JP3409593B2 - Denitration equipment with shielding plate - Google Patents

Denitration equipment with shielding plate

Info

Publication number
JP3409593B2
JP3409593B2 JP18390496A JP18390496A JP3409593B2 JP 3409593 B2 JP3409593 B2 JP 3409593B2 JP 18390496 A JP18390496 A JP 18390496A JP 18390496 A JP18390496 A JP 18390496A JP 3409593 B2 JP3409593 B2 JP 3409593B2
Authority
JP
Japan
Prior art keywords
exhaust gas
shielding plate
reactor
denitration
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18390496A
Other languages
Japanese (ja)
Other versions
JPH1030431A (en
Inventor
正彦 家田
義彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP18390496A priority Critical patent/JP3409593B2/en
Publication of JPH1030431A publication Critical patent/JPH1030431A/en
Application granted granted Critical
Publication of JP3409593B2 publication Critical patent/JP3409593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関等における
排気ガス中に含まれている窒素酸化物(NOX)を除去
するための脱硝装置に関し、特に内方に遮蔽板を備えた
脱硝装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration device for removing nitrogen oxides (NO x ) contained in exhaust gas in an internal combustion engine or the like, and more particularly to a denitration device having a shield plate inside. It is a thing.

【0002】[0002]

【従来の技術】NOX処理技術は種々の分野で必要とさ
れてきており、例えばディーゼル機関等の排気ガス中に
存在するNOXは人体に有害であって酸性雨の発生原因
ともなるので、これら排気ガス中のNOXを効果的に処
理する技術が望まれている。
2. Description of the Related Art NO X treatment technology has been required in various fields. For example, NO X present in exhaust gas of a diesel engine or the like is harmful to the human body and causes acid rain. technique that handles NO X of the exhaust gas effectively is desired.

【0003】一般に上記NOXの処理方法は排煙脱硝技
術として実用化されている。この排煙脱硝技術は乾式法
と湿式法に大別されるが、現在では乾式法の一つである
選択接触還元法が技術的に先行しており、有力な脱硝方
法として注目されている。
Generally, the above-mentioned NO X treatment method has been put into practical use as a flue gas denitration technique. This flue gas denitration technology is roughly classified into a dry method and a wet method. At present, the selective catalytic reduction method, which is one of the dry methods, has been technically preceded, and is attracting attention as an effective denitration method.

【0004】上記選択接触還元法の主反応は以下の通り
である。
The main reaction of the selective catalytic reduction method is as follows.

【0005】 4NO+4NH3+O2 → 4N2+6H2O・・・・・・・・・・・・・(1) この反応は還元剤としてアンモニア,炭化水素,一酸化
炭素が使用され、特にアンモニアは酸素が共存しても選
択的にNOXを除去するため、ディーゼル機関等の排気
ガス中に含まれているNOXの除去に用いて有効であ
る。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1) In this reaction, ammonia, hydrocarbon and carbon monoxide are used as reducing agents. Since NO X is selectively removed even when oxygen coexists, it is effective when used to remove NO X contained in the exhaust gas of a diesel engine or the like.

【0006】上記脱硝装置の一例として、図10に示し
たように密閉型の反応器1内部にハニカム状に構成され
た触媒で成る脱硝剤2,2を多数個並べて積層してお
き、該反応器1の上方から排気ガスGが流入されるのと
同時にノズル3からタンク4に貯留された還元剤を散布
して、上記(1)式に基づく接触還元を行う手段が多用
されている。尚、脱硝剤2を構成する触媒としてプラチ
ナ等の貴金属とかアルミナ,酸化チタン(TiO2)等
に担持された各種金属酸化物が使用される。
As an example of the above-mentioned denitration apparatus, as shown in FIG. 10, a large number of denitration agents 2 made of a honeycomb-shaped catalyst are stacked side by side in a closed reactor 1 and the reaction is carried out. A means for spraying the reducing agent stored in the tank 4 from the nozzle 3 at the same time as the exhaust gas G flows in from above the vessel 1 to perform catalytic reduction based on the above formula (1) is often used. As the catalyst constituting the denitration agent 2, a noble metal such as platinum or various metal oxides supported on alumina, titanium oxide (TiO 2 ) or the like is used.

【0007】図10の例では、脱硝剤2,2の上方に空
間部15が形成されていて、この空間部15によって流
入する排気ガスGと還元剤の混合効果を高めるとともに
排気ガスGの偏流とか乱流を抑制する作用を持たせてい
る。
In the example of FIG. 10, a space portion 15 is formed above the denitration agents 2 and 2, and the mixing effect of the exhaust gas G and the reducing agent flowing in by the space portion 15 is enhanced and the flow of the exhaust gas G is uneven. It has the effect of suppressing turbulence.

【0008】[0008]

【発明が解決しようとする課題】しかしながらこのよう
な従来の脱硝装置例では、反応器1内に流入する排気ガ
スGの偏流とか乱流に伴うガス密度の不均一に起因し
て、該排気ガスGの拡散状態が不十分になり易く、排気
ガス全体に対して触媒に基づく均一な脱硝効果を得るこ
とができない場合があるという難点がある。
However, in such an example of the conventional denitrification apparatus, the exhaust gas G flowing into the reactor 1 is caused by the uneven flow of the exhaust gas G or the nonuniformity of the gas density due to the turbulent flow. There is a drawback that the diffusion state of G tends to be insufficient, and a uniform denitration effect based on the catalyst may not be obtained for the entire exhaust gas.

【0009】前記反応器1に流入する排気ガスは、発電
機等の周辺機器との関係から曲がった状態で配置された
配管を通って流入する場合が多いため、前記空間部15
を形成しただけでは偏流とか乱流を抑制する効果が不十
分であり、且つこの抑制作用と還元剤の混合効果を高め
るためには、空間部15を上下に延長して現行のものよ
りも更に大きくしなければならず、その結果反応器1自
体が大型化して広い設置スペースが要求されるという難
点が生じる。
Exhaust gas flowing into the reactor 1 often flows through a pipe arranged in a bent state in relation to peripheral equipment such as a generator, and therefore the space 15
The effect of suppressing unbalanced flow or turbulent flow is not sufficient only by forming the above, and in order to enhance the suppressing effect and the mixing effect of the reducing agent, the space portion 15 is extended vertically to further increase the current effect. The size of the reactor 1 must be increased, and as a result, the reactor 1 itself becomes large and a large installation space is required.

