JPS62130279A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS62130279A
JPS62130279A JP27008985A JP27008985A JPS62130279A JP S62130279 A JPS62130279 A JP S62130279A JP 27008985 A JP27008985 A JP 27008985A JP 27008985 A JP27008985 A JP 27008985A JP S62130279 A JPS62130279 A JP S62130279A
Authority
JP
Japan
Prior art keywords
magnetic field
barrel
shaped magnetic
shaped
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27008985A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
好夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27008985A priority Critical patent/JPS62130279A/en
Publication of JPS62130279A publication Critical patent/JPS62130279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To converge electron along a barrel-shaped magnetic field and to make electron density high density without changing electronic energy distribution by forming the barrel-shaped magnetic field coordination by a magnetic field generating means. CONSTITUTION:Both an anodic electrode 3 and a cathodic electrode 4 are oppo sitely provided and a ring-shaped electromagnet 8 is provided while biting a little spherical part between both electrodes 3, 4 and an electromagnet 9 having same shape as it is provided to an under side of the cathode electrode 4. When connecting these to a DC electric power source 10, a magnetic field is formed as a barrel-shaped magnetic field coordination. Therefore electron generated in a bulgy part A of the barrel-shaped magnetic field is shifted to a recess part B side in accordance with the lines of magnetic force. At this time, since the lines of magnetic force are converged, electron density is made large in the part B and ionization, dissociation and excitation are effectively caused.

Description

【発明の詳細な説明】 技術分野 本発明は、プラズマCVD装置に関する。[Detailed description of the invention] Technical field The present invention relates to a plasma CVD apparatus.

従来技術 一般に、プラズマCVD装置は等倍光センサー用a−5
i:H大面積薄膜、薄膜トランジスタ(TPT)等のよ
うに大面積の薄膜を作成するに有効な方式として用いら
れる。
Conventional technology In general, plasma CVD equipment is a-5 for life-size optical sensors.
It is used as an effective method for producing large area thin films such as i:H large area thin films and thin film transistors (TPT).

第4図は従来の標準的なプラズマCV D装置を示すも
のである。まず、チャンバー1内には基板2がアノード
電極3により支持されて配置され、この基板2に対向し
てカソード電極4が設けられている。このカソード電極
4とアノード電極3との間には高周波電源5による高周
波がマツチング回路6及びブロッキングコンデンサ7を
介して印加されている。これにより、放電は両電極3.
・1間で発生する。そして、カソード電極4の近傍には
〜100Vの陰極降下が生じ、その上には負グロ一部が
生じ、アノード電極3の近傍にはアノード暗部が生ずる
。ここに、供給ガスの電離はカソード電極4の近傍から
加速された電子と負グロー内に高周波電界によって捕捉
された電子により、この負グロ一部において生ずる。こ
の負グロ一部で生成された電子とイオンは電極方向に運
動するとともに両極性拡散により電界と垂直な壁方向に
も移動している。このため、生成されたイオン、電子に
よる供給ガスの解離、励起の効率が低下している。従っ
て、成膜速度が遅いものとなっている。つまり、従来に
あっては供給ガス流量、圧力、供給電力、装置形状等に
よりチャンバー内の電離状態を制御するようにしている
が、膜の特性を劣化させることなく成膜速度を向上させ
るのが困難である。
FIG. 4 shows a conventional standard plasma CVD apparatus. First, a substrate 2 is placed in the chamber 1 while being supported by an anode electrode 3, and a cathode electrode 4 is provided facing the substrate 2. A high frequency wave from a high frequency power source 5 is applied between the cathode electrode 4 and the anode electrode 3 via a matching circuit 6 and a blocking capacitor 7. As a result, discharge occurs at both electrodes 3.
- Occurs within 1 hour. Then, a cathode drop of ~100 V occurs near the cathode electrode 4, a negative glow portion occurs above it, and an anode dark portion occurs near the anode electrode 3. Here, ionization of the supplied gas occurs in a portion of this negative glow due to electrons accelerated from the vicinity of the cathode electrode 4 and electrons captured within the negative glow by the high frequency electric field. The electrons and ions generated in this negative glow part move toward the electrode and also move toward the wall perpendicular to the electric field due to bipolar diffusion. For this reason, the efficiency of dissociation and excitation of the supplied gas by the generated ions and electrons is reduced. Therefore, the film formation rate is slow. In other words, conventionally, the ionization state inside the chamber is controlled by controlling the supply gas flow rate, pressure, power supply, device shape, etc., but it is important to increase the deposition rate without deteriorating the film properties. Have difficulty.

