror, 18d beam splitter, 18e condenser lens, 19 detector, 19a photodetector, 20 interaction unit, 21 reflection mirror, 23 isolator, 25 isolator, 27a, 27b reflection mirror, 2 Seed source, 30 terahertz wave detection apparatus, 31 a beam splitter, 33 isolator, 100 inspecting apparatus, Pr reflection position, Li idler light, Lp excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An inspection apparatus 100 which uses a terahertz wave is provided with a terahertz-wave generating device 10 for generating a terahertz wave, an interaction unit 20 having an action space 7 into which a terahertz wave is introduced and in which an inspection object is placed, and a terahertz wave detection device 30 for generating detection data on the basis of a terahertz wave which interacts with the inspection object in the action space 7 and passes through the action space 7. The interaction unit 20 has a reflecting surface 8 for reflecting the terahertz wave in the action space 7. The terahertz wave is reflected by the reflecting surface 8, and thereby passes through the action space 7 multiple times, and is incident on the terahertz wave detection device 30 positioned outside the action space 7.

Description

テラヘルツ波を用いた検査装置と検査方法Inspection apparatus and inspection method using terahertz wave
 本発明は、テラヘルツ波を用いて検査対象を検査する装置と方法に関する。 The present invention relates to an apparatus and a method for inspecting an inspection object using terahertz waves.
 テラヘルツ波は、1テラヘルツ(1012Hz)程度の周波数を有する電磁波である。テラヘルツ波は、様々な物質を透過する性質を有する。テラヘルツ波は、励起光を非線形光学結晶へ入射させることにより発生させられる。テラヘルツ波を用いて、物質を検査する装置が、例えば特許文献1に記載されている。 Terahertz waves are electromagnetic waves having a frequency of about 1 terahertz (10 12 Hz). Terahertz waves have the property of transmitting various substances. Terahertz waves are generated by making excitation light incident on a nonlinear optical crystal. An apparatus for inspecting a substance using terahertz waves is described in, for example, Patent Document 1.
 特許文献1では、発生させたテラヘルツ波を測定試料へ入射させ、測定試料を透過したテラヘルツ波に基づいて、測定試料で吸収されたテラヘルツ波のスペクトルを求めている。 In Patent Document 1, the generated terahertz wave is incident on the measurement sample, and the spectrum of the terahertz wave absorbed by the measurement sample is obtained based on the terahertz wave transmitted through the measurement sample.
特開2011-75583号公報JP 2011-75583 A
 テラヘルツ波を用いて、検査対象(例えばガス、固体等)に対象成分が含まれているかどうかを検査することができる。すなわち、テラヘルツ波を検査対象に導入し、検査対象で吸収されるテラヘルツ波のスペクトルを求め、当該スペクトルに基づいて対象成分の有無を検査することができる。この場合、対象成分の検出精度を高めることが望まれる。 Using a terahertz wave, it is possible to inspect whether or not an inspection target (for example, gas, solid, or the like) contains a target component. That is, a terahertz wave is introduced into a test object, a spectrum of the terahertz wave absorbed by the test object is obtained, and the presence or absence of the target component can be inspected based on the spectrum. In this case, it is desired to increase the detection accuracy of the target component.
 また、検査対象としてのガス(以下で検査対象ガスともいう)に対象成分が含まれているかどうかを検査する場合に、検査したい空間領域にテラヘルツ波を伝播させなくても、当該空間領域のガスをテラヘルツ波で検査できるようにすることが望まれる。例えば、人が通る空間領域(駅の改札、空港やビルのセキュリティーゲート等)にテラヘルツ波を伝播させずに、当該空間領域のガスに対象成分が存在するかを、テラヘルツ波を用いて検査することが望まれる。その際には、通行等を妨げないように、対象成分についての検査や判別を高速で行うことが望まれる。 Further, when inspecting whether or not a gas to be inspected (hereinafter also referred to as an inspection target gas) contains a target component, even if the terahertz wave is not propagated to the spatial region to be inspected, It is desired to be able to inspect Terahertz waves with terahertz waves. For example, the terahertz wave is used to check whether or not the target component exists in the gas in the space area without propagating the terahertz wave to a space area through which a person passes (a ticket gate at a station, a security gate at an airport or a building, etc.). It is desired. In that case, it is desired that the inspection and discrimination of the target component be performed at a high speed so as not to hinder traffic and the like.
 また、テラヘルツ波を用いて検査対象(ガス、固体等)を検査する装置は、テラヘルツ波を発生させるテラヘルツ波発生装置だけでなく、検査対象と相互作用した後のテラヘルツ波を検出するためのテラヘルツ波検出装置を備える。テラヘルツ波発生装置は、励起光源と、励起光源からの励起光によりテラヘルツ波を発生させる非線形光学結晶などを含む。テラヘルツ波検出装置は、検査対象と相互作用した後のテラヘルツ波と励起光により信号光を発生させる非線形光学結晶と、信号光を検出する検出器などを備える。このように、テラヘルツ波を用いて検査対象を検査する装置は、それぞれが複数の構成要素を含むテラヘルツ波発生装置とテラヘルツ波検出装置を備えるので、構成要素の合計数が多くなる。そのため、テラヘルツ波を検査する装置の構成をよりコンパクトにすることが望まれる。 In addition, a device for inspecting a test object (gas, solid, or the like) using a terahertz wave is not only a terahertz wave generator that generates a terahertz wave, but also a terahertz for detecting a terahertz wave after interacting with the test object. A wave detection device is provided. The terahertz wave generator includes an excitation light source, a nonlinear optical crystal that generates a terahertz wave by excitation light from the excitation light source, and the like. The terahertz wave detection device includes a non-linear optical crystal that generates a signal light by the terahertz wave and the excitation light after interacting with the inspection target, a detector that detects the signal light, and the like. As described above, since the device for inspecting the inspection object using the terahertz wave includes the terahertz wave generator and the terahertz wave detector each including a plurality of components, the total number of components increases. Therefore, it is desired to make the configuration of the device for inspecting the terahertz wave more compact.
 そこで、本発明の第1の目的は、検査対象に含まれる対象成分の検出感度を高めることにある。
 本発明の第2の目的は、検査したい空間領域にテラヘルツ波を伝播させなくても、当該空間領域のガスをテラヘルツ波で高速に検査できるようにすることにある。
 本発明の第3の目的は、テラヘルツ波を用いて検査する装置の構成をよりコンパクトにすることにある。
Therefore, a first object of the present invention is to increase the detection sensitivity of a target component included in a test object.
A second object of the present invention is to enable high-speed inspection of gas in a space region to be inspected by the terahertz wave without transmitting the terahertz wave to the space region to be inspected.
A third object of the present invention is to make the configuration of an inspection apparatus using terahertz waves more compact.
 上述した第1の目的を達成するため、本発明の第1の態様によるテラヘルツ波を用いた検査装置は、
 テラヘルツ波を発生させるテラヘルツ波発生装置と、
 前記テラヘルツ波が導入され且つ検査対象を存在させる作用空間を有する相互作用ユニットと、
 前記作用空間において前記検査対象と相互作用(透過、反射、散乱)し前記作用空間を通過した前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力するテラヘルツ波検出装置とを備え、
 前記相互作用ユニットは、前記作用空間において前記テラヘルツ波を反射させる反射面を有し、前記テラヘルツ波は、前記反射面で反射されることにより、複数回、前記作用空間を通過して、前記作用空間の外部に位置する前記テラヘルツ波検出装置へ入射するようになっている。
In order to achieve the above-described first object, an inspection apparatus using a terahertz wave according to the first aspect of the present invention includes:
A terahertz wave generator for generating a terahertz wave,
An interaction unit having an operation space in which the terahertz wave is introduced and an inspection target is present;
A terahertz wave detection device that generates detection data based on the terahertz wave that has interacted with the test object in the working space (transmitted, reflected, scattered) and passed through the working space, and outputs the detected data,
The interaction unit has a reflecting surface that reflects the terahertz wave in the working space, and the terahertz wave passes through the working space a plurality of times by being reflected by the reflecting surface, and The light is incident on the terahertz wave detection device located outside the space.
 上述した第1の目的を達成するため、本発明の第1の態様によるテラヘルツ波を用いた検査方法では、
(A)テラヘルツ波を発生させ、
(B)前記テラヘルツ波を、検査対象が存在している作用空間に導入して、前記作用空間において前記テラヘルツ波と前記検査対象とを相互作用させ、
(C)前記作用空間からの前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力し、
 前記(B)において、前記テラヘルツ波は、前記作用空間において、反射面で反射されることにより、複数回、前記作用空間を通過する。
In order to achieve the first object described above, in the inspection method using terahertz waves according to the first aspect of the present invention,
(A) generating a terahertz wave,
(B) introducing the terahertz wave into the working space where the test object is present, and causing the terahertz wave to interact with the test object in the working space;
(C) generating detection data based on the terahertz wave from the working space, outputting the detection data,
In (B), the terahertz wave passes through the working space a plurality of times by being reflected by a reflecting surface in the working space.
 上述した第2の目的を達成するため、本発明の第2の態様によるテラヘルツ波を用いた検査装置は、
 テラヘルツ波を発生させるテラヘルツ波発生装置と、
 前記テラヘルツ波と検査対象ガスが導入され、両者を相互作用させるための作用空間を有する相互作用ユニットと、
 前記作用空間を通過した前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力するテラヘルツ波検出装置とを備え、
 前記相互作用ユニットは、前記作用空間を形成する空間形成体を備え、
 前記作用空間は、外部へ連通する導入口を有し、外部のガスが検査対象ガスとして前記導入口を通って前記作用空間に流入可能になっている。
In order to achieve the above-mentioned second object, an inspection apparatus using a terahertz wave according to the second aspect of the present invention comprises:
A terahertz wave generator for generating a terahertz wave,
The terahertz wave and the gas to be tested are introduced, and an interaction unit having an action space for allowing the two to interact with each other,
A terahertz wave detection device that generates detection data based on the terahertz wave that has passed through the working space and outputs the detection data,
The interaction unit includes a space forming body that forms the working space,
The working space has an inlet communicating with the outside, and an external gas can flow into the working space as the test gas through the inlet.
 上述した第2の目的を達成するため、本発明の第2の態様によるテラヘルツ波を用いた検査方法では、
(A)テラヘルツ波を発生させ、
(B)前記テラヘルツ波を、検査対象ガスが存在している作用空間に導入して、前記作用空間において前記テラヘルツ波と検査対象ガスとを相互作用させ、
(C)前記作用空間からの前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力し、
 前記作用空間は、外部へ連通する導入口を有しており、外部のガスが検査対象ガスとして前記導入口を通って前記作用空間に流入する。
In order to achieve the second object described above, the inspection method using terahertz waves according to the second aspect of the present invention,
(A) generating a terahertz wave,
(B) introducing the terahertz wave into the working space where the gas to be tested is present, and allowing the terahertz wave to interact with the gas to be tested in the working space;
(C) generating detection data based on the terahertz wave from the working space, outputting the detection data,
The working space has an inlet communicating with the outside, and an external gas flows into the working space through the inlet as a gas to be inspected.
 上述した第3の目的を達成するため、本発明の第3の態様によるテラヘルツ波を用いた検査装置は、
 テラヘルツ波を発生させ検査対象領域に導入するテラヘルツ波発生装置と、
 前記検査対象領域を通過した前記テラヘルツ波に基づいて検出データを出力するテラヘルツ波検出装置とを備え、
 前記テラヘルツ波発生装置は、励起光を生成する励起光源と、前記励起光が発生用の角度位相整合条件を満たすように入射されることによりテラヘルツ波を発生する非線形光学結晶とを備え、
 前記テラヘルツ波検出装置は、前記検査対象領域からの前記テラヘルツ波が検出用の角度位相整合条件を満たすように入射されることにより当該テラヘルツ波と励起光から信号光を生成する前記非線形光学結晶と、前記信号光に基づいて検出データを出力する検出器とを備え、
 前記非線形光学結晶は前記テラヘルツ波発生装置と前記テラヘルツ波検出装置に共有される。
In order to achieve the above-described third object, an inspection apparatus using a terahertz wave according to a third aspect of the present invention includes:
A terahertz wave generator that generates a terahertz wave and introduces the terahertz wave into an inspection target area;
A terahertz wave detection device that outputs detection data based on the terahertz wave that has passed through the inspection target area,
The terahertz wave generator includes an excitation light source that generates excitation light, and a nonlinear optical crystal that generates a terahertz wave when the excitation light is incident so as to satisfy an angle phase matching condition for generation.
The terahertz wave detection device, the non-linear optical crystal that generates signal light from the terahertz wave and the excitation light by being incident so that the terahertz wave from the inspection target area satisfies the angular phase matching condition for detection A detector that outputs detection data based on the signal light,
The nonlinear optical crystal is shared by the terahertz wave generator and the terahertz wave detector.
 上述した第3の目的を達成するため、本発明の第3の態様によるテラヘルツ波を用いた検査方法では、
(A)テラヘルツ波を発生させ、
(B)前記テラヘルツ波を検査対象領域に導入し、
(C)検査対象領域を通過した前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力し、
 前記(A)では、励起光が発生用の角度位相整合条件を満たすように非線形光学結晶に入射されることにより、前記テラヘルツ波を発生させ、
 前記(C)では、前記検査対象領域からの前記テラヘルツ波が検出用の角度位相整合条件を満たすように前記非線形光学結晶に入射されることにより、当該テラヘルツ波と励起光から信号光が生成され、前記信号光に基づいて前記検出データを生成し、
 前記非線形光学結晶は前記(A)と(C)とで共用される。
In order to achieve the third object described above, in the inspection method using terahertz waves according to the third aspect of the present invention,
(A) generating a terahertz wave,
(B) introducing the terahertz wave into a region to be inspected,
(C) generating detection data based on the terahertz wave passed through the inspection target area, outputting the detection data,
In the above (A), the terahertz wave is generated by the excitation light being incident on the nonlinear optical crystal so as to satisfy the angle phase matching condition for generation,
In (C), the terahertz wave from the inspection target region is incident on the nonlinear optical crystal so as to satisfy the angle phase matching condition for detection, so that signal light is generated from the terahertz wave and the excitation light. Generating the detection data based on the signal light;
The non-linear optical crystal is shared between (A) and (C).