【0010】又、反応器1内に充填された脱硝剤2,2
内へは均一な流速で排気ガスGを流すことが望ましい
が、図11のハニカム内流速分布図に示したように、排
気ガスGの偏流の影響から脱硝剤2,2の中心部分での
が流速が大きく、周辺部の流速が小さくなる傾向があ
り、脱硝効果の均一性が阻害される要因となっている。
The denitration agents 2 and 2 filled in the reactor 1
It is desirable to flow the exhaust gas G into the inside at a uniform flow rate. However, as shown in the flow velocity distribution diagram in the honeycomb of FIG. The flow velocity tends to be high and the flow velocity in the peripheral portion tends to be low, which is a factor that impedes the uniformity of the denitration effect.

【0011】そこで本発明はこのような従来の脱硝装置
が有している課題を解消して、反応器内に流入する排気
ガスの偏流とか乱流によるガス密度の不均一に起因する
脱硝効果の低下を防止することができる脱硝装置を提供
することを目的とするものである。
Therefore, the present invention solves the problem of such a conventional denitration device and eliminates the denitration effect due to the nonuniformity of the gas density due to the uneven flow or turbulent flow of the exhaust gas flowing into the reactor. It is an object of the present invention to provide a denitration device capable of preventing a decrease.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するために、密閉型の反応器内部にハニカム状に構成さ
れた触媒で成る脱硝剤を積層配置し、導入部から該反応
器内に内燃機関の排気ガスを流入すると同時に該排気ガ
ス中に還元剤を噴霧して、接触還元法に基づいて排気ガ
ス中の窒素酸化物を除去し、排出部から放出するように
した脱硝装置において、請求項1により、上記反応器内
にあって排気ガスの導入部と対向する部位に、流入する
排気ガスが衝突した際に後流渦を生成して一次整流する
遮蔽板を配設し、更に該遮蔽板と脱硝剤との間に、多数
の孔部を通過する際に二次整流する多孔板を配設した遮
蔽板を備えた脱硝装置を提供する。
In order to solve the above-mentioned problems, the present invention has a denitrifying agent composed of a honeycomb-shaped catalyst laminated inside a hermetically sealed reactor, and the inside of the reactor is introduced from an inlet. In a denitration device in which the exhaust gas of an internal combustion engine is introduced into the exhaust gas and at the same time a reducing agent is sprayed into the exhaust gas to remove nitrogen oxides in the exhaust gas based on the catalytic reduction method and to release the nitrogen oxides from the exhaust portion. According to claim 1, a shield plate for generating a wake vortex and primary rectifying when an inflowing exhaust gas collides is disposed in a portion of the reactor facing the exhaust gas introducing portion, Further, there is provided a denitration device including a shielding plate having a porous plate disposed between the shielding plate and the denitration agent for secondary rectification when passing through a large number of holes.

【0013】請求項2により、上記反応器内にあって排
気ガスの導入部と対向する部位に、流入する排気ガスが
衝突した際に後流渦を生成して整流する遮蔽板を配設し
と共に、前記排気ガスの導入部として曲がりダクトを
採用したことを特徴とする遮蔽板を備えた脱硝装置構成
にしてある。
According to a second aspect of the present invention, a shield plate is provided in a portion of the reactor that faces the exhaust gas introduction portion and that generates a wake vortex when the inflowing exhaust gas collides with the shield plate. At the same time, a curved duct is used as the exhaust gas introduction part.
It has a denitration device configuration equipped with a shielding plate characterized by being adopted .

【0014】請求項3として、上記排気ガスの導入部に
曲がりダクトを採用するとともに、円板状の遮蔽板を、
排気ガスの風圧中心と遮蔽板の中心点とが一致するよう
に該曲がりダクトの曲がり方向外側方向に一定長だけ偏
位した位置に配設してある。上記円板状の遮蔽板に代え
て楕円形板状の遮蔽板を配設した構成も提案する。
According to a third aspect of the present invention, a curved duct is used in the exhaust gas introducing portion, and a disc-shaped shield plate is provided.
It is arranged at a position deviated by a certain length in the outward direction of the bending duct so that the center of wind pressure of the exhaust gas coincides with the center of the shielding plate. A configuration is also proposed in which an elliptical plate-shaped shield plate is provided instead of the disc-shaped shield plate.

【0015】かかる請求項1記載の脱硝装置によれば、
内燃機関からガス密度が不均一な偏流及び乱流状態とし
て送り込まれた排気ガスは、導入部で噴霧された還元剤
のガスと一体となり、反応器に流入するのと同時に導入
部と対向する部位に配設された遮蔽板に衝突した後、こ
の遮蔽板によって後流渦を生成して一次整流され、更に
多孔板に開口された多数の孔部を通過する際に二次整流
されてから脱硝剤を通過し、選択接触還元法の均一な主
反応に基づいて排気ガスG中に含まれている窒素酸化物
(NOX)が除去されてから外方に放出される。この時
に導入部から流入する排気ガスに偏流とか乱流が存在し
ても、遮蔽板による一次整流作用と多孔板による二次整
流作用によって整流効果が得られてガス密度が平均化さ
れるという作用が得られる。
According to the denitration device of the first aspect,
Exhaust gas sent from the internal combustion engine as a nonuniform flow and turbulent flow with a non-uniform gas density is integrated with the reducing agent gas atomized in the introduction part and flows into the reactor at the same time as the part facing the introduction part. After colliding with the shield plate disposed in the slab, the shield plate generates a wake vortex for primary rectification, and further for secondary rectification when passing through a large number of holes opened in the perforated plate before denitration. After passing through the agent, the nitrogen oxides (NO x ) contained in the exhaust gas G are removed based on the uniform main reaction of the selective catalytic reduction method, and then released to the outside. At this time, even if uneven flow or turbulent flow exists in the exhaust gas flowing from the introduction part, a rectifying effect is obtained by the primary rectifying action by the shield plate and the secondary rectifying action by the porous plate, and the gas density is averaged. Is obtained.