この点、従来にあっては電極方向と平行に磁場をかけて
拡散を防止するという思想が、例えばrJournal
   of   Non−Crystalline  
 5olids35&36 (1980)   189
−194J等により試みられている。
In this regard, the conventional idea of preventing diffusion by applying a magnetic field parallel to the electrode direction has been changed, for example, by rJournal.
of Non-Crystalline
5olids35&36 (1980) 189
-194J etc. have been attempted.

目的 本発明は、このような点に鑑みなされたもので、電子の
高密度化をより向上させて、電離、解離、励起の効率を
向上させることができるプラズマCVD装置を得ること
を目的とする。
Purpose The present invention was made in view of the above points, and an object thereof is to obtain a plasma CVD apparatus that can further improve the density of electrons and improve the efficiency of ionization, dissociation, and excitation. .

構成 本発明は、上記目的を達成するため、アノード電極とカ
ソード電極とを平行に対向配置し、これらの電極方向に
平行なタル状の磁場配位を形成する磁界発生手段を設け
、このタル状の磁場配位により電子を捕捉収束させて高
電子密度の放電を行なわせることを特徴とするものであ
る。
Structure In order to achieve the above object, the present invention arranges an anode electrode and a cathode electrode in parallel to face each other, and provides magnetic field generating means for forming a barrel-shaped magnetic field configuration parallel to the direction of these electrodes. It is characterized by capturing and converging electrons by magnetic field coordination to generate a discharge with high electron density.

以下1本発明の一実施例を第1図ないし第3図に基づい
て説明する。第4図で示した部分と同一部分は同一符号
を用いて説明する。本実施例では両電極3,4間の周囲
部分に少し食い込ませたリング状の電磁石8を設けると
ともに、この電磁石8と同一形状の電磁石9をカソード
電極4の下部側に設け、これらの磁界発生手段としての
電磁石8.9をDC電源10に接続したものである。こ
のような電磁石8,9は第1図に示すような磁界を発生
させる。このような磁界は所謂タル状の磁場配位として
形成されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. The same parts as those shown in FIG. 4 will be explained using the same reference numerals. In this embodiment, a ring-shaped electromagnet 8 is provided that is slightly wedged into the periphery between the electrodes 3 and 4, and an electromagnet 9 having the same shape as this electromagnet 8 is provided below the cathode electrode 4 to generate these magnetic fields. An electromagnet 8.9 as a means is connected to a DC power source 10. Such electromagnets 8, 9 generate a magnetic field as shown in FIG. Such a magnetic field is formed as a so-called barrel-shaped magnetic field configuration.

二の結果、タル状磁場の膨らみ部分Aで発生した電子は
磁力線に従い凹み部分B側に移動する。
As a result of (2), the electrons generated in the bulge A of the barrel-shaped magnetic field move toward the concave portion B according to the lines of magnetic force.

この時、磁力線が収束してくるので、B部分では電子密
度が上昇し、電離、解離、励起がこのような磁場のなな
い場合より有効に生ずることになる。
At this time, the lines of magnetic force converge, so the electron density increases in part B, and ionization, dissociation, and excitation occur more effectively than in the absence of such a magnetic field.

そして、解離分子、ラジカルは電気的に中性であるため
、そのまま中性粒子の流れに従って基板2上に運ばれる
Since the dissociated molecules and radicals are electrically neutral, they are carried as they are onto the substrate 2 along the flow of neutral particles.

二こで、電磁石8,9で発生すべき磁場は、λを電子−
中性粒子衝突の平均自由行程、rLを電子のLarme
r半径とすると λ/rt、>1 となるようにする必要がある。これを満たす磁場はB領
域の中央部分で〜lKガウスとなる。
In this case, the magnetic field to be generated by the electromagnets 8 and 9 is
The mean free path of neutral particle collision, rL, is the electron Larme
When the radius is r, it is necessary to set λ/rt, >1. The magnetic field that satisfies this is ~1K Gauss in the central part of region B.