 本発明の第1の態様によると、作用空間に導入されたテラヘルツ波は反射面で反射することにより作用空間を複数回通過するので、テラヘルツ波が、作用空間において、複数回、検査対象を透過し、又は、検査対象で反射若しくは散乱されることが可能になる。このように検査対象(ガス又は固体等)とより多く相互作用したテラヘルツ波に基づいて、検査対象に含まれる対象成分の有無を検査できる。したがって、対象成分の検出感度が高められる。 According to the first aspect of the present invention, the terahertz wave introduced into the working space passes through the working space a plurality of times by being reflected by the reflection surface, so that the terahertz wave transmits through the working object a plurality of times in the working space. Or it can be reflected or scattered by the test object. As described above, the presence or absence of the target component included in the inspection target can be inspected based on the terahertz wave that has interacted more with the inspection target (such as a gas or a solid). Therefore, the detection sensitivity of the target component is increased.
 本発明の第2の態様によると、外部のガスが、検査対象ガスとして、導入口を通して作用空間に流入可能になっている。したがって、検査したい空間領域にテラヘルツ波を伝播させなくても、外部の当該空間領域のガスを検査対象ガスとして、導入口を通して作用空間に流入させて、当該空間領域のガスをテラヘルツ波で検査できる。また、テラヘルツ波による検査では、当該ガスを前処理しなくてもよいので、高速に検査を行える。 According to the second aspect of the present invention, an external gas can flow into the working space through the inlet as the gas to be inspected. Therefore, even if the terahertz wave is not propagated to the space region to be inspected, the gas in the space region can be inspected by the terahertz wave by flowing the gas in the external space region into the working space through the inlet as the gas to be inspected. . Further, in the inspection using terahertz waves, the gas can be inspected at high speed because the gas need not be pre-processed.
 本発明の第2の態様によると、検査対象領域へ導入するテラヘルツ波の発生と、検査対象領域を通過したテラヘルツ波による信号光生成とに、非線形光学結晶が共用される。したがって、テラヘルツ波発生と信号光生成のそれぞれに非線形光学結晶を設けなくてよいので、テラヘルツ波を用いて検査する装置の構成をよりコンパクトにすることができる。 According to the second aspect of the present invention, the non-linear optical crystal is used for both the generation of the terahertz wave to be introduced into the inspection target region and the generation of the signal light by the terahertz wave passing through the inspection target region. Therefore, since it is not necessary to provide a nonlinear optical crystal for each of the generation of the terahertz wave and the generation of the signal light, the configuration of the inspection apparatus using the terahertz wave can be made more compact.
本発明の第1実施形態による検査装置の構成を示す。1 shows a configuration of an inspection device according to a first embodiment of the present invention. 第1実施形態における波数ベクトル同士の関係を示す。3 shows a relationship between wave number vectors according to the first embodiment. 図1のIII-III断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 1. 作用空間における内周面の作用の説明図である。It is explanatory drawing of the effect | action of the inner peripheral surface in an action space. テラヘルツ波のスペクトル特性を示す。3 shows the spectral characteristics of a terahertz wave. 本発明の第2実施形態による検査装置の構成を示す。5 shows a configuration of an inspection device according to a second embodiment of the present invention. 第2実施形態における波数ベクトル同士の関係を示す。9 shows a relationship between wave number vectors in the second embodiment. 共振器を設けた場合の構成を示す。The configuration when a resonator is provided is shown. 変更例による検査装置の構成を示す。7 shows a configuration of an inspection device according to a modification. 図9のX-X矢視図である。FIG. 10 is a view taken in the direction of arrows XX in FIG. 9.
 本発明の好ましい実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 A preferred embodiment of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the common parts in the respective drawings, and the duplicate description will be omitted.
[第1実施形態]
 図1は、本発明の第1実施形態による検査装置100の構成を示す。検査装置100は、テラヘルツ波Ltを用いて検査対象ガスを検査するための装置である。すなわち、検査装置100は、テラヘルツ波Ltを発生させて検査対象ガスへ導入し、検査対象ガスを通過したテラヘルツ波Ltに基づいて検出データを生成して出力する装置である。この検出データには、検査対象ガスの成分に関する情報が含まれている。したがって、検出データに基づいて、検査対象ガスの成分を検出することができる。
[First Embodiment]
FIG. 1 shows a configuration of an inspection apparatus 100 according to a first embodiment of the present invention. The inspection apparatus 100 is an apparatus for inspecting an inspection target gas using the terahertz wave Lt. That is, the inspection apparatus 100 is an apparatus that generates a terahertz wave Lt, introduces the terahertz wave Lt into the inspection target gas, and generates and outputs detection data based on the terahertz wave Lt that has passed through the inspection target gas. This detection data includes information on the components of the gas to be inspected. Therefore, the components of the gas to be inspected can be detected based on the detection data.
 図1に示すように、検査装置100は、テラヘルツ波発生装置10と、相互作用ユニット20と、テラヘルツ波検出装置30を備える。 As shown in FIG. 1, the inspection device 100 includes a terahertz wave generation device 10, an interaction unit 20, and a terahertz wave detection device 30.
(テラヘルツ波発生装置の構成)
 テラヘルツ波発生装置10は、テラヘルツ波Ltを発生させ、当該テラヘルツ波Ltを相互作用ユニット20における後述の作用空間7へ導入する。テラヘルツ波発生装置10は、本実施形態では、励起光源1と非線形光学結晶3と導入光学系5を備える。
を備える。
(Configuration of terahertz wave generator)
The terahertz wave generator 10 generates a terahertz wave Lt, and introduces the terahertz wave Lt into a later-described working space 7 of the interaction unit 20. In the present embodiment, the terahertz wave generator 10 includes an excitation light source 1, a nonlinear optical crystal 3, and an introduction optical system 5.
Is provided.
 励起光源1は、励起光Lpを生成して、当該励起光Lpを非線形光学結晶3に入射させる。励起光Lpはポンプ光ともいう。例えば、励起光源1は、励起光Lpとして近赤外線を生成する。励起光源1が生成する励起光Lpは、所定の波長(後述の角周波数ωp1に対応)でピークが生じるスペクトルを有していてよく、例えば、単一の波長を有していてよい。また、励起光Lpはパルス光であってよい。このパルス光の時間幅は、サブナノ秒程度(例えば、1×10-10秒以上であって1×10-9秒未満の値)であってよい。励起光源1は、一例ではQスイッチNd:YAGレーザーであってよいが、これに限定されない。 The excitation light source 1 generates the excitation light Lp and causes the excitation light Lp to enter the nonlinear optical crystal 3. The excitation light Lp is also called pump light. For example, the excitation light source 1 generates near-infrared light as the excitation light Lp. Pumping light Lp excitation light source 1 is produced, which may have a spectral peak occurs at a predetermined wavelength (corresponding to the angular frequency omega p1 below), for example, it may have a single wavelength. Further, the excitation light Lp may be pulsed light. The time width of this pulsed light may be on the order of sub-nanoseconds (for example, a value of 1 × 10 −10 seconds or more and less than 1 × 10 −9 seconds). The excitation light source 1 may be, for example, a Q-switched Nd: YAG laser, but is not limited to this.
 非線形光学結晶3は、以下で述べる発生用の角度位相整合条件を満たすように励起光源1から励起光Lpが入射されることにより、テラヘルツ波Ltとアイドラー光Liを発生させるものである。発生用の角度位相整合条件は、次のエネルギー保存則と運動量保存則からなる。
 エネルギー保存則:ωp1=ωi1+ωT1
 運動量保存則:kp1=ki1+kT1
 ここで、ωp1は、励起光Lpの角周波数であり、ωi1は、アイドラー光Liの角周波数であり、ωT1は、テラヘルツ波Ltの角周波数である。また、kp1は、励起光Lpの波数ベクトルであり、ki1は、アイドラー光Liの波数ベクトルであり、kT1は、テラヘルツ波Ltの波数ベクトルである。
The nonlinear optical crystal 3 generates the terahertz wave Lt and the idler light Li when the excitation light Lp is incident from the excitation light source 1 so as to satisfy an angle phase matching condition for generation described below. The angle phase matching condition for generation includes the following energy conservation law and momentum conservation law.
Energy conservation law: ω p1 = ω i1 + ω T1
Law of conservation of momentum: k p1 = ki 1 + k T1
Here, ω p1 is the angular frequency of the pump light Lp, ω i1 is the angular frequency of the idler light Li, and ω T1 is the angular frequency of the terahertz wave Lt. Further, k p1 is a wave vector of the excitation light Lp, ki 1 is a wave vector of the idler light Li, and k T1 is a wave vector of the terahertz wave Lt.
 図2は、図1の一部を示す。図2において、波数ベクトルkp1,ki1,kT1の関係を示す。図2の例では、アイドラー光Liの波数ベクトルki1は、アイドラー光Liが仮に反射位置Prで反射したものであるとした場合に、反射する前のアイドラー光Liの波数ベクトルである。 FIG. 2 shows a part of FIG. FIG. 2 shows the relationship between wave number vectors k p1 , k i1 , and k T1 . In the example of FIG. 2, the wave vector k i1 of the idler light Li is a wave vector of the idler light Li before being reflected, assuming that the idler light Li is reflected at the reflection position Pr.
 一例では、図1のように、励起光源1からの励起光Lpは、非線形光学結晶3において側面3aに入射して端面3b上の反射位置Prで全反射する。これにより、発生用の角度位相整合条件に従ったテラヘルツ波Ltとアイドラー光Liが発生する。 In one example, as shown in FIG. 1, the excitation light Lp from the excitation light source 1 is incident on the side surface 3a of the nonlinear optical crystal 3 and totally reflected at the reflection position Pr on the end surface 3b. As a result, the terahertz wave Lt and the idler light Li are generated according to the angle phase matching condition for generation.
 非線形光学結晶3は、例えば、LiNbO結晶であってよい。また、非線形光学結晶3は、図1の例では、その紙面と垂直な方向から見た場合に台形状である。この場合、図1において、図1の紙面と交差する、非線形光学結晶3の各面は、当該紙面に直交する平面であってよい。 The nonlinear optical crystal 3 may be, for example, a LiNbO 3 crystal. In the example of FIG. 1, the nonlinear optical crystal 3 has a trapezoidal shape when viewed from a direction perpendicular to the plane of the drawing. In this case, in FIG. 1, each surface of the nonlinear optical crystal 3 that intersects with the plane of FIG. 1 may be a plane orthogonal to the plane of FIG.
 第1実施形態では、後述するシード光や共振器を用いないので、アイドラー光Liの波長は、ある程度の幅を有している。アイドラー光Liの進行方向は、その波長毎に発生用の角度位相整合条件に従うので、図1に示すように、アイドラー光Liは、ある程度の広がりを有する。また、アイドラー光Liの各波長に応じて、発生用の角度位相整合条件に従ったテラヘルツ波Ltの波長は、ある程度の幅を有している。テラヘルツ波Ltが端面3bから射出される方向は、その波長毎に発生用の角度位相整合条件に従うので、図1に示すように、テラヘルツ波Ltは、ある程度の広がりを有する。テラヘルツ波Ltの波長幅における中心波長を有するテラヘルツ波成分は、端面3bとほぼ直交する方向に端面3bから射出されてよい。 In the first embodiment, the wavelength of the idler light Li has a certain width because a seed light or a resonator described later is not used. Since the traveling direction of the idler light Li complies with the angular phase matching condition for generation for each wavelength, the idler light Li has a certain spread as shown in FIG. Further, according to each wavelength of the idler light Li, the wavelength of the terahertz wave Lt has a certain width according to the angle phase matching condition for generation. Since the direction in which the terahertz wave Lt is emitted from the end face 3b is in accordance with the angle phase matching condition for generation for each wavelength, the terahertz wave Lt has a certain extent as shown in FIG. The terahertz wave component having the center wavelength in the wavelength width of the terahertz wave Lt may be emitted from the end face 3b in a direction substantially orthogonal to the end face 3b.
 導入光学系5は、非線形光学結晶3から射出されたテラヘルツ波Ltを作用空間7へ導入する。導入光学系5は、図1の例では、反射ミラー5aとレンズ5bを備える。反射ミラー5aは、非線形光学結晶3からのテラヘルツ波Ltを作用空間7へ案内するように反射させる。レンズ5bは、テラヘルツ波Ltの収束度(広がり)を調節する。レンズ5bは、集光レンズであってよい。 The introduction optical system 5 introduces the terahertz wave Lt emitted from the nonlinear optical crystal 3 into the working space 7. In the example of FIG. 1, the introduction optical system 5 includes a reflection mirror 5a and a lens 5b. The reflection mirror 5 a reflects the terahertz wave Lt from the nonlinear optical crystal 3 so as to guide it to the working space 7. The lens 5b adjusts the degree of convergence (spread) of the terahertz wave Lt. The lens 5b may be a condenser lens.
(相互作用ユニットの構成)
 相互作用ユニット20について、図1と図3を参照して説明する。図3は、図1のIII-III断面図である。
(Configuration of interaction unit)
The interaction unit 20 will be described with reference to FIGS. FIG. 3 is a sectional view taken along the line III-III of FIG.
 相互作用ユニット20は、テラヘルツ波Ltと検査対象ガスが導入される作用空間7を有する。作用空間7においてテラヘルツ波Ltと検査対象ガスとを相互作用させる。本実施形態では、相互作用ユニット20は、作用空間7においてテラヘルツ波Ltを反射させる反射面8を有する。作用空間7に導入されたテラヘルツ波Ltは、反射面8で反射されることにより、複数回、作用空間7を通過して、作用空間7の外部に位置するテラヘルツ波検出装置30へ入射するようになっている。反射面8(後述の内周面8)は、テラヘルツ波を反射する材料(例えば金属)で形成されている。 The interaction unit 20 has the working space 7 into which the terahertz wave Lt and the gas to be tested are introduced. In the working space 7, the terahertz wave Lt and the gas to be inspected interact. In the present embodiment, the interaction unit 20 has the reflecting surface 8 that reflects the terahertz wave Lt in the working space 7. The terahertz wave Lt introduced into the working space 7 is reflected by the reflecting surface 8 so as to pass through the working space 7 a plurality of times and enter the terahertz wave detecting device 30 located outside the working space 7. It has become. The reflection surface 8 (an inner peripheral surface 8 described later) is formed of a material (for example, metal) that reflects a terahertz wave.
 相互作用ユニット20は、本実施形態では、空間形成体9と導入路形成体11と排出路形成体13とガス流発生装置15と整流部16を備える。 In the present embodiment, the interaction unit 20 includes the space forming body 9, the introduction path forming body 11, the discharge path forming body 13, the gas flow generating device 15, and the rectifying section 16.
 空間形成体9は、内部に作用空間7を形成している。また、空間形成体9は、テラヘルツ波Ltが導入される導入部9aを有する。導入部9aは、テラヘルツ波Ltが透過する材料で形成されている。作用空間7は、外部へ連通する導入口7aと排出口7bを有する。外部のガスが検査対象ガスとして導入口7aを通って作用空間7に流入可能になっている。また、作用空間7のガスが、排出口7bを通って外部に流出可能になっている。導入口7aと排出口7bは、例えば、作用空間7においてテラヘルツ波Ltが通過する領域を挟むように位置している。作用空間7は、導入口7aと排出口7bの部分を除いて外部に対して密閉されていてよい。 The space forming body 9 forms the working space 7 inside. Further, the space forming body 9 has an introduction portion 9a into which the terahertz wave Lt is introduced. The introduction portion 9a is formed of a material through which the terahertz wave Lt passes. The working space 7 has an inlet 7a and an outlet 7b communicating with the outside. External gas can flow into the working space 7 through the inlet 7a as a gas to be inspected. Further, the gas in the working space 7 can flow out to the outside through the outlet 7b. The inlet 7a and the outlet 7b are located, for example, so as to sandwich a region through which the terahertz wave Lt passes in the working space 7. The working space 7 may be sealed to the outside except for the inlet 7a and the outlet 7b.