【0016】請求項2記載の脱硝装置によれば、排気ガ
スが導入部と対向する部位に配設された円板状の遮蔽板
に衝突した後、該遮蔽板の下流側で後流渦が発生して偏
流とか乱流が整流されてから脱硝剤内を通過する。従っ
て多孔板を使用しないことにより反応器の小型化が図れ
る。
According to the denitrification apparatus of the second aspect, after the exhaust gas collides with the disc-shaped shield plate arranged at a portion facing the introduction portion, a wake vortex is generated downstream of the shield plate. After it is generated and rectified by uneven flow or turbulent flow, it passes through the denitration agent. Therefore, the reactor can be downsized by not using the perforated plate.

【0017】請求項3及び4記載の脱硝装置によれば、
排気ガスが曲がりダクトの曲がり方向外側部分に集中
し、曲がり方向内側部分に滞留部が生じて偏流を伴って
還元剤のガスと一体に反応器内に流入した際に、導入部
と対向する部位に配設された円板状もしくは楕円形板状
の遮蔽板に衝突することによって該遮蔽板の下流側で後
流渦が発生して整流効果が得られ、ガス密度が平均化さ
れてから脱硝剤内を通過する。
According to the denitration device of the third and fourth aspects,
Exhaust gas is concentrated in the bending direction outside part of the bending duct, and a retention part is generated in the bending direction inside part, and a part facing the introduction part when flowing into the reactor together with the reducing agent gas due to uneven flow When it hits the disc-shaped or elliptical-shaped shield plate disposed in the vertical direction, a wake vortex is generated on the downstream side of the shield plate to obtain a rectifying effect, and the denitration is performed after the gas density is averaged. Pass through the agent.

【0018】[0018]

【発明の実施の形態】以下図面に基づいて本発明にかか
る遮蔽板を備えた脱硝装置の各種実施例を、前記従来の
構成部分と同一の構成部分に同一の符号を付して詳述す
る。図1は本発明の第1実施例にかかる脱硝装置10の
構成を示す要部断面図であって、1は密閉型の反応器で
あり、この反応器1内部にはハニカム状に構成された多
数個の触媒で成る脱硝剤2,2が積層配置されている。
各脱硝剤2,2の間には、断熱性と耐衝撃性を持たせる
ためのスペーサ5,5が挿入されている。6は排気ガス
Gの導入部、8は同排出部である。
BEST MODE FOR CARRYING OUT THE INVENTION Various embodiments of a denitration device equipped with a shielding plate according to the present invention will be described in detail below with reference to the drawings, in which the same reference numerals are given to the same components as the conventional components. . FIG. 1 is a cross-sectional view of an essential part showing the configuration of a denitration apparatus 10 according to the first embodiment of the present invention, in which 1 is a closed reactor, and the inside of this reactor 1 is formed in a honeycomb shape. The denitration agents 2 and 2 composed of a large number of catalysts are arranged in layers.
Spacers 5 and 5 for inserting heat insulation and impact resistance are inserted between the denitration agents 2 and 2. Reference numeral 6 is an exhaust gas G introducing portion, and 8 is an exhaust portion thereof.

【0019】上記排気ガスGの導入部6の近傍部分に
は、外方から壁部を貫通して還元剤の流通管7が挿通さ
れ、この流通管7の内方先端部にノズル3が固定されて
いるとともに該流通管7の他端部に還元剤が貯留された
タンク4が配置されている。尚、ノズル3に連結された
還元剤の流通管7に加えて、圧縮空気の流通管をも連結
した2流体タイプのものを用いることも可能である。
A reducing agent flow pipe 7 is inserted from the outside through the wall portion in the vicinity of the exhaust gas G introduction portion 6, and the nozzle 3 is fixed to the inner tip of the flow pipe 7. The tank 4 in which the reducing agent is stored is arranged at the other end of the flow pipe 7. In addition to the reducing agent flow pipe 7 connected to the nozzle 3, it is also possible to use a two-fluid type in which a compressed air flow pipe is also connected.

【0020】第1実施例の場合、上記反応器1内にあっ
て排気ガスGの導入部6と対向する部位に遮蔽板11が
配設され、更にこの遮蔽板11と脱硝剤2,2との間に
多孔板12が配設されている。この遮蔽板11は図2
(A)(B)に示したように中心部に取付用の孔部11
aが開口された円盤状の部材で構成され、多孔板12は
図3に示したように多数の孔部12a,12aが開口さ
れたプレート状部材で構成されている。
In the case of the first embodiment, a shielding plate 11 is arranged in the reactor 1 at a portion facing the introduction portion 6 of the exhaust gas G, and further the shielding plate 11 and the denitration agents 2 and 2 are provided. The perforated plate 12 is disposed between the two. This shield plate 11 is shown in FIG.
As shown in (A) and (B), a hole 11 for mounting is provided at the center.
a is a disk-shaped member having an opening, and the perforated plate 12 is a plate-shaped member having a large number of holes 12a, 12a opened as shown in FIG.

【0021】尚、遮蔽板11の固定手段としては、反応
器1の外方から壁部を貫通して設けた図外の支持杆の先
端部に前記取付用の孔部11aを固定すればよく、多孔
板12の固定手段としては、該多孔板12の周縁部を反
応器1の内壁部に固定する等の手段を用いればよい。
As the means for fixing the shield plate 11, the mounting hole 11a may be fixed to the tip of a supporting rod (not shown) provided through the wall from the outside of the reactor 1. As the means for fixing the perforated plate 12, means such as fixing the peripheral portion of the perforated plate 12 to the inner wall of the reactor 1 may be used.

【0022】かかる構成に基づく本第1実施例の動作を
以下に説明する。即ち、内燃機関から発生する排気ガス
Gが導入部6からガス密度が不均一な偏流もしくは乱流
状態として反応器1内に送り込まれた際に、還元剤の流
通管7を介してタンク4内に貯留された還元剤をノズル
3に供給することにより、この還元剤を排気ガスGの下
流側に向けて噴霧する。
The operation of the first embodiment based on the above construction will be described below. That is, when the exhaust gas G generated from the internal combustion engine is sent from the introduction portion 6 into the reactor 1 as a nonuniform flow or turbulent flow with a non-uniform gas density, the inside of the tank 4 is passed through the reducing agent flow pipe 7. By supplying the reducing agent stored in the nozzle 3 to the nozzle 3, the reducing agent is sprayed toward the downstream side of the exhaust gas G.