第3図は基板2の中央での成膜速度を磁場の強さで比1
1交したものである。これによれば、BoO力ウスで約
2倍の成膜速度が得られるものの、これ以上の磁場の強
さとすると膜の均一性が悪化したものである。
Figure 3 shows the film formation speed at the center of the substrate 2, which is expressed as a ratio of 1 by the strength of the magnetic field.
It is one crossing. According to this, although a film formation rate about twice as high can be obtained with the BoO force, the uniformity of the film deteriorates when the magnetic field strength is greater than this.

効果 本発明は、上述したように磁界発生手段によりタル状の
磁場配位を形成したので、電子をこの磁場に沿って収束
させることができ、電子エネルギー分布を変えずに電子
密度を高密度化して、成膜速度を向上させることができ
るものである。
Effects In the present invention, as described above, a barrel-shaped magnetic field configuration is formed by the magnetic field generating means, so that electrons can be focused along this magnetic field, and the electron density can be increased without changing the electron energy distribution. Therefore, the film formation rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す磁力線分布の特性図、
第2図は装置全体の概略正面図、第3図は成膜速度の特
性図、第4図は従来例を示す概略正面図である。 3・・・アノード電極、4・・・カソードrfE N、
8,9・・電磁石(磁界発生手段) 3 J 濶 【3 57図 33図 3は図
FIG. 1 is a characteristic diagram of magnetic field line distribution showing one embodiment of the present invention.
FIG. 2 is a schematic front view of the entire apparatus, FIG. 3 is a characteristic diagram of film forming speed, and FIG. 4 is a schematic front view showing a conventional example. 3... Anode electrode, 4... Cathode rfE N,
8,9...Electromagnet (magnetic field generating means) 3 J [3 57Figure 33Figure 3 is a diagram

Claims (1)

【特許請求の範囲】[Claims] アノード電極とカソード電極とを平行に対向配置し、こ
れらの電極方向に平行なタル状の磁場配位を形成する磁
界発生手段を設け、このタル状の磁場配位により電子を
捕捉収束させて高電子密度の放電を行なわせることを特
徴とするプラズマCVD装置。
An anode electrode and a cathode electrode are arranged facing each other in parallel, and a magnetic field generating means is provided to form a barrel-shaped magnetic field configuration parallel to the direction of these electrodes, and this barrel-shaped magnetic field configuration captures and converges electrons to generate a high A plasma CVD apparatus characterized by performing electron density discharge.
JP27008985A 1985-11-29 1985-11-29 Plasma cvd apparatus Pending JPS62130279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27008985A JPS62130279A (en) 1985-11-29 1985-11-29 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27008985A JPS62130279A (en) 1985-11-29 1985-11-29 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS62130279A true JPS62130279A (en) 1987-06-12

Family

ID=17481374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27008985A Pending JPS62130279A (en) 1985-11-29 1985-11-29 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS62130279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677597A (en) * 1993-12-21 1997-10-14 Sumitomo Heavy Industries, Ltd. Electron flow accelerating method and apparatus which can generate a high-power beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677597A (en) * 1993-12-21 1997-10-14 Sumitomo Heavy Industries, Ltd. Electron flow accelerating method and apparatus which can generate a high-power beam

Similar Documents

Publication Publication Date Title
US6076483A (en) Plasma processing apparatus using a partition panel
US6167835B1 (en) Two chamber plasma processing apparatus
JPS61190070A (en) Sputter device
JPH0814021B2 (en) Sputtering device
JP4307628B2 (en) Flat plate gas introduction device for CCP reaction vessel
JPH0812856B2 (en) Plasma processing method and apparatus
US6909086B2 (en) Neutral particle beam processing apparatus
JPS59232420A (en) Dry etching apparatus
JPS62130279A (en) Plasma cvd apparatus
JPS6143427A (en) Sputter-etching method
JP3064214B2 (en) Fast atom beam source
JPS6094725A (en) Dry etching device
JPH0781187B2 (en) Vacuum process equipment
JPH02312231A (en) Dryetching device
JP2823611B2 (en) Plasma CVD equipment
JP3577785B2 (en) Ion beam generator
JP3079802B2 (en) Plasma gun
JP2732281B2 (en) Thin film formation method
JPS6269621A (en) Plasma processor
JPS6127464B2 (en)
JP3010059B2 (en) Ion source
JPS63307254A (en) Apparatus for forming thin oxide film
JPH0465149B2 (en)
JPH0293073A (en) Sheet plasma-type cvd device
JP2732294B2 (en) Thin film formation method