 空間形成体9は、上述の反射面8として内周面を有する。内周面8は、作用空間7を囲むように延びて作用空間7を区画する。本実施形態では、内周面8は、内周面8の中心軸方向(図1の紙面と垂直な方向)から見た場合に円形であり、円筒形の領域を区画している。テラヘルツ波Ltは、作用空間7において内周面8における複数位置(図1の例では位置P1~P8)で順に反射した後に、テラヘルツ波検出装置30へ入射するようになっている。本実施形態では、作用空間7を複数回通過したテラヘルツ波Ltは、導入部9aを透過することで、作用空間7の外部に位置するテラヘルツ波検出装置30へ伝播していく。なお、本願において、「作用空間7を複数回通過する」とは、作用空間7を区画する面(内周面8及び導入部9a)上の1つの位置から当該面上の別の位置へテラヘルツ波Ltが伝播することが2回以上行われることを意味する。 The space forming body 9 has an inner peripheral surface as the above-mentioned reflecting surface 8. The inner peripheral surface 8 extends so as to surround the working space 7 and divides the working space 7. In the present embodiment, the inner peripheral surface 8 is circular when viewed from the central axis direction of the inner peripheral surface 8 (a direction perpendicular to the paper surface of FIG. 1), and defines a cylindrical area. The terahertz wave Lt is sequentially reflected at a plurality of positions (positions P1 to P8 in the example of FIG. 1) on the inner peripheral surface 8 in the working space 7, and then enters the terahertz wave detection device 30. In the present embodiment, the terahertz wave Lt that has passed through the working space 7 a plurality of times propagates to the terahertz wave detecting device 30 located outside the working space 7 by passing through the introduction portion 9a. In the present application, “to pass through the working space 7 a plurality of times” means that a terahertz wave is transferred from one position on a surface (the inner peripheral surface 8 and the introduction portion 9a) defining the working space 7 to another position on the surface. This means that the propagation of the wave Lt is performed twice or more.
 導入路形成体11は、導入口7aから延びる導入路11aを形成する。導入路11aは、導入口7aと反対側において外部に開口する取込口11bを有する。導入路形成体11は、変形可能(例えば変形自在)な管であってよい。この場合、管11は、空間形成体9に接続される。ただし、導入路形成体11は、これに限定されず、内部に導入路11aを形成したものであればよい。 The introduction path forming body 11 forms an introduction path 11a extending from the introduction port 7a. The introduction path 11a has an intake port 11b that opens to the outside on the side opposite to the introduction port 7a. The introduction path forming body 11 may be a deformable (for example, deformable) pipe. In this case, the pipe 11 is connected to the space forming body 9. However, the introduction path forming body 11 is not limited to this, and may be any as long as the introduction path 11a is formed inside.
 排出路形成体13は、排出口7bから延びる排出路13aを形成する。排出路13aは、排出口7bと反対側において外部に開口する送出口13bを有する。排出路形成体13は、変形可能(例えば変形自在)な管であってよい。この場合、管13は、空間形成体9に接続される。ただし、排出路形成体13は、これに限定されず、内部に排出路13aを形成したものであればよい。 The discharge path forming body 13 forms a discharge path 13a extending from the discharge port 7b. The discharge path 13a has an outlet 13b that opens to the outside on the side opposite to the discharge port 7b. The discharge path forming body 13 may be a deformable (for example, deformable) pipe. In this case, the pipe 13 is connected to the space forming body 9. However, the discharge path forming body 13 is not limited to this, and may be any as long as the discharge path 13a is formed inside.
 ガス流発生装置15は、外部から導入口7aを通して作用空間7へ流入するガス流を発生させる。ガス流発生装置15は、例えば送風機(ファン)であってよい。図3の例では、送風機15は、排出路形成体13に設けられている。この場合、送風機15は、作用空間7のガスを排出口7bと排出路13aを通して送出口13bから外部へ送出することにより、外部からのガスを導入口7aを通して作用空間7へ吸引する吸引装置として機能する。なお、図示を省略するが、送風機15は、導入路形成体11(例えば取込口11b)に設けられてもよいし、作用空間7において、テラヘルツ波Ltに干渉しない領域(例えば導入口7a又は排出口7bの近傍)に設けられてもよい。 The gas flow generator 15 generates a gas flow that flows into the working space 7 from the outside through the inlet 7a. The gas flow generator 15 may be, for example, a blower (fan). In the example of FIG. 3, the blower 15 is provided on the discharge path forming body 13. In this case, the blower 15 is a suction device that sucks gas from the outside into the working space 7 through the introduction port 7a by sending the gas in the working space 7 to the outside from the outlet 13b through the outlet 7b and the discharge path 13a. Function. Although not shown, the blower 15 may be provided in the introduction path forming body 11 (for example, the intake port 11b), or in the working space 7 in a region that does not interfere with the terahertz wave Lt (for example, the introduction port 7a or (Near the discharge port 7b).
 整流部16は、作用空間7において、テラヘルツ波Ltが通過する領域(以下で、単に通過領域という)と導入口7aとの間に設けられている。整流部16は、通過領域の各位置の間で検査対象ガスの流量の差を減らす。整流部16は、例えば、多数の孔が形成された板状またはメッシュ状の部材(例えば金属メッシュ)であってよい。このような板状またはメッシュ状の部材は、作用空間7におけるテラヘルツ波Ltの伝播方向と平行に2次元的に延びて、通過領域と導入口7a側の領域とを区切るように配置されている。 The rectifying unit 16 is provided in the working space 7 between a region through which the terahertz wave Lt passes (hereinafter, simply referred to as a passing region) and the inlet 7a. The rectification unit 16 reduces the difference in the flow rate of the gas to be inspected between the positions in the passage area. The flow straightening unit 16 may be, for example, a plate-like or mesh-like member (for example, a metal mesh) having a large number of holes formed therein. Such a plate-like or mesh-like member extends two-dimensionally in parallel with the propagation direction of the terahertz wave Lt in the working space 7 and is arranged so as to separate the passage area and the area on the inlet 7a side. .
 なお、相互作用ユニット20は、整流部16に加えて、整流部17を備えていてもよい。この整流部17は、作用空間7において、通過領域と排出口7bとの間に設けられている。整流部17は、通過領域の各位置の間で検査対象ガスの流量の差を減らす。このような整流部17は、整流部16と同じ構成を有していてよい。すなわち、整流部17は、例えば、多数の孔が形成された板状またはメッシュ状の部材であり。作用空間7におけるテラヘルツ波Ltの伝播方向と平行に2次元的に延びて、通過領域と排出口7b側の領域とを区切るように配置されていてよい。 The interaction unit 20 may include a rectification unit 17 in addition to the rectification unit 16. The rectifying section 17 is provided in the working space 7 between the passage area and the outlet 7b. The rectifying unit 17 reduces the difference in the flow rate of the gas to be inspected between the positions in the passage area. Such a rectifier 17 may have the same configuration as the rectifier 16. That is, the flow regulating unit 17 is, for example, a plate-shaped or mesh-shaped member having a large number of holes formed therein. It may be arranged so as to extend two-dimensionally in parallel with the propagation direction of the terahertz wave Lt in the working space 7 and to separate the passage area from the area on the outlet 7b side.
 図4は、上述した内周面8の作用の説明図である。図4における左右方向は、テラヘルツ波Ltの伝播方向に対応する。また、図4において、破線は、テラヘルツ波Ltの伝播方向における各位置P0~P9を示す。すなわち、P0は図1における集光レンズ5bの位置を示し、P1~P8は、図1に示すように内周面8の位置(局所領域)を示し、P9は、後述する集光レンズ18eの位置を示す。また、図4において、実線で示す折れ線は、テラヘルツ波Ltの伝播路を示す。 FIG. 4 is an explanatory diagram of the operation of the inner peripheral surface 8 described above. 4 corresponds to the propagation direction of the terahertz wave Lt. Further, in FIG. 4, broken lines indicate respective positions P0 to P9 in the propagation direction of the terahertz wave Lt. That is, P0 indicates the position of the condenser lens 5b in FIG. 1, P1 to P8 indicate the position (local region) of the inner peripheral surface 8 as shown in FIG. 1, and P9 indicates the position of the condenser lens 18e described later. Indicates the position. In FIG. 4, a polygonal line indicated by a solid line indicates a propagation path of the terahertz wave Lt.
 図4に示すように、非線形光学結晶3から射出されたテラヘルツ波Ltは、位置P1~P9のうち隣接する各対の位置同士の中間で焦点を結ぶように伝播していく。従って、テラヘルツ波Ltは、その広がりが調節されながら内周面8で反射するので、内周面8で多数回反射しても、安定してテラヘルツ波検出装置30へ案内される。 (4) As shown in FIG. 4, the terahertz wave Lt emitted from the nonlinear optical crystal 3 propagates so as to focus on an intermediate point between adjacent pairs of positions P1 to P9. Therefore, the terahertz wave Lt is reflected on the inner peripheral surface 8 while its spread is being adjusted, so that even if it is reflected many times on the inner peripheral surface 8, the terahertz wave Lt is stably guided to the terahertz wave detection device 30.
 なお、各局所領域P1~P8は、内周面8の中心軸方向に見た場合、円弧の形状を有している。ただし、各局所領域P1~P8は、上述のように隣接する各対の局所領域の同士の中間で焦点をテラヘルツが結ぶようにテラヘルツを反射する他の形状を有していてもよい。この場合、内周面8は、その中心軸方向に見た場合、円形でなくてもよい。
 なお、テラヘルツ波Ltが平行光として作用空間7に導入される場合には、各局所領域P1~P8は平面であってよい。この場合、内周面8は、その中心軸方向に見た場合、各平面P1~P8を含む多角形であってよい。
Each of the local regions P1 to P8 has an arc shape when viewed in the central axis direction of the inner peripheral surface 8. However, each of the local regions P1 to P8 may have another shape that reflects terahertz such that the terahertz is focused at the center between each pair of adjacent local regions as described above. In this case, the inner peripheral surface 8 may not be circular when viewed in the direction of the central axis.
When the terahertz wave Lt is introduced into the working space 7 as parallel light, each of the local regions P1 to P8 may be a plane. In this case, the inner peripheral surface 8 may be a polygon including the planes P1 to P8 when viewed in the direction of the central axis.
 なお、導入部9aから作用空間7へ導入されたテラヘルツ波が、作用空間7を複数回通過した後に、導入部9aを通して作用空間7の外部へ伝播するように、内周面8の形状が設定されていればよい。 The shape of the inner peripheral surface 8 is set so that the terahertz wave introduced into the working space 7 from the introduction part 9a passes through the working space 7 a plurality of times and then propagates outside the working space 7 through the introduction part 9a. It should just be done.
(テラヘルツ波検出装置の構成)
 テラヘルツ波検出装置30は、テラヘルツ波発生装置10により発生させられ作用空間7を複数回通過したテラヘルツ波Ltに基づいて検出データを出力する。テラヘルツ波検出装置30は、本実施形態では、励起光源1と非線形光学結晶3と入射光学系18と検出器19とを備える。
(Configuration of terahertz wave detection device)
The terahertz wave detection device 30 outputs detection data based on the terahertz wave Lt generated by the terahertz wave generation device 10 and having passed through the working space 7 a plurality of times. In the present embodiment, the terahertz wave detection device 30 includes the excitation light source 1, the nonlinear optical crystal 3, the incident optical system 18, and the detector 19.
 励起光源1と非線形光学結晶3は、テラヘルツ波発生装置10とテラヘルツ波検出装置30に共有されるものであり、上述した構成を有する。作用空間7からのテラヘルツ波Ltが検出用の角度位相整合条件を満たすように非線形光学結晶3に入射されることにより、非線形光学結晶3は、当該テラヘルツ波Ltと励起光源1が発生した励起光Lpとから信号光Lsを生成する。 The excitation light source 1 and the nonlinear optical crystal 3 are shared by the terahertz wave generator 10 and the terahertz wave detector 30 and have the above-described configuration. When the terahertz wave Lt from the working space 7 is incident on the nonlinear optical crystal 3 so as to satisfy the angle phase matching condition for detection, the nonlinear optical crystal 3 generates the terahertz wave Lt and the pump light generated by the pump light source 1. The signal light Ls is generated from Lp.
 検出用の角度位相整合条件は、次のエネルギー保存則と運動量保存則からなる。
 エネルギー保存則:ωp2=ωs2+ωT2
 運動量保存則:kp2=ks2+kT2
 ここで、ωp2は、励起光Lpの角周波数であり上述のωp1に等しい。当該励起光Lpは、図1の例では、反射ミラー21で反射された励起光Lpである。ωs2は、信号光Lsの角周波数であり、ωT2は、テラヘルツ波Ltの角周波数であり上述のωT1に等しい。また、kp2は、励起光Lpの波数ベクトルであり、ks2は、信号光Lsの波数ベクトルであり、kT2は、非線形光学結晶3へ入射するテラヘルツ波Ltの波数ベクトルである。これらの波数ベクトルkp2,ks2,kT2の関係を、図2に示す。
The angle phase matching condition for detection includes the following energy conservation law and momentum conservation law.
Energy conservation law: ω p2 = ω s2 + ω T2
Law of conservation of momentum: k p2 = k s2 + k T2
Here, ω p2 is the angular frequency of the pump light Lp and is equal to ω p1 described above. The excitation light Lp is the excitation light Lp reflected by the reflection mirror 21 in the example of FIG. ω s2 is the angular frequency of the signal light Ls, ω T2 is the angular frequency of the terahertz wave Lt, and is equal to ω T1 described above. Further, k p2 is a wave vector of the pump light Lp, k s2 is a wave vector of the signal light Ls, and k T2 is a wave vector of the terahertz wave Lt incident on the nonlinear optical crystal 3. FIG. 2 shows the relationship between these wave number vectors k p2 , k s2 , and k T2 .
 反射ミラー21は、テラヘルツ波検出装置30の構成要素であり、励起光源1から射出され反射位置Prで反射した励起光Lpを、再び反射位置Prへ反射する。反射ミラー21で反射された励起光Lpは、反射位置Prで再び反射してアイソレータ23に吸収される。なお、アイソレータ23は、励起光源1から反射位置Prへ向かう励起光Lpを透過させる。 The reflection mirror 21 is a component of the terahertz wave detection device 30, and reflects the excitation light Lp emitted from the excitation light source 1 and reflected at the reflection position Pr to the reflection position Pr again. The excitation light Lp reflected by the reflection mirror 21 is reflected again at the reflection position Pr and is absorbed by the isolator 23. Note that the isolator 23 transmits the excitation light Lp from the excitation light source 1 toward the reflection position Pr.
 入射光学系18は、作用空間7からのテラヘルツ波Ltを非線形光学結晶3へ案内し、検出用の角度位相整合条件が満たされるように当該テラヘルツ波Ltを非線形光学結晶3に入射させる。 (4) The incident optical system 18 guides the terahertz wave Lt from the working space 7 to the nonlinear optical crystal 3 and causes the terahertz wave Lt to enter the nonlinear optical crystal 3 so that the angle phase matching condition for detection is satisfied.
 図1の例では、入射光学系18は、作用空間7からのテラヘルツ波Ltを非線形光学結晶3における反射位置Prへ入射させる。この時、入射光学系18が当該テラヘルツ波Ltを非線形光学結晶3に入射させる方向は、非線形光学結晶3で発生したテラヘルツ波Ltが非線形光学結晶3から射出される方向と逆(正反対)である。 In the example of FIG. 1, the incident optical system 18 causes the terahertz wave Lt from the working space 7 to enter the reflection position Pr on the nonlinear optical crystal 3. At this time, the direction in which the incident optical system 18 causes the terahertz wave Lt to enter the nonlinear optical crystal 3 is opposite (directly opposite) to the direction in which the terahertz wave Lt generated in the nonlinear optical crystal 3 is emitted from the nonlinear optical crystal 3. .