【0023】すると排気ガスGは還元剤のガスと一体と
なり、導入部6と対向する部位に配設された遮蔽板11
に衝突した後、この遮蔽板11によって後流渦を生成し
て一次整流され、更に多孔板12に開口された多数の孔
部12a,12aを通過する際に二次整流されてから脱
硝剤2,2内を通過する。そして選択接触還元法の主反
応(前記の1式を参照)に基づいて、排気ガスG中に含
まれている窒素酸化物(NOX)が均一な脱硝反応によ
り除去され、排出部8から外方に放出される。
Then, the exhaust gas G is integrated with the reducing agent gas, and the shielding plate 11 disposed at a portion facing the introduction portion 6 is provided.
After the collision, the shielding plate 11 generates a wake vortex for primary rectification and further for secondary rectification when passing through a large number of holes 12a, 12a opened in the perforated plate 12, and then the denitration agent 2 , 2 inside. Then, based on the main reaction of the selective catalytic reduction method (see the above formula 1), the nitrogen oxides (NO x ) contained in the exhaust gas G are removed by a uniform denitration reaction, It is released toward you.

【0024】従って反応器1の導入部6から流入する排
気ガスGに偏流とか乱流が存在しても、遮蔽板11によ
る一次整流作用と多孔板12による二次整流作用によっ
て排気ガスGの持つ偏流とか乱流の整流効果が得られ、
ガス密度が平均化されるという動作態様が得られる。
尚、遮蔽板11の後流渦による整流作用の実際は以下の
第2実施例によって説明する。
Therefore, even if the exhaust gas G flowing from the introduction portion 6 of the reactor 1 has a nonuniform flow or a turbulent flow, the exhaust gas G has the primary rectifying action by the shield plate 11 and the secondary rectifying action by the porous plate 12. A rectifying effect of uneven or turbulent flow can be obtained,
An operating mode is obtained in which the gas densities are averaged.
The actual rectification action by the wake vortex of the shield plate 11 will be described with reference to the second embodiment below.

【0025】図4は本発明の第2実施例を示す要部断面
図であって、基本的な構成は前記第1実施例と一致して
いるため、同一の符号を付して表示してある。この第2
実施例では、反応器1内にあって排気ガスGの導入部6
と対向する部位に円板状の遮蔽板11が配設されてい
て、この遮蔽板11によって整流された排気ガスGが直
ちに脱硝剤2,2に供給されるようになっている。他の
構成要素及び遮蔽板11の固定手段等は前記多孔板12
を除いて第1実施例と同一である。
FIG. 4 is a cross-sectional view of a main part showing a second embodiment of the present invention. Since the basic structure is the same as that of the first embodiment, the same reference numerals are given and displayed. is there. This second
In the embodiment, the introduction portion 6 for the exhaust gas G in the reactor 1
A disk-shaped shield plate 11 is disposed at a portion facing to, and the exhaust gas G rectified by the shield plate 11 is immediately supplied to the denitration agents 2 and 2. Other components and fixing means of the shield plate 11 are the porous plate 12 and the like.
It is the same as the first embodiment except for.

【0026】かかる構成に基づく第2実施例によれば、
内燃機関から発生する排気ガスGが導入部6からガス密
度が不均一な偏流もしくは乱流状態として反応器1内に
送り込まれ、ノズル3から下流側に向けて噴霧された還
元剤のガスと一体となって導入部6と対向する部位に配
設された円板状の遮蔽板11に衝突する。するとこの遮
蔽板11の下流側で後流渦Aが発生し、この後流渦Aに
よって偏流とか乱流の整流作用が得られ、ガス密度が平
均化されてから脱硝剤2,2内を通過する。
According to the second embodiment having such a configuration,
Exhaust gas G generated from the internal combustion engine is introduced from the introduction part 6 into the reactor 1 as a nonuniform flow or turbulent state of gas density, and is integrated with the reducing agent gas sprayed from the nozzle 3 toward the downstream side. And collides with a disc-shaped shield plate 11 arranged at a portion facing the introduction portion 6. Then, a wake vortex A is generated on the downstream side of the shielding plate 11, and the wake vortex A provides a rectifying function of a non-uniform flow or a turbulent flow, and the gas density is averaged before passing through the denitration agents 2 and 2. To do.

【0027】図5は本発明の第3実施例の要部断面図で
あって、基本的な構成は前記第1,第2実施例と一致し
ており、同一の符号を付して表示してある。一般に反応
器1内に排気ガスGを送り込む配管は、周囲のスペース
とかレイアウトの都合上から直管状に形成することはほ
とんどなく、通常は配管の中途部が曲折されているのが
通例である。この第3実施例では排気ガスGの導入部6
として曲がりダクトを用いた例である。
FIG. 5 is a sectional view of the essential parts of a third embodiment of the present invention, in which the basic construction is the same as that of the first and second embodiments, and is indicated by the same reference numeral. There is. Generally, the pipe for feeding the exhaust gas G into the reactor 1 is rarely formed in a straight pipe shape due to the surrounding space and layout, and it is usual that the middle portion of the pipe is bent. In this third embodiment, the exhaust gas G introducing portion 6
Is an example using a curved duct as.

【0028】この第3実施例の場合も第2実施例と同様
に反応器1内の排気ガスGの導入部6と対向する部位に
円板状遮蔽板11が配設されていて、この遮蔽板11に
よって整流された排気ガスGが脱硝剤2,2に供給され
るようになっている。
Also in the case of the third embodiment, as in the second embodiment, a disk-shaped shield plate 11 is arranged at a portion of the reactor 1 facing the introduction portion 6 of the exhaust gas G, and this shield is provided. The exhaust gas G rectified by the plate 11 is supplied to the denitration agents 2 and 2.

【0029】通常排気ガスGが導入部6としての曲がり
ダクトを通って反応器1内に送り込まれる際には、図5
の矢印Bに示したように曲がり方向外側部分にガス流が
集中してしまい、曲がり方向内側部分には矢印Cに示す
滞留部が生じる。このようなガス流の滞留部に起因する
偏流を伴って排気ガスGが還元剤のガスと一体となって
反応器1内に流入しても、導入部6と対向する部位に配
設された遮蔽板11に衝突することにより該遮蔽板11
の下流側で後流渦Aが発生し、この後流渦Aによって偏
流の整流効果が得られ、ガス密度が平均化されてから脱
硝剤2,2内を通過するという動作態様が得られる。
Normally, when the exhaust gas G is sent into the reactor 1 through the curved duct serving as the introduction section 6, FIG.
As indicated by the arrow B, the gas flow is concentrated in the outer portion in the bending direction, and a retention portion indicated by the arrow C is formed in the inner portion in the bending direction. Even if the exhaust gas G flows into the reactor 1 together with the reducing agent gas due to the uneven flow due to such a gas flow retention portion, the exhaust gas G is disposed at a portion facing the introduction portion 6. By colliding with the shield plate 11, the shield plate 11
A wake vortex A is generated at the downstream side of the vortex, a rectifying effect of a non-uniform flow is obtained by the wake vortex A, and an operation mode in which the gas density is averaged before the gas passes through the denitration agents 2 and 2 is obtained.

【0030】図8は第3実施例におけるハニカム内流速
分布図であり、遮蔽板11の存在に伴って図11の従来
例に比較して中心部分での流速突出部が消滅しており、
全体的に流速分布が平坦となっていることにより、排気
ガスGの偏流の影響をなくして脱硝効果の均一性がはか
れることが理解される。
FIG. 8 is a flow velocity distribution diagram in the honeycomb in the third embodiment. With the presence of the shielding plate 11, the flow velocity protruding portion at the central portion disappears as compared with the conventional example of FIG.
It is understood that the flatness of the flow velocity distribution as a whole eliminates the influence of the drift of the exhaust gas G and ensures the uniform denitration effect.

【0031】図6は本発明の第4実施例の要部断面図で
あって、基本的な構成は前記第3実施例と一致してお
り、同一の符号を付して表示してある。この第4実施例
では排気ガスGの導入部6として曲がりダクトを用いる
とともに反応器1内の排気ガスGの導入部6と対向する
部位に円板状の遮蔽板11が配設された構造は第3実施
例と一致しているが、第4実施例では導入部6を構成す
る曲がりダクトの中心線Lと遮蔽板11の中心点Oとが
一致していないように遮蔽板11を配設したことが特徴
となっている。
FIG. 6 is a sectional view of the essential parts of a fourth embodiment of the present invention, in which the basic construction is the same as that of the third embodiment and is designated by the same reference numeral. In the fourth embodiment, a curved duct is used as the introduction portion 6 of the exhaust gas G, and a disc-shaped shield plate 11 is arranged at a portion facing the introduction portion 6 of the exhaust gas G in the reactor 1. Although it corresponds to the third embodiment, in the fourth embodiment, the shielding plate 11 is arranged so that the center line L of the curved duct forming the introduction portion 6 and the center point O of the shielding plate 11 do not coincide. The feature is that you did.

【0032】即ち、遮蔽板11は曲がりダクトの曲がり
方向外側方向に一定長だけ偏位した位置に配設されてい
て、これに伴って導入された排気ガスGの風圧中心と遮
蔽板11の中心点Oとが一致するように設定されてい
る。この偏位された位置にある遮蔽板11によって整流
された排気ガスGが脱硝剤2,2に供給されるようにな
っている。尚、第4実施例では前記した還元剤の流通管
7と該流通管7の内方先端部に固定されたノズル3の図
示は省略してある。
That is, the shielding plate 11 is arranged at a position deviated by a certain length outward in the bending direction of the curved duct, and the wind pressure center of the exhaust gas G introduced along with this and the center of the shielding plate 11 are arranged. The point O is set to match. The exhaust gas G rectified by the shielding plate 11 located at the offset position is supplied to the denitration agents 2 and 2. In the fourth embodiment, the reducing agent flow pipe 7 and the nozzle 3 fixed to the inner tip of the flow pipe 7 are not shown.

【0033】かかる第4実施例によれば、排気ガスGが
曲がりダクトを通って反応器1内に送り込まれる際に、
曲がり方向外側部分にガス流が集中し、曲がり方向内側
部分に滞留部Cが生じることによる偏流を伴って排気ガ
スGが還元剤のガスと一体となって反応器1内に流入し
ても、排気ガスGの風圧中心と遮蔽板11の中心点Oと
が一致しているため、該遮蔽板11の下流側で均等に後
流渦Aが発生し、この後流渦Aによって偏流の整流効果
が得られてガス密度が平均化されてから脱硝剤2,2内
を通過するという動作態様が得られる。
According to the fourth embodiment, when the exhaust gas G is sent into the reactor 1 through the curved duct,
Even if the exhaust gas G flows together with the reducing agent gas into the reactor 1 due to the uneven flow due to the concentration of the gas flow on the outer side in the bending direction and the formation of the retention portion C on the inner side in the bending direction, Since the center of wind pressure of the exhaust gas G and the center point O of the shield plate 11 coincide with each other, a wake vortex A is uniformly generated on the downstream side of the shield plate 11, and the wake vortex A rectifies the drift. Is obtained, the gas density is averaged, and then the gas is passed through the denitration agents 2 and 2.

【0034】図7は本発明の第5実施例の要部断面図で
あって、基本的な構成は前記第4実施例と一致してお
り、同一の符号を付して表示してある。この第5実施例
では第4実施例で用いた円板状の遮蔽板11に代えて楕
円形板状の遮蔽板11bを用いており、この遮蔽板11
bは第4実施例と同様に曲がりダクトの曲がり方向外側
方向に一定長だけ偏位した位置に配設されていて、これ
に伴って導入された排気ガスGの風圧中心と遮蔽板11
bの中心点とがほぼ一致するように設定されている。
尚、該遮蔽板11bの孔部11aは中心点から若干ずれ
た位置にあり、この孔部11aと導入部6を構成する曲
がりダクトの中心線Lとが一致している。その他の構成
は第4実施例と同一である。
FIG. 7 is a cross-sectional view of the essential parts of a fifth embodiment of the present invention, in which the basic construction is the same as that of the fourth embodiment and is indicated by the same reference numeral. In this fifth embodiment, an elliptical plate-shaped shield plate 11b is used instead of the disk-shaped shield plate 11 used in the fourth embodiment.
Similarly to the fourth embodiment, b is arranged at a position deviated by a certain length in the bending direction outward direction of the bending duct, and the wind pressure center of the exhaust gas G introduced along with this and the shielding plate 11 are arranged.
It is set so that the center point of b substantially coincides.
The hole 11a of the shielding plate 11b is slightly displaced from the center point, and the hole 11a coincides with the center line L of the curved duct forming the introduction part 6. The other structure is the same as that of the fourth embodiment.