 入射光学系18は、例えば、図1のように、複数の反射ミラー18a~18cと、ビームスプリッタ18dとを有するように構成されてよい。複数の反射ミラー18a~18cは、作用空間7からのテラヘルツ波Ltを順に反射してビームスプリッタ18dに入射させる。ビームスプリッタ18dは、反射ミラー18cから入射したテラヘルツ波Ltの一部を反射ミラー5aに入射させ、テラヘルツ波Ltの残りを透過させる。反射ミラー5aは、ビームスプリッタ18dからのテラヘルツ波Ltを非線形光学結晶3に入射させる。反射ミラー5aは、導入光学系5と入射光学系18に共有される。なお、入射光学系18は、テラヘルツ波Ltの収束度(広がり)を調節するレンズ18eを更に有してよい。レンズ18eは、集光レンズであってよい。 The incident optical system 18 may be configured to have a plurality of reflecting mirrors 18a to 18c and a beam splitter 18d, for example, as shown in FIG. The plurality of reflection mirrors 18a to 18c sequentially reflect the terahertz waves Lt from the working space 7 and make the terahertz waves Lt incident on the beam splitter 18d. The beam splitter 18d makes a part of the terahertz wave Lt incident from the reflecting mirror 18c enter the reflecting mirror 5a, and transmits the rest of the terahertz wave Lt. The reflection mirror 5a causes the terahertz wave Lt from the beam splitter 18d to enter the nonlinear optical crystal 3. The reflection mirror 5a is shared by the introduction optical system 5 and the incident optical system 18. Note that the incident optical system 18 may further include a lens 18e for adjusting the degree of convergence (spread) of the terahertz wave Lt. The lens 18e may be a condenser lens.
 なお、非線形光学結晶3から射出され作用空間7へ向かって反射ミラー5aで反射したテラヘルツ波Ltは、その一部がビームスプリッタ18dを透過して作用空間7へ導入され、その残りがビームスプリッタ18dで反射してアイソレータ25に吸収される。なお、アイソレータ25は、反射ミラー18cからビームスプリッタ18dへ向かうテラヘルツ波Ltを透過させる。 A part of the terahertz wave Lt emitted from the non-linear optical crystal 3 and reflected by the reflection mirror 5a toward the working space 7 is transmitted through the beam splitter 18d and introduced into the working space 7, and the rest is transmitted to the beam splitter 18d. And is absorbed by the isolator 25. Note that the isolator 25 transmits the terahertz wave Lt traveling from the reflection mirror 18c to the beam splitter 18d.
 検出器19は、信号光Lsに基づいて検出データを出力する。検出データは、テラヘルツ波Ltのスペクトルデータであってよい。当該スペクトルデータは、テラヘルツ波Ltの各波長成分の強度を表わす。テラヘルツ波Ltの各波長は、信号光Lsの各波長と1対1で対応する。信号光Lsが非線形光学結晶3から放出される方向は、信号光Lsの波長成分に応じて異なる。そこで、検出器19は、図1のように、検出面に配列された多数の光検出素子19aを有する。光検出素子19aは、例えばCCD(Charge Coupled Device)であってよい。多数の光検出素子19aの位置は、それぞれ、テラヘルツ波Ltの多数の波長に対応し、この対応関係は、予め求められ検出器19に設定されている。検出器19は、各光検出素子19aが検出した信号光Lsの強度と、当該光検出素子19aに対応するテラヘルツ波Ltの波長とに基づいて、テラヘルツ波Ltのスペクトルデータを生成する。検出器19から出力された当該スペクトルデータは、例えば図示しないディスプレイに表示されてよい。 The detector 19 outputs detection data based on the signal light Ls. The detection data may be spectrum data of the terahertz wave Lt. The spectrum data represents the intensity of each wavelength component of the terahertz wave Lt. Each wavelength of the terahertz wave Lt corresponds to each wavelength of the signal light Ls on a one-to-one basis. The direction in which the signal light Ls is emitted from the nonlinear optical crystal 3 differs depending on the wavelength component of the signal light Ls. Therefore, the detector 19 has a large number of light detection elements 19a arranged on the detection surface as shown in FIG. The light detection element 19a may be, for example, a CCD (Charge Coupled Device). The positions of the large number of light detecting elements 19a correspond to the large number of wavelengths of the terahertz wave Lt, respectively, and this correspondence is determined in advance and set in the detector 19. The detector 19 generates the spectrum data of the terahertz wave Lt based on the intensity of the signal light Ls detected by each light detection element 19a and the wavelength of the terahertz wave Lt corresponding to the light detection element 19a. The spectrum data output from the detector 19 may be displayed on, for example, a display (not shown).
 図5は、テラヘルツ波のスペクトル特性を示す。図5において、横軸は、テラヘルツ波の周波数を示し、縦軸は、テラヘルツ波の強度を示す。図5におけるスペクトルAは、水蒸気が存在する空中を通過した後のテラヘルツ波のスペクトルを示し、横軸から(すなわち強度がゼロの位置)から縦軸方向に延びている細い各線分は、空気中の水蒸気によるテラヘルツ波Ltの吸収スペクトルを示す。各吸収スペクトルに対応する周波数で、スペクトルAの強度が低下している。 FIG. 5 shows the spectral characteristics of the terahertz wave. In FIG. 5, the horizontal axis indicates the frequency of the terahertz wave, and the vertical axis indicates the intensity of the terahertz wave. The spectrum A in FIG. 5 shows the spectrum of the terahertz wave after passing through the air in which water vapor exists, and each thin line segment extending from the horizontal axis (that is, the position where the intensity is zero) to the vertical axis is in the air. 2 shows an absorption spectrum of a terahertz wave Lt due to water vapor. At the frequency corresponding to each absorption spectrum, the intensity of spectrum A decreases.
 図5のようなスペクトルAに対応する、水蒸気を通過する前のスペクトルは、連続する広い周波数範囲にわたって強度を有している。このような広い周波数範囲にわたって、図1のテラヘルツ波発生装置10は、発生するテラヘルツ波Ltの周波数を変更することができる。この周波数の変更は、例えば、励起光Lpの周波数を調整することにより行われる。なお、第1実施形態では、テラヘルツ波発生装置10が発生するテラヘルツ波Ltのスペクトルは、上述のようにある程度の波長幅を有しているが、励起光源1が発生する励起光Lpの波長を変えることにより、複数回にわたって、それぞれ、中心波長が互いに異なる波長幅のテラヘルツ波Ltを発生させてよい。これらの波長幅を合わせた範囲を広い波長範囲(すなわち上記広い周波数範囲)とすることができる。 ス ペ ク ト ル The spectrum before passing through water vapor corresponding to spectrum A as shown in FIG. 5 has intensity over a continuous wide frequency range. The terahertz wave generator 10 of FIG. 1 can change the frequency of the generated terahertz wave Lt over such a wide frequency range. This change of the frequency is performed, for example, by adjusting the frequency of the pump light Lp. In the first embodiment, the spectrum of the terahertz wave Lt generated by the terahertz wave generator 10 has a certain wavelength width as described above, but the wavelength of the pump light Lp generated by the pump light source 1 is By changing the terahertz wave Lt, the terahertz wave Lt having the center wavelength different from each other may be generated a plurality of times. A range in which these wavelength widths are combined can be a wide wavelength range (that is, the wide frequency range described above).
 これに対し、対象成分は、例えば、テラヘルツ波Ltのスペクトルのうち、複数(例えば多数)の特定周波数でテラヘルツ波Ltを吸収する。したがって、検出したテラヘルツ波Ltのスペクトルデータに基づいて、吸収された波長の組み合わせを検出し、当該組み合わせに基づいて、対象成分の有無を検査することができる。 On the other hand, the target component absorbs the terahertz wave Lt at a plurality (for example, a large number) of specific frequencies in the spectrum of the terahertz wave Lt, for example. Therefore, a combination of absorbed wavelengths can be detected based on the detected spectrum data of the terahertz wave Lt, and the presence or absence of the target component can be inspected based on the combination.
 対象成分は、検査対象ガス中に浮遊している粒子の固体成分であってもよいし、気体成分であってもよい。例えば、対象成分は、爆発性成分(NH,NO,NOなど)、神経ガス(サリン,VXなど)、毒性や劇物の成分(TBM,CHCHOH,HS,HCl,HCN,NH,SO,UF)、薬物犯罪に関する成分(麻薬、脱法ハーブ、シンナーなど)、自然災害に関する成分(例えば火山性ガス:HS,CO,SOなど)、環境問題に関する成分(フロンガスや温室効果ガス:HFCs,PFCs,CO,CH,NO,SFなど)であってよい。 The target component may be a solid component of particles suspended in the test target gas or a gas component. For example, target components include explosive components (NH 3 , NO, N 2 O, etc.), nerve gas (Sarin, VX, etc.), and toxic or deleterious components (TBM, CHCH 3 OH, H 2 S, HCl, HCN). , NH 3 , SO 2 , UF 6 ), components related to drug crime (drugs, evacuated herbs, thinners, etc.), components related to natural disasters (eg, volcanic gas: H 2 S, CO 2 , SO 2, etc.), and environmental issues component (freon and greenhouse gases: HFCs, PFCs, CO 2, CH 4, N 2 O, SF , etc. 6) may be.
(第1実施形態の効果)
 上述した第1実施形態によると、作用空間7に導入されたテラヘルツ波Ltは反射面8で反射することにより作用空間7を複数回通過するので、作用空間7においてテラヘルツ波Ltが伝播する距離の合計を大きくすることができる。これにより、検査対象ガスに含まれる対象成分の検出感度を高めることができる。例えば、上述のように、テラヘルツ波Ltを内周面8の複数箇所(多数箇所)で反射させることにより、対象成分の高感度検出が可能となる。
(Effect of First Embodiment)
According to the above-described first embodiment, the terahertz wave Lt introduced into the working space 7 passes through the working space 7 a plurality of times by being reflected by the reflection surface 8. The sum can be increased. Thereby, the detection sensitivity of the target component contained in the test target gas can be increased. For example, as described above, by reflecting the terahertz wave Lt at a plurality of places (many places) on the inner peripheral surface 8, it is possible to detect the target component with high sensitivity.
 テラヘルツ波を用いた検査では、検査対象ガスが多種多様な成分を含んでいても、また、対象成分が微量であっても、検査対象ガスを前処理する必要が無いので、対象成分の有無を高速に(リアルタイムに)検査することができる。
 更に、例えば、導入口7aから作用空間7へ大量の検査対象ガスを導入することにより、大量の検査対象ガスに対して対象成分の有無を検査することができる。
 また、導入口7aは、取込口11bを介して間接的に外部へ連通しているので、取込口11bを、検査したい空間領域R(図3)に配置することにより、当該空間領域Rのガスを、検査対象ガスとして作用空間7へ導入することができる。
In the inspection using terahertz waves, even if the gas to be inspected contains various components and the amount of the target component is very small, there is no need to pretreat the gas to be inspected. Inspection can be performed at high speed (in real time).
Further, for example, by introducing a large amount of the gas to be inspected into the working space 7 from the inlet 7a, it is possible to inspect the large amount of the gas to be inspected for the presence of the target component.
Further, since the inlet 7a is indirectly communicated with the outside via the inlet 11b, the inlet 11b is arranged in the space region R (FIG. 3) to be inspected, so that the space region R can be inspected. Can be introduced into the working space 7 as a gas to be inspected.
 例えば、対象成分が、爆発性成分や毒性や劇物の成分や薬物犯罪に関する成分である場合には、ガス検出装置の取込口11bを、電車の駅における人の出入口である改札に配置したり、空港、ビル、又はビルのセキュリティーゲートに配置することができる。これにより、改札やセキュリティーゲートを通過する人やその人の衣服や持ち物からの対象成分(浮遊粒子やガス)を含む検査対象ガスを、取込口11bから作用空間7に導入して高速に検査することができる。対象成分が、自然災害に関する成分である場合には、監視が必要とされる火山(火口)の近傍に取込口11bを配置して、当該成分の有無を検査することにより火山の活動状況を監視できる。対象成分が、環境問題に関する成分である場合には、取込口11bを、当該成分の監視場所に配置することができる。 For example, when the target component is an explosive component, a component of toxicity, a deleterious substance, or a component related to drug crime, the inlet 11b of the gas detection device is arranged in a ticket gate which is a doorway of a person at a train station. Or at an airport, a building, or a security gate in a building. As a result, a gas to be inspected containing a target component (suspended particles or gas) from a person passing through a ticket gate or a security gate, or clothes or belongings of the person, is introduced into the working space 7 from the intake port 11b and is inspected at high speed. can do. When the target component is a component related to a natural disaster, the intake 11b is arranged near a volcano (crater) that needs to be monitored, and the presence or absence of the component is checked to determine the activity status of the volcano. Can be monitored. When the target component is a component relating to an environmental problem, the intake port 11b can be arranged at a monitoring location of the component.
 導入路形成体11が変形可能(例えば変形自在)な管である場合には、検査を行いたい空間領域Rに合わせて当該管11を変形させることにより、管11の先端にある取込口11bを当該空間領域Rに容易に配置することができる。例えば、当該空間領域Rが、人が持ち運ぶ鞄やスーツケースの内部である場合に、セキュリティーゲートにおいて、鞄やスーツケースを開けて、その内部に管11の取込口11bを容易に配置させることができる。次いで、ガス流発生装置15により、鞄やスーツケースの内部のガスを、検査対象ガスとして作用空間7に導入できる。 When the introduction path forming body 11 is a deformable (for example, deformable) pipe, the pipe 11 is deformed in accordance with the space region R to be inspected, so that the intake port 11b at the tip of the pipe 11 is formed. Can be easily arranged in the space region R. For example, when the space region R is inside a bag or suitcase carried by a person, the bag or the suitcase is opened at the security gate, and the intake port 11b of the pipe 11 is easily arranged inside the bag or the suitcase. Can be. Next, the gas inside the bag or the suitcase can be introduced into the working space 7 as the gas to be inspected by the gas flow generator 15.
 非線形光学結晶3は、テラヘルツ波発生装置10とテラヘルツ波検出装置30に共有されるので、検査装置100の構成をコンパクトにすることができる。 Since the nonlinear optical crystal 3 is shared by the terahertz wave generator 10 and the terahertz wave detector 30, the configuration of the inspection apparatus 100 can be made compact.
[第2実施形態]
 図6は、本発明の第2実施形態による検査装置100の構成を示す。第2実施形態では、テラヘルツ波発生装置10は、単一波長のテラヘルツ波Ltを発生して作用空間7へ導入するように構成されてよい。そのため、第2実施形態では、テラヘルツ波発生装置10は、第1実施形態の場合の構成に加えて、更にシード光源29を備える。第2実施形態において、説明しない点は、第1実施形態と同じであるので、その説明を省略する。
[Second embodiment]
FIG. 6 shows a configuration of an inspection device 100 according to the second embodiment of the present invention. In the second embodiment, the terahertz wave generator 10 may be configured to generate a single-wavelength terahertz wave Lt and introduce the terahertz wave Lt into the working space 7. Therefore, in the second embodiment, the terahertz wave generator 10 further includes a seed light source 29 in addition to the configuration of the first embodiment. In the second embodiment, the points that are not described are the same as those in the first embodiment, and thus description thereof is omitted.
 第2実施形態では、例えば励起光源1が発生する励起光Lpの波長を一定にして、シード光源29が発生するシード光Lseedの波長を連続的に変化させることにより、非線形光学結晶3において発生するテラヘルツ波Ltの波長を連続的に変化させることができる。テラヘルツ波Ltの当該各波長を合わせた波長範囲を、広い波長範囲(例えば図4の上記広い周波数範囲)にすることができる。このような波長範囲にわたって検査を行うために、当該波長範囲における各波長毎に、当該波長のテラヘルツ波Ltをテラヘルツ波発生装置10により作用空間7に導入し、作用空間7を複数回通過した当該テラヘルツ波Ltに基づいて、当該テラヘルツ波Ltの検出強度が検出データとしてテラヘルツ波検出装置30により生成されて出力される。このような構成を、以下において、より詳しく説明する。 In the second embodiment, for example, the wavelength of the excitation light Lp generated by the excitation light source 1 is kept constant, and the wavelength of the seed light L seed generated by the seed light source 29 is continuously changed. The wavelength of the terahertz wave Lt can be continuously changed. The wavelength range combining the respective wavelengths of the terahertz wave Lt can be set to a wide wavelength range (for example, the wide frequency range in FIG. 4). In order to perform inspection over such a wavelength range, a terahertz wave Lt of the wavelength is introduced into the working space 7 by the terahertz wave generator 10 for each wavelength in the wavelength range, and the terahertz wave Lt having passed through the working space 7 a plurality of times. Based on the terahertz wave Lt, the detected intensity of the terahertz wave Lt is generated and output as detection data by the terahertz wave detection device 30. Such a configuration is described in more detail below.