【0035】かかる第5実施例によれば、排気ガスGが
曲がりダクトを通って反応器1内に送り込まれる際に、
前記例と同様に曲がり方向内側部分の滞留部Cに起因す
る偏流を伴って反応器1内に流入しても、排気ガスGの
風圧中心と楕円形板状の遮蔽板11bの中心点Oとがほ
ぼ一致しているため、該遮蔽板11bの下流側で均等に
後流渦Aが発生して偏流の整流効果が得られるという動
作態様が得られる。
According to the fifth embodiment, when the exhaust gas G is sent into the reactor 1 through the curved duct,
Similar to the above-mentioned example, even when a flow caused by the stagnant portion C on the inner side in the bending direction flows into the reactor 1, the center of the wind pressure of the exhaust gas G and the center point O of the elliptical plate-shaped shield plate 11b are generated. Are substantially coincident with each other, the wake vortex A is evenly generated on the downstream side of the shielding plate 11b, and a rectifying effect of uneven flow can be obtained.

【0036】図9は上記の各実施例1〜5におけるハニ
カム内流速分布の標準偏差の推移を表しており、横軸に
整流部の容積(m3)を、縦軸に標準偏差(m/s)を
夫々示している。図示したように遮蔽板11がない従来
例に比して、実施例1は遮蔽板11と多孔板12を配設
したことによって排気ガスGの偏流防止効果が高くなっ
ている。実施例2は円板状の遮蔽板11のみを使用して
多孔板12を用いていない例であるが、整流性能は実施
例1は略同等である上、整流部の容積を約40%小さく
して反応器1の小型化が可能になったことを示してい
る。
FIG. 9 shows the transition of the standard deviation of the flow velocity distribution in the honeycomb in each of Examples 1 to 5 described above. The horizontal axis represents the volume of the rectifying section (m 3 ) and the vertical axis represents the standard deviation (m / s) are shown respectively. As shown in the figure, in comparison with the conventional example in which the shielding plate 11 is not provided, the effect of preventing the drift of the exhaust gas G is enhanced in the first embodiment by disposing the shielding plate 11 and the perforated plate 12. The second embodiment is an example in which only the disc-shaped shield plate 11 is used and the perforated plate 12 is not used. However, the rectification performance is substantially the same as that of the first embodiment, and the volume of the rectification portion is reduced by about 40%. This shows that the reactor 1 can be downsized.

【0037】更に実施例3〜5は排気ガスGの導入部と
して曲がりダクトを用いた際の遮蔽板11,11bの形
状と設置場所に変化を持たせたことにより、偏流を防止
する上での最適化が行えることを示しており、この実施
例3〜5により曲がりダクトによる排気ガスの偏流の影
響をほとんど消滅することができる。
Further, in the third to fifth embodiments, when the curved duct is used as the introduction portion of the exhaust gas G, the shapes and the installation locations of the shielding plates 11 and 11b are changed to prevent uneven flow. It is shown that optimization can be performed, and Embodiments 3 to 5 can almost eliminate the influence of uneven flow of exhaust gas due to the curved duct.

【0038】尚、上記各実施例ではノズル3よりも下流
側に遮蔽板11,11b及び多孔板12を配設されてい
るが、これはガス流が乱れている状態の方が還元剤の混
合が効率良く行われることと、噴霧された還元剤が気化
するために必要とする時間を考慮すると、ノズル3はか
なり上流側に設置することがことが好ましく、混合ガス
が整流されるのと同時に還元剤との混合が促進されるこ
とからもノズル3は必然的に図1に示した導入部6側に
配置するのが良い。
In each of the above embodiments, the shielding plates 11 and 11b and the perforated plate 12 are arranged on the downstream side of the nozzle 3. However, the mixing of the reducing agent is better when the gas flow is disturbed. In consideration of the efficient operation and the time required for the sprayed reducing agent to vaporize, it is preferable to install the nozzle 3 considerably upstream, and at the same time when the mixed gas is rectified. Since the mixing with the reducing agent is promoted, it is inevitable that the nozzle 3 should be arranged on the side of the introduction section 6 shown in FIG.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明にか
かる脱硝装置によれば、反応器に流入する排気ガスに偏
流とか乱流が存在しても、反応器に流入するのと同時に
導入部と対向する部位に配設された遮蔽板に衝突して後
流渦を生成することにより、整流されるとともにガスの
流速と密度がほぼ均一化されから脱硝剤を通過し、選択
接触還元法の均一な主反応に基づいて排気ガス中に含ま
れている窒素酸化物(NOX)を除去することができ
る。
As described in detail above, according to the denitration apparatus according to the present invention, even if a drift or turbulence exists in the exhaust gas flowing into the reactor, it is introduced at the same time as it flows into the reactor. By colliding with a shielding plate placed at the part facing the gas flow part to generate a wake vortex, the flow velocity and density of the gas are made uniform and the gas passes through the denitration agent, and the selective catalytic reduction method is applied. The nitrogen oxide (NO x ) contained in the exhaust gas can be removed based on the uniform main reaction of

【0040】従って周囲のスペースとかレイアウトの都
合上から反応器内に排気ガスを送り込む配管を曲折した
場合に生じやすい排気ガスの偏流もしくは乱流の状態に
も的確に対処可能となり、偏流,乱流状態が反応器の出
口まで残ることがなく、排気ガスがノズルから噴霧され
た還元剤と充分に混合されて脱硝剤内を通過するので、
還元剤濃度が均一となって脱硝効率を向上させることが
できる。尚、多孔板を併用した際の二次整流作用によっ
て整流効果が高められる。
Therefore, it becomes possible to appropriately deal with the uneven flow or turbulent flow of the exhaust gas, which tends to occur when the pipe for sending the exhaust gas into the reactor is bent due to the surrounding space or layout, and the uneven flow and the turbulent flow can be dealt with. Since the state does not remain until the outlet of the reactor, the exhaust gas is thoroughly mixed with the reducing agent sprayed from the nozzle and passes through the denitration agent,
The reducing agent concentration becomes uniform, and the denitration efficiency can be improved. The rectifying effect is enhanced by the secondary rectifying action when the perforated plate is used together.