 シード光源29は、単一波長のシード光Lseedを生成し、当該シード光Lseedを非線形光学結晶3へ入射させる。図6の例では、シード光源29からのシード光Lseedは、その一部がビームスプリッタ31により反射されて、非線形光学結晶3へ入射する。 The seed light source 29 generates seed light L seed having a single wavelength, and causes the seed light L seed to enter the nonlinear optical crystal 3. In the example of FIG. 6, a part of the seed light L seed from the seed light source 29 is reflected by the beam splitter 31 and enters the nonlinear optical crystal 3.
 シード光源29は、例えば、励起光Lpの周波数よりも1~3THz程度低い単一の周波数のシード光Lseedを発生させる。シード光源29は、発生させるシード光Lseedの単一周波数が可変に構成されている。例えば、シード光源29に設けた適宜の操作部を人が操作することにより、シード光源29が発生するシード光Lseedの単一周波数が変更される。シード光源29は、例えば、波長可変半導体レーザーであってよいが、これに限定されない。 The seed light source 29 generates, for example, a seed light L seed having a single frequency lower by about 1 to 3 THz than the frequency of the excitation light Lp. The seed light source 29 is configured such that the single frequency of the seed light L seed to be generated is variable. For example, when a person operates an appropriate operation unit provided on the seed light source 29, the single frequency of the seed light L seed generated by the seed light source 29 is changed. The seed light source 29 may be, for example, a tunable semiconductor laser, but is not limited to this.
 この場合、非線形光学結晶3は、次の発生用の角度位相整合条件が満たされることにより、テラヘルツ波Ltを発生させる。この発生用の角度位相整合条件は、次のエネルギー保存則と運動量保存則からなる。
 エネルギー保存則:ωp1=ωseed+ωT1
 運動量保存則:kp1=kseed+kT1
 ここで、ωp1,ωT1,kp1,kT1は、第1実施形態の場合と同じである。ωseedは、シード光Lseedの角周波数であり、kseedは、シード光Lseedの波数ベクトルである。
In this case, the nonlinear optical crystal 3 generates the terahertz wave Lt by satisfying the next angle phase matching condition for generation. The angle phase matching condition for this generation includes the following energy conservation law and momentum conservation law.
Energy conservation law: ω p1 = ω seed + ω T1
Momentum conservation law: k p1 = k seed + k T1
Here, ω p1 , ω T1 , k p1 , and k T1 are the same as in the first embodiment. ω seed is the angular frequency of the seed light L seed , and k seed is the wave vector of the seed light L seed .
 図7は、図6の一部を示す。図7において、波数ベクトルkp1,kseed,kT1の関係を示す。図7の例では、kseedは、シード光Lseedが反射位置Prで反射する直前での波数ベクトルである。 FIG. 7 shows a part of FIG. FIG. 7 shows the relationship among wave number vectors k p1 , k seed , and k T1 . In the example of FIG. 7, k seed is a wave number vector immediately before the seed light L seed is reflected at the reflection position Pr.
 第2実施形態では、非線形光学結晶3は、発生用の角度位相整合条件を満たす励起光Lpとシード光Lseedにより、単一の波長のテラヘルツ波Ltを発生させ、当該テラヘルツ波Ltを射出する。テラヘルツ波Ltは、図6のように、非線形光学結晶3の端面3bとほぼ直交する方向に端面3bから射出されてよい。 In the second embodiment, the nonlinear optical crystal 3 generates the terahertz wave Lt having a single wavelength by the excitation light Lp and the seed light L seed that satisfy the angle phase matching condition for generation, and emits the terahertz wave Lt. . The terahertz wave Lt may be emitted from the end face 3b in a direction substantially orthogonal to the end face 3b of the nonlinear optical crystal 3, as shown in FIG.
 非線形光学結晶3から射出されたテラヘルツ波Ltは、第1実施形態の場合と同様に、導入光学系5により作用空間7へ導入され、内周面8における複数位置P1~P8で複数回反射され作用空間7を複数回通過し、入射光学系18により再び非線形光学結晶3へ入射させられる。これにより、検出用の角度位相整合条件に従って、第1実施形態と同様に、信号光Lsが生成されて、当該信号光Lsが検出器19に入射する。この場合、検出用の角度位相整合条件は、第1実施形態の場合と同じであり、その運動量保存則における励起光Lpと信号光Lsとテラヘルツ波Ltの波数ベクトルkp2,ks2,kT2の関係を、図7に示す。 The terahertz wave Lt emitted from the nonlinear optical crystal 3 is introduced into the working space 7 by the introduction optical system 5 and reflected a plurality of times at a plurality of positions P1 to P8 on the inner peripheral surface 8 as in the first embodiment. The light passes through the working space 7 a plurality of times, and is again incident on the nonlinear optical crystal 3 by the incident optical system 18. Thus, the signal light Ls is generated according to the angle phase matching condition for detection, as in the first embodiment, and the signal light Ls enters the detector 19. In this case, the angle phase matching conditions for detection are the same as those in the first embodiment, and the wave vectors k p2 , k s2 , and k T2 of the excitation light Lp, the signal light Ls, and the terahertz wave Lt in the momentum conservation law. Is shown in FIG.
 なお、非線形光学結晶3からの信号光Lsは、その一部がビームスプリッタ31を透過して検出器19に入射し、その残りがビームスプリッタ31で反射してアイソレータ33に吸収される。なお、アイソレータ33は、シード光源29からビームスプリッタ31へ向かうシード光Lseedを透過させる。 A part of the signal light Ls from the nonlinear optical crystal 3 passes through the beam splitter 31 and enters the detector 19, and the rest is reflected by the beam splitter 31 and absorbed by the isolator 33. The isolator 33 transmits the seed light L seed traveling from the seed light source 29 to the beam splitter 31.
 第2実施形態では、検出器19は、受けた信号光Lsの強度を示す大きさの電気信号を検出データとして生成して、当該電気信号を出力してよい。この検出データは、テラヘルツ波Ltの強度を表わしている。 In the second embodiment, the detector 19 may generate an electric signal having a magnitude indicating the intensity of the received signal light Ls as detection data and output the electric signal. This detection data represents the intensity of the terahertz wave Lt.
 第2実施形態によると、シード光源29が発生するシード光Lseedの単一の周波数を連続的に変化させ、シード光Lseedの各周波数について、検出器19は上述の電気信号を出力する。すなわち、シード光Lseedの周波数毎に、当該周波数に対応する単一の周波数のテラヘルツ波Ltが、非線形光学結晶3から射出されて、作用空間7を複数回通過し、その後、非線形光学結晶3に入射し、これにより、信号光Lsが生成され、当該信号光Lsの強度を示す大きさの電気信号が検出器19から出力される。信号光Lsの各周波数は、既知であり、発生するテラヘルツ波Ltの周波数とは、1対1で対応し、この対応関係は、予め分かっている。したがって、この対応関係と、シード光Lseedの各周波数について検出器19から出力された電気信号に基づいて、検出されたテラヘルツ波Ltのスペクトルデータを生成できる。 According to the second embodiment, the single frequency of the seed light L seed generated by the seed light source 29 is continuously changed, and the detector 19 outputs the above-described electric signal for each frequency of the seed light L seed . That is, for each frequency of the seed light L seed , a terahertz wave Lt having a single frequency corresponding to the frequency is emitted from the nonlinear optical crystal 3 and passes through the working space 7 a plurality of times. , Whereby the signal light Ls is generated, and an electric signal having a magnitude indicating the intensity of the signal light Ls is output from the detector 19. Each frequency of the signal light Ls is known, and has a one-to-one correspondence with the frequency of the generated terahertz wave Lt, and this correspondence is known in advance. Therefore, based on this correspondence and the electric signal output from the detector 19 for each frequency of the seed light L seed , the spectrum data of the detected terahertz wave Lt can be generated.
 上述した第2実施形態でも、第1実施形態と同様の効果が得られる。例えば、第2実施形態においても、上述した図4のように、テラヘルツ波Ltは、その広がりが調節されながら内周面8で反射するので、内周面8で多数回反射しても、安定してテラヘルツ波検出装置30へ案内される。 で も In the above-described second embodiment, the same effects as in the first embodiment can be obtained. For example, also in the second embodiment, as shown in FIG. 4 described above, the terahertz wave Lt is reflected on the inner peripheral surface 8 while its spread is adjusted. Then, it is guided to the terahertz wave detection device 30.
 また、対象成分は、例えば、テラヘルツ波Ltのスペクトルのうち、複数の特定周波数でテラヘルツ波Ltを吸収し、且つ、これらの特定周波数でのテラヘルツ波Ltの吸収量の互いに対する比率は、特定の比率になる。
 これに対して、励起光源1が発生する励起光Lpとシード光源29が発生するシード光Lseedの強度を一定にして、シード光Lseed又は励起光Lpの波長を変化させることにより、テラヘルツ波Ltの強度を一定にしつつ、その波長を変化させることができる。これにより、テラヘルツ波Ltの周波数毎に検出器19が出力した出力データに基づくスペクトルデータから、吸収された波長の組み合わせを検出し、且つ、当該各波長での吸収量の互いに対する比率を求めることができる。したがって、当該組み合わせと比率に基づいて、対象成分を検出できる。
In addition, for example, the target component absorbs the terahertz wave Lt at a plurality of specific frequencies in the spectrum of the terahertz wave Lt, and the ratio of the absorption amount of the terahertz wave Lt at these specific frequencies to each other is specific. Ratio.
On the other hand, by making the intensity of the excitation light Lp generated by the excitation light source 1 and the intensity of the seed light L seed generated by the seed light source 29 constant and changing the wavelength of the seed light L seed or the excitation light Lp, the terahertz wave is obtained. The wavelength can be changed while keeping the intensity of Lt constant. Thereby, the combination of the absorbed wavelengths is detected from the spectrum data based on the output data output from the detector 19 for each frequency of the terahertz wave Lt, and the ratio of the amount of absorption at each wavelength to each other is obtained. Can be. Therefore, the target component can be detected based on the combination and the ratio.
 本発明は上述した実施の形態に限定されず、本発明の技術的思想の範囲内で種々変更を加え得ることは勿論である。例えば、本発明の第1実施形態または第2実施形態による検査装置100は、上述した複数の事項の全て有していなくてもよく、上述した複数の事項のうち一部のみを有していてもよい。 The present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made within the technical idea of the present invention. For example, the inspection apparatus 100 according to the first embodiment or the second embodiment of the present invention may not have all of the above-described plural items, and may have only some of the above-described plural items. Is also good.
 また、以下の変更例1~12のいずれかを単独で採用してもよいし、変更例1~12の2つ以上の適切な組み合わせを任意に採用してもよい。この場合、以下で述べない点は、上述と同じである。 Also, any of the following Modifications 1 to 12 may be used alone, or an appropriate combination of two or more of Modifications 1 to 12 may be arbitrarily adopted. In this case, the points not described below are the same as those described above.
(変更例1)
 上述した第2実施形態において、励起光源1からの励起光Lpを非線形光学結晶3へ入射させる角度を変えることにより、非線形光学結晶3から射出されるテラヘルツ波Ltの単一周波数を変えてもよい。例えば、励起光源1からの励起光Lpを反射して非線形光学結晶3へ入射させる反射ミラー(図示せず)の角度を変えることにより、非線形光学結晶3に対する励起光Lpの入射角度を変えてよい。
(Modification 1)
In the above-described second embodiment, the single frequency of the terahertz wave Lt emitted from the nonlinear optical crystal 3 may be changed by changing the angle at which the excitation light Lp from the excitation light source 1 enters the nonlinear optical crystal 3. . For example, by changing the angle of a reflection mirror (not shown) that reflects the excitation light Lp from the excitation light source 1 and enters the nonlinear optical crystal 3, the incident angle of the excitation light Lp to the nonlinear optical crystal 3 may be changed. .
(変更例2)
 上述した第2実施形態において、シード光源29の代わりに、アイドラー光Liを増幅する共振器を設けてもよい。この共振器は、例えば、図8に示すように、アイドラー光Liを反射する第1および第2の反射ミラー27a,27bを有する。なお、図8では、非線形光学結晶3と反射ミラー27a,27b等を図示しているが、検査装置100の他の構成要素の図示を省略している。
(Modification 2)
In the above-described second embodiment, a resonator that amplifies idler light Li may be provided instead of the seed light source 29. This resonator includes, for example, first and second reflection mirrors 27a and 27b that reflect idler light Li, as shown in FIG. Although FIG. 8 illustrates the nonlinear optical crystal 3 and the reflection mirrors 27a and 27b, illustration of other components of the inspection apparatus 100 is omitted.
 非線形光学結晶3において励起光Lpにより生じるアイドラー光Liのうち、特定方向に伝播するアイドラー光Liが、第1および第2の反射ミラー27a,27bで繰り返し反射されることにより増幅される。これにより、増幅されたアイドラー光Liに対応する単一周波数のテラヘルツ波Ltが、上述した発生用の角度位相整合条件に従って、非線形光学結晶3において発生し非線形光学結晶3から射出される。 Among the idler light Li generated by the excitation light Lp in the nonlinear optical crystal 3, the idler light Li propagating in a specific direction is amplified by being repeatedly reflected by the first and second reflection mirrors 27a and 27b. Thus, the single-frequency terahertz wave Lt corresponding to the amplified idler light Li is generated in the nonlinear optical crystal 3 and emitted from the nonlinear optical crystal 3 in accordance with the above-described angular phase matching condition for generation.
 この場合、例えば、励起光源1からの励起光Lpを非線形光学結晶3へ入射させる角度を変えることにより、非線形光学結晶3から射出されるテラヘルツ波Ltの単一周波数の変えてもよい。あるいは、励起光源1が発生する励起光Lpの波長を変化させることにより、非線形光学結晶3から射出されるテラヘルツ波Ltの波長を変えてもよい。 In this case, for example, the single frequency of the terahertz wave Lt emitted from the nonlinear optical crystal 3 may be changed by changing the angle at which the excitation light Lp from the excitation light source 1 enters the nonlinear optical crystal 3. Alternatively, the wavelength of the terahertz wave Lt emitted from the nonlinear optical crystal 3 may be changed by changing the wavelength of the excitation light Lp generated by the excitation light source 1.
(変更例3)
 上述した本発明の第1又は第2の目的を達成するための検査装置100において、テラヘルツ波発生装置10は、各図に示した構成に限定されず、テラヘルツ波Ltを発生でき、当該テラヘルツ波Ltの波長を変化させることができる装置であればよい。
(Modification 3)
In the inspection apparatus 100 for achieving the above-described first or second object of the present invention, the terahertz wave generator 10 is not limited to the configuration shown in each drawing, and can generate the terahertz wave Lt. Any device that can change the wavelength of Lt may be used.
(変更例4)
 上述した本発明の第1の目的を達成するための検査装置100において、テラヘルツ波Ltが透過する検査対象は、上述のように検査対象ガスであってもよいし、固体、粉体、又は液体であってもよい。検査対象が固体、粉体、又は液体である場合、相互作用ユニット20は、検査対象を存在させる作用空間7を形成する空間形成体9を有しているが、上述した他の各構成要素は有していなくてもよい。また、作用空間7には、導入口7aと排出口7bが設けられていないが、例えば、空間形成体9には、作用空間7と外部とを連通する開口が形成されていてよい。この開口を通して検査対象を作用空間7に配置してよい。検査対象が、粉体又は液体である場合には、粉体又は液体を容器にいれて作用空間7に配置してよい。検査対象は、例えば、作用空間7において、テラヘルツ波Ltが反射面(内周面)8で反射して複数回通過する領域に配置されてよい。なお、上記開口は、内周面8以外の箇所に形成されていてよい。
(Modification 4)
In the inspection apparatus 100 for achieving the above-described first object of the present invention, the inspection target through which the terahertz wave Lt passes may be the inspection target gas as described above, or may be a solid, a powder, or a liquid. It may be. When the inspection target is a solid, a powder, or a liquid, the interaction unit 20 includes the space forming body 9 that forms the working space 7 in which the inspection target exists. It is not necessary to have. In addition, the working space 7 is not provided with the inlet 7a and the outlet 7b, but, for example, the space forming body 9 may be formed with an opening communicating the working space 7 with the outside. The test object may be arranged in the working space 7 through this opening. When the inspection target is a powder or a liquid, the powder or the liquid may be placed in a container and placed in the working space 7. The inspection target may be arranged, for example, in a region where the terahertz wave Lt is reflected by the reflection surface (inner peripheral surface) 8 and passes through a plurality of times in the working space 7. Note that the opening may be formed at a location other than the inner peripheral surface 8.
(変更例5)
 上述した第1実施形態または第2実施形態において、テラヘルツ波Ltは、導入部9aを通して作用空間7へ導入され、同じ導入部9aを通して作用空間7の外部へ伝播するが、本発明はこれに限定されない。すなわち、空間形成体9は、導入部9aに加えて、テラヘルツ波Ltを作用空間7の外部へ伝播させる退出部を有していてもよい。退出部は、テラヘルツ波Ltが透過する材料で形成されている。この場合、テラヘルツ波Ltは、導入部9aを通して作用空間7へ導入され、作用空間7を複数回通過し、その後、退出部を通して作用空間7の外部のテラヘルツ波検出装置30へ入射する。
(Modification 5)
In the first embodiment or the second embodiment described above, the terahertz wave Lt is introduced into the working space 7 through the introduction part 9a and propagates outside the working space 7 through the same introduction part 9a, but the present invention is not limited to this. Not done. That is, the space forming body 9 may include an exit portion that propagates the terahertz wave Lt to the outside of the working space 7 in addition to the introduction portion 9a. The exit portion is formed of a material through which the terahertz wave Lt passes. In this case, the terahertz wave Lt is introduced into the working space 7 through the introduction part 9a, passes through the working space 7 a plurality of times, and then enters the terahertz wave detection device 30 outside the working space 7 through the exit part.
 なお、導入部9aから作用空間7へ導入されたテラヘルツ波が、作用空間7を複数回通過した後に、上記退出部を通して作用空間7の外部へ伝播するように、内周面8の形状が設定されていればよい。 The shape of the inner peripheral surface 8 is set so that the terahertz wave introduced into the working space 7 from the introduction portion 9a propagates through the working space 7 to the outside of the working space 7 after passing through the working space 7 a plurality of times. It should just be done.
(変更例6)
 上述した本発明の第3の目的を達成するための検査装置100において、相互作用ユニット20は、設けられていなくてもよい。すなわち、テラヘルツ波発生装置10で発生したテラヘルツ波Ltが、検査対象(ガス、固体、粉体、又は液体)と相互作用し、その後、同じ非線形光学結晶3に入射するようになっていればよい。このように非線形光学結晶3に入射するテラヘルツ波Ltは、検査対象領域における検査対象を透過し、又は、検査対象で反射若しくは散乱したものであってよい。テラヘルツ波Ltは、検査対象を透過し、又は、検査対象で反射若しくは散乱する時に、検査対象と相互作用する。すなわち、テラヘルツ波Ltの一部の周波数成分が検査対象に吸収される。
(Modification 6)
In the inspection apparatus 100 for achieving the above-described third object of the present invention, the interaction unit 20 may not be provided. That is, the terahertz wave Lt generated by the terahertz wave generation device 10 may interact with the inspection target (gas, solid, powder, or liquid) and thereafter enter the same nonlinear optical crystal 3. . As described above, the terahertz wave Lt incident on the nonlinear optical crystal 3 may be transmitted through the inspection target in the inspection target region or reflected or scattered by the inspection target. The terahertz wave Lt interacts with the test object when transmitting through the test object or reflecting or scattering at the test object. That is, some frequency components of the terahertz wave Lt are absorbed by the inspection target.
(変更例7)
 上述した第1実施形態または第2実施形態において、非線形光学結晶3と励起光源1一方または両方は、テラヘルツ波発生装置10とテラヘルツ波検出装置30に共有されていなくてもよい。例えば、テラヘルツ波発生装置10とテラヘルツ波検出装置30は、それぞれ別々の非線形光学結晶を有していてもよい。この場合、テラヘルツ波検出装置30の当該非線形光学結晶には、テラヘルツ波発生装置10の励起光源1からの励起光Lpが適宜の光学系により案内されて入射されてもよいし、励起光源1とは別に設けた励起光源からの励起光Lpが入射されてもよい。これにより、テラヘルツ波検出装置30において信号光Lsを発生させる。
(Modification 7)
In the first embodiment or the second embodiment described above, one or both of the nonlinear optical crystal 3 and the excitation light source 1 may not be shared by the terahertz wave generator 10 and the terahertz wave detector 30. For example, the terahertz wave generator 10 and the terahertz wave detector 30 may have different nonlinear optical crystals, respectively. In this case, the excitation light Lp from the excitation light source 1 of the terahertz wave generation device 10 may be guided and incident on the nonlinear optical crystal of the terahertz wave detection device 30 by an appropriate optical system. Excitation light Lp from a separately provided excitation light source may be incident. Thereby, the signal light Ls is generated in the terahertz wave detection device 30.
(変更例8)
 上述した第1実施形態または第2実施形態において、導入路形成体11と排出路形成体13の一方または両方が省略されてもよい。導入路形成体11と排出路形成体13の両方を省略する場合、送風機15は、導入口7a又は排出口7bに設けられてもよいし、作用空間7において、テラヘルツ波Ltに干渉しない領域に設けられてもよい。
(Modification 8)
In the first or second embodiment described above, one or both of the introduction path forming body 11 and the discharge path forming body 13 may be omitted. In a case where both the introduction path forming body 11 and the discharge path forming body 13 are omitted, the blower 15 may be provided at the introduction port 7a or the discharge port 7b, or in the working space 7 in a region that does not interfere with the terahertz wave Lt. It may be provided.
(変更例9)
 上述した第1実施形態または第2実施形態において、テラヘルツ波Ltが、作用空間7において反射面(内周面)8で反射する回数は、1回であっても複数回(多数回)であってもよい。また、テラヘルツ波Ltが、内周面8で1回又は複数回反射して作用空間7を複数回通過し、テラヘルツ波検出装置30で検出されれば、内周面8の形状は上述の形状に限定されない。
(Modification 9)
In the above-described first or second embodiment, the number of times that the terahertz wave Lt is reflected on the reflecting surface (inner peripheral surface) 8 in the working space 7 is one or more (many times). You may. In addition, if the terahertz wave Lt is reflected one or more times by the inner peripheral surface 8 and passes through the working space 7 a plurality of times and is detected by the terahertz wave detecting device 30, the shape of the inner peripheral surface 8 is the above-described shape. It is not limited to.
(変更例10)
 ガス流発生装置15は設けられなくてもよい。すなわち、検査対象ガス(例えば火山性ガス)が、自然に、導入口7aを通して作用空間7へ流入し、排出口7bを通して外部へ流出する場所(例えば屋外)に相互作用ユニット20を設置する場合には、ガス流発生装置15は設けられなくてもよい。
(Modification 10)
The gas flow generator 15 may not be provided. That is, when the interaction unit 20 is installed at a place where the gas to be inspected (for example, volcanic gas) naturally flows into the working space 7 through the inlet 7a and flows out to the outside through the outlet 7b (for example, outdoors). The gas flow generator 15 may not be provided.
(変更例11)
 上述した第2実施形態において、テラヘルツ波検出装置30は、非線形光学結晶3を有していなくてもよい。この場合、作用空間7からのテラヘルツ波Ltは、検出器19に入射される。検出器19は、入射したテラヘルツ波Ltの強度を示す電気信号を生成して出力する。このような検出器19は、例えば、吸収体と熱電変換素子を備える。吸収体は、テラヘルツ波Ltを吸収することにより発熱する。熱電変換素子は、吸収体に取り付けられ吸収体で発生した熱量に応じた大きさの上記電気信号を検出データとして生成して出力する。
(Modification 11)
In the above-described second embodiment, the terahertz wave detection device 30 may not have the nonlinear optical crystal 3. In this case, the terahertz wave Lt from the working space 7 enters the detector 19. The detector 19 generates and outputs an electric signal indicating the intensity of the incident terahertz wave Lt. Such a detector 19 includes, for example, an absorber and a thermoelectric conversion element. The absorber generates heat by absorbing the terahertz wave Lt. The thermoelectric conversion element is attached to the absorber and generates and outputs the electric signal having a magnitude corresponding to the amount of heat generated by the absorber as detection data.
(変更例12)
 図9は、変更例12による検査装置100の構成を示す。図10は、図9のX-X矢視図である。図9のように、空間形成体9には、外部から作用空間7へ検査対象Tが入る入口9bと、作用空間7から外部へ検査対象Tが出る出口9cとが形成されている。入口9bと出口9cは、内周面8においてテラヘルツ波Ltが反射する各位置P1~P8からずれて位置している。また、図10に示すように、空間形成体9は、作用空間7を区画する面12を有し、この面12は水平面であってよい。変更例12では、ガス流発生装置15は設けられなくてよい。
(Modification 12)
FIG. 9 shows a configuration of an inspection apparatus 100 according to a twelfth modification. FIG. 10 is a view taken along the line XX in FIG. As shown in FIG. 9, the space forming body 9 is formed with an inlet 9b through which the test object T enters the working space 7 from the outside and an outlet 9c through which the test object T exits from the working space 7 to the outside. The inlet 9b and the outlet 9c are located on the inner peripheral surface 8 so as to be shifted from the respective positions P1 to P8 where the terahertz wave Lt is reflected. As shown in FIG. 10, the space forming body 9 has a surface 12 that partitions the working space 7, and this surface 12 may be a horizontal plane. In the twelfth modification, the gas flow generator 15 may not be provided.
 変更例12では、作用空間7に存在させる検査対象Tは、ガス以外のものであってよく、例えば、人又は物体である。検査対象Tは、図9の破線矢印Aが示すように、入口9bから作用空間7に入り、その後、出口9cから作用空間7の外部へ出ていく。例えば、検査対象Tは、搬送装置(例えばベルトコンベア)により、入口9bから作用空間7に入り出口9cから作用空間7の外部へ出ていくように搬送されてもよい。この搬送装置は、作用空間7内におけるテラヘルツ波Ltの伝播経路に干渉しないように設けられる。検査対象Tが人である場合には、人は、歩いて、入口9bから作用空間7に入り出口9cから作用空間7の外部へ出てよい。人は図12の水平面12を歩行してよい。 In the twelfth modification, the inspection target T to be present in the working space 7 may be other than gas, for example, a person or an object. The inspection object T enters the working space 7 from the inlet 9b as shown by the dashed arrow A in FIG. 9, and then goes out of the working space 7 from the outlet 9c. For example, the inspection target T may be transported by a transport device (for example, a belt conveyor) so as to enter the working space 7 from the inlet 9b and exit the working space 7 from the outlet 9c. This transport device is provided so as not to interfere with the propagation path of the terahertz wave Lt in the working space 7. When the inspection target T is a person, the person may walk, enter the working space 7 from the entrance 9b, and go out of the working space 7 from the exit 9c. A person may walk on the horizontal plane 12 of FIG.
 また、例えば、検査対象Tは、作用空間7に入った後、作用空間7の中央部で一旦停止する。この中央部は、図9において円形である内周面8の中心軸上に位置する。検査対象Tが作用空間7の中心部で停止した状態で、テラヘルツ波発生装置10によりテラヘルツ波Ltを発生させることにより、当該テラヘルツ波Ltが、(検査対象Tを透過せずに)検査対象Tの近傍を、多数回(図9では9回)通過する。したがって、検査対象Tを取り巻く空気に、対象成分(浮遊粒子やガス)が含まれていないかを高感度に検査できる。すなわち、検査対象Tを取り巻く空気には、検査対象Tから生じた成分が含まれているので、当該成分が対象成分であるかを高感度に検査できる。 Further, for example, after the test object T enters the working space 7, it temporarily stops at the center of the working space 7. This central portion is located on the central axis of the inner peripheral surface 8 which is circular in FIG. The terahertz wave Lt is generated by the terahertz wave generator 10 in a state where the test object T is stopped at the center of the working space 7, so that the terahertz wave Lt is not transmitted through the test object T (not transmitted through the test object T). Pass many times (9 times in FIG. 9). Therefore, it is possible to inspect with high sensitivity whether or not the target component (suspended particles or gas) is contained in the air surrounding the inspection target T. That is, since the air surrounding the inspection target T includes the component generated from the inspection target T, it is possible to inspect with high sensitivity whether the component is the target component.
 なお、入口9bと出口9cの両方を兼ねる1つの出入口が空間形成体9に形成されていてもよい。この場合、変更例12の他の点は、上述と同じである。また、図9は、第1実施形態の検査装置100に対して変更例12を採用した構成を示すが、第2実施形態の検査装置100に対して、上述した変更例12を採用してもよい。 One space which serves as both the inlet 9b and the outlet 9c may be formed in the space forming body 9. In this case, the other points of the twelfth modification are the same as those described above. FIG. 9 shows a configuration in which the modification 12 is employed for the inspection apparatus 100 of the first embodiment. However, even if the above-described modification 12 is employed for the inspection apparatus 100 of the second embodiment. Good.
1 励起光源、3 非線形光学結晶、3a 側面、3b 端面、5 導入光学系、5a 反射ミラー、5b レンズ、7 作用空間、7a 導入口、7b 排出口、8 反射面(内周面)、9 空間形成体、9a 導入部、9b 入口、9c 出口、10 テラヘルツ波発生装置、11 導入路形成体(管)、11a 導入路、11b 取込口、13 排出路形成体(管)、13a 排出路、13b 送出口、15 ガス流発生装置(送風機)、16 整流部、17 整流部、18 入射光学系、18a~18c 反射ミラー、18d ビームスプリッタ、18e 集光レンズ、19 検出器、19a 光検出素子、20 相互作用ユニット、21 反射ミラー、23 アイソレータ、25 アイソレータ、27a,27b 反射ミラー、29 シード光源、30 テラヘルツ波検出装置、31  ビームスプリッタ、33 アイソレータ、100 検査装置、Pr 反射位置、Li アイドラー光、Lp 励起光、Lt テラヘルツ波、Ls 信号光、T 検査対象 1 excitation light source, 3 nonlinear optical crystal, 3a side face, 3b end face, 5 introduction optical system, 5a reflection mirror, 5b lens, 7 working space, 7a introduction port, 7b exhaust port, 8 reflection surface (inner peripheral surface), 9 space Forming body, 9a inlet, 9b inlet, 9c outlet, 10 terahertz wave generator, 11 inlet forming body (tube), 11a inlet, 11b inlet, 13 outlet forming body (tube), 13a outlet, 13b outlet, 15 gas flow generator (blower), 16 rectifier, 17 部 rectifier, 18 incident optical system, 18a ~ 18c reflector mirror, 18d beam splitter, 18e condenser lens, 19 detector, 19a photodetector, 20 interaction unit, 21 reflection mirror, 23 isolator, 25 isolator, 27a, 27b reflection mirror, 2 Seed source, 30 terahertz wave detection apparatus, 31 a beam splitter, 33 isolator, 100 inspecting apparatus, Pr reflection position, Li idler light, Lp excitation light, Lt terahertz wave, Ls signal light, T inspected