【0041】又、偏流とか乱流を抑制するために反応器
内に格別大きな空間部を形成する必要がないので、反応
器自体の小型化がはかれると同時に広い設置スペースが
要求されないという効果がある。
Further, since it is not necessary to form a particularly large space in the reactor in order to suppress uneven flow or turbulent flow, the reactor itself can be downsized and at the same time a large installation space is not required. .

【0042】従って本発明によれば、偏流とか乱流に伴
うガス密度の不均一に起因する該排気ガスの拡散状態を
整えて、排気ガス全体に対して触媒に基づく均一な脱硝
効果が得られる脱硝装置を提供することが出来る。
Therefore, according to the present invention, a uniform denitration effect based on the catalyst can be obtained for the entire exhaust gas by adjusting the diffusion state of the exhaust gas due to the non-uniformity of the gas density due to the uneven flow or the turbulent flow. A denitration device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を適用した脱硝装置の構成
を示す要部断面図。
FIG. 1 is a cross-sectional view of essential parts showing the configuration of a denitration device to which a first embodiment of the present invention is applied.

【図2】図1の遮蔽板を示す(A)側断面図及び(B)
平面図。
2A and 2B are side sectional views and FIG. 2B showing the shielding plate of FIG.
Plan view.

【図3】図1の多孔板を示す平面図。FIG. 3 is a plan view showing the perforated plate of FIG.

【図4】本発明の第2実施例を適用した脱硝装置の構成
を示す要部断面図。
FIG. 4 is a cross-sectional view of an essential part showing the configuration of a denitration device to which a second embodiment of the present invention is applied.

【図5】本発明の第3実施例を適用した脱硝装置の構成
を示す要部断面図。
FIG. 5 is a cross-sectional view of essential parts showing the configuration of a denitration device to which a third embodiment of the present invention is applied.

【図6】本発明の第4実施例を適用した脱硝装置の構成
を示す要部断面図。
FIG. 6 is a cross-sectional view of essential parts showing the configuration of a denitration device to which a fourth embodiment of the present invention has been applied.

【図7】本発明の第5実施例を適用した脱硝装置の構成
を示す要部断面図。
FIG. 7 is a cross-sectional view of essential parts showing the configuration of a denitration device to which a fifth embodiment of the present invention has been applied.

【図8】第3実施例におけるハニカム内流速分布図。FIG. 8 is a flow velocity distribution diagram in the honeycomb according to the third embodiment.

【図9】各実施例1〜5におけるハニカム内流速分布の
標準偏差の推移を示すグラフ。
FIG. 9 is a graph showing changes in the standard deviation of the flow velocity distribution inside the honeycomb in each of Examples 1 to 5.

【図10】従来の脱硝装置の構成を示す概要図。FIG. 10 is a schematic diagram showing the configuration of a conventional denitration device.

【図11】従来例におけるハニカム内流速分布図。FIG. 11 is a flow velocity distribution diagram in a honeycomb in a conventional example.

【符号の説明】[Explanation of symbols]

1…反応器 2…脱硝剤 3…ノズル 4…(還元剤の)タンク 5…スペーサ 6…導入部 7…(還元剤の)流通管 8…排出部 10…脱硝装置 11,11b…遮蔽板 12…多孔板 1 ... Reactor 2 ... Denitration agent 3 ... Nozzle 4 tank (of reducing agent) 5 ... Spacer 6 ... Introduction 7 ... Distribution pipe (of reducing agent) 8 ... Ejector 10 ... Denitration device 11, 11b ... Shielding plate 12 ... Perforated plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−302120(JP,A) 特開 昭64−32013(JP,A) 特開 平5−137959(JP,A) 実開 昭59−40516(JP,U) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/24 B01D 53/94 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-302120 (JP, A) JP-A-64-32013 (JP, A) JP-A-5-137959 (JP, A) Actual development Sho-59- 40516 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F01N 3/08-3/24 B01D 53/94

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密閉型の反応器内部にハニカム状に構成
された触媒で成る脱硝剤を積層配置し、導入部から該反
応器内に内燃機関の排気ガスを流入すると同時に該排気
ガス中に還元剤を噴霧して、接触還元法に基づいて排気
ガス中の窒素酸化物を除去し、排出部から放出するよう
にした脱硝装置において、 上記反応器内にあって排気ガスの導入部と対向する部位
に、流入する排気ガスが衝突した際に後流渦を生成して
一次整流する遮蔽板を配設し、更に該遮蔽板と脱硝剤と
の間に、多数の孔部を通過する際に二次整流する多孔板
を配設したことを特徴とする、遮蔽板を備えた脱硝装
置。
1. A denitrifying agent comprising a honeycomb-shaped catalyst is laminated in a closed reactor, and exhaust gas of an internal combustion engine is introduced into the reactor from an introduction portion and is simultaneously introduced into the exhaust gas. A denitrification device in which a reducing agent is sprayed to remove nitrogen oxides in exhaust gas based on the catalytic reduction method and is discharged from the discharge part. A shield plate that generates a wake vortex when the inflowing exhaust gas collides with the portion to be primary rectified when the exhaust gas collides, and when a large number of holes are passed between the shield plate and the denitration agent A denitration device equipped with a shielding plate, characterized in that a perforated plate for secondary rectification is provided in the.
【請求項2】 密閉型の反応器内部にハニカム状に構成
された触媒で成る脱硝剤を積層配置し、導入部から該反
応器内に内燃機関の排気ガスを流入すると同時に該排気
ガス中に還元剤を噴霧して、接触還元法に基づいて排気
ガス中の窒素酸化物を除去し、排出部から放出するよう
にした脱硝装置において、 上記反応器内にあって排気ガスの導入部と対向する部位
に、流入する排気ガスが衝突した際に後流渦を生成して
整流する遮蔽板を配設すると共に、前記排気ガスの導入
部として曲がりダクトを採用したことを特徴とする遮蔽
板を備えた脱硝装置。
2. A denitrifying agent comprising a honeycomb-shaped catalyst is laminated inside a hermetically sealed reactor, and exhaust gas of an internal combustion engine is introduced into the reactor from an introduction part and at the same time, is introduced into the exhaust gas. A denitrification device in which a reducing agent is sprayed to remove nitrogen oxides in exhaust gas based on the catalytic reduction method and is discharged from the discharge part. A shielding plate for generating and rectifying a wake vortex when the inflowing exhaust gas collides with the part to be introduced and introducing the exhaust gas.
A denitration device equipped with a shielding plate, which is characterized in that a curved duct is adopted as a part .
【請求項3】 前記排気ガスの導入部として曲がりダク
トを採用するとともに、円板状の遮蔽板を、排気ガスの
風圧中心と遮蔽板の中心点とが一致するように該曲がり
ダクトの曲がり方向外側方向に一定長だけ偏位した位置
に配設したことを特徴とする請求項2記載の遮蔽板を備
えた脱硝装置。
3. A curved duct is used as the exhaust gas introduction portion, and a disc-shaped shielding plate is provided in a curved direction of the curved duct so that the wind pressure center of the exhaust gas coincides with the center point of the shielding plate. The denitration device having a shielding plate according to claim 2, wherein the denitration device is arranged at a position deviated by a certain length in the outward direction.
【請求項4】 上記円板状の遮蔽板に代えて、楕円形板
状の遮蔽板を排気ガスの風圧中心と遮蔽板の中心点とが
一致するように該曲がりダクトの曲がり方向外側方向に
一定長だけ偏位した位置に配設したことを特徴とする請
求項2または3記載の遮蔽板を備えた脱硝装置。
4. Instead of the disc-shaped shielding plate, an elliptical plate-shaped shielding plate is provided outward in the bending direction of the curved duct so that the wind pressure center of the exhaust gas coincides with the center point of the shielding plate. The denitration device provided with the shielding plate according to claim 2 or 3, wherein the denitration device is arranged at a position deviated by a fixed length.
JP18390496A 1996-07-15 1996-07-15 Denitration equipment with shielding plate Expired - Fee Related JP3409593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18390496A JP3409593B2 (en) 1996-07-15 1996-07-15 Denitration equipment with shielding plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18390496A JP3409593B2 (en) 1996-07-15 1996-07-15 Denitration equipment with shielding plate