Claims (14)

  1.  テラヘルツ波を発生させるテラヘルツ波発生装置と、
     前記テラヘルツ波が導入され且つ検査対象を存在させる作用空間を有する相互作用ユニットと、
     前記作用空間において前記検査対象と相互作用し前記作用空間を通過した前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力するテラヘルツ波検出装置とを備え、
     前記相互作用ユニットは、前記作用空間において前記テラヘルツ波を反射させる反射面を有し、前記テラヘルツ波は、前記反射面で反射されることにより、複数回、前記作用空間を通過して、前記作用空間の外部に位置する前記テラヘルツ波検出装置へ入射するようになっている、テラヘルツ波を用いた検査装置。
    A terahertz wave generator for generating a terahertz wave,
    An interaction unit having an operation space in which the terahertz wave is introduced and an inspection target is present;
    A terahertz wave detection device that generates detection data based on the terahertz wave that has passed through the working space by interacting with the test object in the working space, and outputs the detection data,
    The interaction unit has a reflecting surface that reflects the terahertz wave in the working space, and the terahertz wave passes through the working space a plurality of times by being reflected by the reflecting surface, and An inspection device using a terahertz wave, which is incident on the terahertz wave detection device located outside the space.
  2.  テラヘルツ波を発生させるテラヘルツ波発生装置と、
     前記テラヘルツ波と検査対象ガスが導入され、両者を相互作用させるための作用空間を有する相互作用ユニットと、
     前記作用空間を通過した前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力するテラヘルツ波検出装置とを備え、
     前記相互作用ユニットは、前記作用空間を形成する空間形成体を備え、
     前記作用空間は、外部へ連通する導入口を有し、外部のガスが検査対象ガスとして前記導入口を通って前記作用空間に流入可能になっている、テラヘルツ波を用いた検査装置。
    A terahertz wave generator for generating a terahertz wave,
    The terahertz wave and the gas to be tested are introduced, and an interaction unit having an action space for allowing the two to interact with each other,
    A terahertz wave detection device that generates detection data based on the terahertz wave that has passed through the working space and outputs the detection data,
    The interaction unit includes a space forming body that forms the working space,
    An inspection apparatus using terahertz waves, wherein the working space has an inlet communicating with the outside, and an external gas can flow into the working space through the inlet as a gas to be inspected.
  3.  前記相互作用ユニットは、外部から前記導入口を通して前記作用空間へ流入するガス流を発生させるガス流発生装置を備える、請求項2に記載の検査装置。 The inspection device according to claim 2, wherein the interaction unit includes a gas flow generating device that generates a gas flow flowing into the working space from the outside through the inlet.
  4.  前記導入口から延びる導入路を形成する導入路形成体を備え、
     前記導入路は、前記導入口と反対側において外部に開口する取込口を有する、請求項2又は3に記載の検査装置。
    An introduction path forming body that forms an introduction path extending from the introduction port,
    The inspection device according to claim 2, wherein the introduction path has an intake port that opens to the outside on a side opposite to the introduction port.
  5.  前記導入路形成体は、変形可能な管である、請求項4に記載の検査装置。 The inspection device according to claim 4, wherein the introduction path forming body is a deformable tube.
  6.  前記相互作用ユニットは、前記作用空間において前記テラヘルツ波を反射させる反射面を有し、前記テラヘルツ波は、前記反射面で反射されることにより、複数回、前記作用空間を通過して、前記作用空間の外部に位置する前記テラヘルツ波検出装置へ入射するようになっている、請求項2~5のいずれか一項に記載の検査装置。 The interaction unit has a reflecting surface that reflects the terahertz wave in the working space, and the terahertz wave passes through the working space a plurality of times by being reflected by the reflecting surface, and The inspection device according to any one of claims 2 to 5, wherein the inspection device is configured to enter the terahertz wave detection device located outside the space.
  7.  前記反射面は、前記作用空間を囲むように延びて前記作用空間を区画する内周面であり、前記テラヘルツ波は、前記作用空間において前記内周面における複数位置で順に反射した後に、前記テラヘルツ波検出装置へ入射するようになっている、請求項1又は6に記載の検査装置。 The reflection surface is an inner peripheral surface that extends so as to surround the working space and divides the working space, and the terahertz wave is reflected at a plurality of positions on the inner peripheral surface in the working space in order, and then the terahertz wave is reflected. The inspection device according to claim 1, wherein the inspection device is configured to be incident on a wave detection device.
  8.  前記内周面は、前記内周面の中心軸方向から見た場合に円形である、請求項7に記載の検査装置。 The inspection device according to claim 7, wherein the inner peripheral surface is circular when viewed from a center axis direction of the inner peripheral surface.
  9.  前記作用空間は、排出口を有し、前記作用空間の検査対象ガスが、前記排出口を通って外部に流出可能になっており、
     前記導入口と前記排出口は、前記作用空間においてテラヘルツ波が通過する領域を挟むように位置し、
     前記相互作用ユニットは、
     前記領域と前記導入口との間に設けられ、当該領域の各位置の間で前記検査対象ガスの流量の差を減らす整流部を備える、請求項2~6のいずれか一項に記載の検査装置。
    The working space has an outlet, and the gas to be inspected in the working space is allowed to flow outside through the outlet.
    The inlet and the outlet are located so as to sandwich a region through which the terahertz wave passes in the working space,
    The interaction unit comprises:
    The inspection according to any one of claims 2 to 6, further comprising a rectification unit provided between the region and the inlet, and configured to reduce a difference in flow rate of the inspection target gas between positions in the region. apparatus.
  10.  前記テラヘルツ波発生装置は、励起光を生成する励起光源と、前記励起光が発生用の角度位相整合条件を満たすように入射されることによりテラヘルツ波を発生する非線形光学結晶とを備え、
     前記テラヘルツ波検出装置は、前記作用空間からの前記テラヘルツ波が検出用の角度位相整合条件を満たすように入射されることにより当該テラヘルツ波と励起光から信号光を生成する前記非線形光学結晶と、前記信号光に基づいて検出データを出力する検出器とを備え、
     前記非線形光学結晶は前記テラヘルツ波発生装置と前記テラヘルツ波検出装置に共有される、請求項1~9のいずれか一項に記載の検査装置。
    The terahertz wave generator includes an excitation light source that generates excitation light, and a nonlinear optical crystal that generates a terahertz wave when the excitation light is incident so as to satisfy an angle phase matching condition for generation.
    The terahertz wave detection device, the non-linear optical crystal that generates signal light from the terahertz wave and the excitation light by the terahertz wave from the working space is incident so as to satisfy the angular phase matching condition for detection, A detector that outputs detection data based on the signal light,
    The inspection device according to any one of claims 1 to 9, wherein the nonlinear optical crystal is shared by the terahertz wave generator and the terahertz wave detector.
  11.  テラヘルツ波を発生させ検査対象領域に導入するテラヘルツ波発生装置と、
     前記検査対象領域を通過した前記テラヘルツ波に基づいて検出データを出力するテラヘルツ波検出装置とを備え、
     前記テラヘルツ波発生装置は、励起光を生成する励起光源と、前記励起光が発生用の角度位相整合条件を満たすように入射されることによりテラヘルツ波を発生する非線形光学結晶とを備え、
     前記テラヘルツ波検出装置は、前記検査対象領域からの前記テラヘルツ波が検出用の角度位相整合条件を満たすように入射されることにより当該テラヘルツ波と励起光から信号光を生成する前記非線形光学結晶と、前記信号光に基づいて検出データを出力する検出器とを備え、
     前記非線形光学結晶は前記テラヘルツ波発生装置と前記テラヘルツ波検出装置に共有される、テラヘルツ波を用いた検査装置。
    A terahertz wave generator that generates a terahertz wave and introduces the terahertz wave into an inspection target area;
    A terahertz wave detection device that outputs detection data based on the terahertz wave that has passed through the inspection target area,
    The terahertz wave generator includes an excitation light source that generates excitation light, and a nonlinear optical crystal that generates a terahertz wave when the excitation light is incident so as to satisfy an angle phase matching condition for generation.
    The terahertz wave detection device, the non-linear optical crystal that generates signal light from the terahertz wave and the excitation light by being incident so that the terahertz wave from the inspection target area satisfies the angular phase matching condition for detection A detector that outputs detection data based on the signal light,
    An inspection device using a terahertz wave, wherein the nonlinear optical crystal is shared by the terahertz wave generator and the terahertz wave detector.
  12. (A)テラヘルツ波を発生させ、
    (B)前記テラヘルツ波を、検査対象が存在している作用空間に導入して、前記作用空間において前記テラヘルツ波と前記検査対象とを相互作用させ、
    (C)前記作用空間からの前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力し、
     前記(B)において、前記テラヘルツ波は、前記作用空間において、反射面で反射されることにより、複数回、前記作用空間を通過する、テラヘルツ波を用いた検査方法。
    (A) generating a terahertz wave,
    (B) introducing the terahertz wave into the working space where the test object is present, and causing the terahertz wave to interact with the test object in the working space;
    (C) generating detection data based on the terahertz wave from the working space, outputting the detection data,
    In the above (B), an inspection method using a terahertz wave, wherein the terahertz wave passes through the working space a plurality of times by being reflected by a reflection surface in the working space.
  13. (A)テラヘルツ波を発生させ、
    (B)前記テラヘルツ波を、検査対象ガスが存在している作用空間に導入して、前記作用空間において前記テラヘルツ波と検査対象ガスとを相互作用させ、
    (C)前記作用空間からの前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力し、
     前記作用空間は、外部へ連通する導入口を有しており、外部のガスが検査対象ガスとして前記導入口を通って前記作用空間に流入する、テラヘルツ波を用いた検査方法。
    (A) generating a terahertz wave,
    (B) introducing the terahertz wave into the working space where the gas to be tested is present, and allowing the terahertz wave to interact with the gas to be tested in the working space;
    (C) generating detection data based on the terahertz wave from the working space, outputting the detection data,
    An inspection method using terahertz waves, wherein the working space has an inlet communicating with the outside, and an external gas flows into the working space through the inlet as the gas to be inspected.
  14. (A)テラヘルツ波を発生させ、
    (B)前記テラヘルツ波を検査対象領域に導入し、
    (C)検査対象領域を通過した前記テラヘルツ波に基づいて検出データを生成し、当該検出データを出力し、
     前記(A)では、励起光が発生用の角度位相整合条件を満たすように非線形光学結晶に入射されることにより、前記テラヘルツ波を発生させ、
     前記(C)では、前記検査対象領域からの前記テラヘルツ波が検出用の角度位相整合条件を満たすように前記非線形光学結晶に入射されることにより、当該テラヘルツ波と励起光から信号光が生成され、前記信号光に基づいて前記検出データを生成し、
     前記非線形光学結晶は前記(A)と(C)とで共用される、テラヘルツ波を用いた検査方法。
     
    (A) generating a terahertz wave,
    (B) introducing the terahertz wave into a region to be inspected,
    (C) generating detection data based on the terahertz wave passed through the inspection target area, outputting the detection data,
    In the above (A), the terahertz wave is generated by the excitation light being incident on the nonlinear optical crystal so as to satisfy the angle phase matching condition for generation,
    In (C), the terahertz wave from the inspection target region is incident on the nonlinear optical crystal so as to satisfy the angle phase matching condition for detection, so that signal light is generated from the terahertz wave and the excitation light. Generating the detection data based on the signal light;
    An inspection method using a terahertz wave, wherein the nonlinear optical crystal is shared by the above (A) and (C).
PCT/JP2019/033540 2018-08-31 2019-08-27 Method and apparatus for inspection using terahertz wave WO2020045444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163717 2018-08-31
JP2018163717A JP7232498B2 (en) 2018-08-31 2018-08-31 Inspection apparatus and inspection method using terahertz waves

Publications (1)

Publication Number Publication Date
WO2020045444A1 true WO2020045444A1 (en) 2020-03-05

Family

ID=69644338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033540 WO2020045444A1 (en) 2018-08-31 2019-08-27 Method and apparatus for inspection using terahertz wave

Country Status (2)

Country Link
JP (1) JP7232498B2 (en)
WO (1) WO2020045444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282118A1 (en) * 2021-07-09 2023-01-12 ローム株式会社 Detection device and detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501098B1 (en) * 2021-08-05 2023-02-17 주식회사 미래전파공학연구소 Experimental device for terahertz band research

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988558A (en) * 1995-09-29 1997-03-31 Meidensha Corp Nox removal system
JP2004069381A (en) * 2002-08-02 2004-03-04 Jasco Corp Optical device, measuring cell and optical delay unit
JP2011075583A (en) * 2009-09-03 2011-04-14 Institute Of Physical & Chemical Research Monochrome wavelength variable type terahertz wave generation/detection system, and method
JP2011169637A (en) * 2010-02-16 2011-09-01 Sony Corp Terahertz spectroscopic device, method for manufacturing the same, and terahertz spectrometer
JP2012167865A (en) * 2011-02-14 2012-09-06 Ulvac-Riko Inc Heat treatment device
JP2014203025A (en) * 2013-04-09 2014-10-27 独立行政法人理化学研究所 Terahertz wave detection device and method
JP2016061754A (en) * 2014-09-22 2016-04-25 株式会社東芝 Gas analyzer and gas cell
WO2016208048A1 (en) * 2015-06-26 2016-12-29 株式会社日立製作所 Gas analysis device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253536A (en) * 1997-03-14 1998-09-25 Nikon Corp Analysis device
JP4609993B2 (en) * 2004-12-08 2011-01-12 独立行政法人理化学研究所 Terahertz wave generation method and apparatus
JP2012053450A (en) * 2010-08-05 2012-03-15 Canon Inc Terahertz wave generating element, terahertz wave detecting element, terahertz wave generator, terahertz wave detector, terahertz wave measuring instrument, and terahertz wave tomographic imaging apparatus
CN203881677U (en) * 2014-05-30 2014-10-15 中国石油大学(北京) Gas reaction chamber
JP6810954B2 (en) * 2016-09-30 2021-01-13 国立研究開発法人理化学研究所 Terahertz wave generator, optical parametric amplifier, terahertz wave detector, and non-linear optics

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988558A (en) * 1995-09-29 1997-03-31 Meidensha Corp Nox removal system
JP2004069381A (en) * 2002-08-02 2004-03-04 Jasco Corp Optical device, measuring cell and optical delay unit
JP2011075583A (en) * 2009-09-03 2011-04-14 Institute Of Physical & Chemical Research Monochrome wavelength variable type terahertz wave generation/detection system, and method
JP2011169637A (en) * 2010-02-16 2011-09-01 Sony Corp Terahertz spectroscopic device, method for manufacturing the same, and terahertz spectrometer
JP2012167865A (en) * 2011-02-14 2012-09-06 Ulvac-Riko Inc Heat treatment device
JP2014203025A (en) * 2013-04-09 2014-10-27 独立行政法人理化学研究所 Terahertz wave detection device and method
JP2016061754A (en) * 2014-09-22 2016-04-25 株式会社東芝 Gas analyzer and gas cell
WO2016208048A1 (en) * 2015-06-26 2016-12-29 株式会社日立製作所 Gas analysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282118A1 (en) * 2021-07-09 2023-01-12 ローム株式会社 Detection device and detection method

Also Published As

Publication number Publication date
JP2020034530A (en) 2020-03-05
JP7232498B2 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
RU2737360C2 (en) Multipass sample cuvette
US7921693B2 (en) Photo-acoustic spectrometer apparatus
US7728295B2 (en) Method and apparatus for detecting surface and subsurface properties of materials
WO2020045444A1 (en) Method and apparatus for inspection using terahertz wave
JP6905992B2 (en) Laser detection system and method
US7570349B2 (en) Cars/absorption dual mode electro-optic sensor
WO2018200416A1 (en) Ultra-sensitive, real-time trace gas detection using high-power, multi-mode semiconductor laser and cavity ringdown spectroscopy
WO2008074442A1 (en) Differential photoacoustic detection of gases
JPH04299236A (en) Remote sensing apparatus
US11221271B2 (en) Photoacoustic sensor for detecting trace amounts of hydrocarbons in gases or liquids
JP2012501438A (en) Spectrum analyzer suitable for spectrum analysis of low concentration gas
WO2017153765A1 (en) Photo-acoustic detector
Ayrapetyan et al. Laser detection of explosives based on differential absorption and scattering
CN107976426A (en) A kind of constituent of atomsphere detection system based on chevilled silk laser
US11592397B2 (en) Remote substance identification device and remote substance identification method
GB2023822A (en) Photoacoustic raman spectroscopy
Gaudio et al. Lidar and Dial application for detection and identification: a proposal to improve safety and security
US20110309248A1 (en) Optical Remote Sensing of Fugitive Releases
CN110470631A (en) Laser gas analyzer
US20210172870A1 (en) Optical detection system for detecting a substance in a measurement region
JPS63313036A (en) Transitional absorption spectral method
US20220276158A1 (en) Spectroscopic Measurement Device
Rayner et al. Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers
Lamard et al. Photoacoustic spectrometer based on widely tunable mid-infrared pulsed optical parametric
Razdan et al. Infrared differential absorption lidar for stand-off detection of chemical agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853473

Country of ref document: EP

Kind code of ref document: A1