Publications (2)

Publication Number Publication Date
JPH1030431A JPH1030431A (en) 1998-02-03
JP3409593B2 true JP3409593B2 (en) 2003-05-26

Family

ID=16143857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18390496A Expired - Fee Related JP3409593B2 (en) 1996-07-15 1996-07-15 Denitration equipment with shielding plate

Country Status (1)

Country Link
JP (1) JP3409593B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722123B2 (en) 2001-10-17 2004-04-20 Fleetguard, Inc. Exhaust aftertreatment device, including chemical mixing and acoustic effects
JP3861683B2 (en) * 2001-12-20 2006-12-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4662334B2 (en) * 2004-11-04 2011-03-30 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP2006207531A (en) * 2005-01-31 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd Muffler integrated type denitration device, internal combustion engine provided with denitration device and power generation system provided with internal combustion engine
EP1859130A1 (en) * 2005-03-08 2007-11-28 Volvo Lastvagnar Ab Apparatus for mixing a liquid medium into a gaseous medium
JP3938187B2 (en) * 2005-05-17 2007-06-27 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
JP4682832B2 (en) * 2005-12-07 2011-05-11 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2008280882A (en) * 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4807524B2 (en) * 2007-12-25 2011-11-02 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
JP4930796B2 (en) * 2008-03-10 2012-05-16 株式会社三五 Exhaust gas purification device and exhaust pipe for diesel engine
KR100994244B1 (en) * 2008-04-25 2010-11-12 서울시립대학교 산학협력단 Impact separator for the removal of waxes produced during pyrolysis
US20110271662A1 (en) * 2010-05-10 2011-11-10 Winsor Richard E Compact reduction agent doser for use in an scr system of an internal combustion engine
JP7057050B2 (en) * 2018-09-06 2022-04-19 一般財団法人電力中央研究所 Processing gas reaction tower
JP7250742B2 (en) * 2020-09-28 2023-04-03 株式会社三井E&Sマシナリー Blockage prevention device for denitrification section
KR102243508B1 (en) * 2020-10-28 2021-04-22 한발매스테크 주식회사 Gas diffusing apparatus for improving performance of rectagular type scrubber
KR102266049B1 (en) * 2020-11-30 2021-06-16 고두수 air purifying device of gas-liquid contact type
CN114288847B (en) * 2021-12-24 2022-09-02 杭州新世纪能源环保工程股份有限公司 SCR denitration device with uniform flue gas flow field flow velocity and ammonia concentration distribution
KR102495499B1 (en) * 2022-08-25 2023-02-07 영진아이엔디(주) Catalytic horizontal plasma scrubber having distributor and method for treating waste gas using the same

Also Published As

Publication number Publication date
JPH1030431A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP3409593B2 (en) Denitration equipment with shielding plate
US6401449B1 (en) Expanded grid static mixer
JP3938187B2 (en) Exhaust gas purification method and exhaust gas purification system
EP2256313B1 (en) Exhaust emission purifying apparatus for engine
CN100504047C (en) Muffler device with exhaust gas purifying function
WO2012118331A2 (en) System for denitrifying exhaust gas having a noise-damping structure
EP2444613B1 (en) Arrangement and method for treatment of exhaust gases
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
JP2009030560A (en) Exhaust emission control device for internal combustion engine
EP1262644A3 (en) Catalytic converter
JP2013540927A (en) Compact exhaust gas treatment device with addition of reaction agent
JP2015510078A (en) Equipment for exhaust gas purification
JP2005127271A (en) Urea water vaporizer
CA2438697A1 (en) Radial flow gas phase reactor and method for reducing the nitrogen oxide content of a gas
JP2011012564A (en) Exhaust gas purification apparatus
US20130152555A1 (en) Fluid injection lance with balanced flow distribution
JP2006077576A (en) Denitration reactor
JPH0988558A (en) Nox removal system
CN105756759B (en) Catalytic unit for fixed internal combustion engine and the configuration system including catalytic unit
JP3409617B2 (en) Denitration equipment
JP2004245096A (en) Plasma reactor
JP3590874B2 (en) Exhaust gas denitration equipment
US11624305B2 (en) Vortex generators and virtual mixers for aftertreatment systems
JP2006070710A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees