JPS61190070A - Sputter device - Google Patents

Sputter device

Info

Publication number
JPS61190070A
JPS61190070A JP3040885A JP3040885A JPS61190070A JP S61190070 A JPS61190070 A JP S61190070A JP 3040885 A JP3040885 A JP 3040885A JP 3040885 A JP3040885 A JP 3040885A JP S61190070 A JPS61190070 A JP S61190070A
Authority
JP
Japan
Prior art keywords
plasma
target
potential
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3040885A
Other languages
Japanese (ja)
Inventor
Yoichi Oshita
陽一 大下
Tadashi Sato
忠 佐藤
Tomoe Kurosawa
黒沢 巴
Yasunori Ono
康則 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3040885A priority Critical patent/JPS61190070A/en
Publication of JPS61190070A publication Critical patent/JPS61190070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To make the formation of a sputtered film having good quality possible by disposing an electrode on the inside of a high-frequency coil which is provided in the space between a target disposed in a hermetically held vessel and a substrate and generates plasma and controlling the potential of the plasma. CONSTITUTION:The cylindrical electrode 8 is provided on the inside of the high-frequency coil 5 connected to a high-frequency power source 7 to generate the ground potential and to form the stable plasma by stabilizing the plasma potential in a sputter device which executes sputtering by holding the target 12 consisting of a film forming material and the substrate 17 to be formed with the film so as to face each other in the vessel 1 in which gaseous Ar or the like is maintained, generating the plasma between the target 12 and the substrate 17 by the above-mentioned coil 5 and bringing the plasma ions generated in said plasma into collision against the target 12 maintained under the negative potential by a power source 16. The potentials of the target 12 and the substrate 17 connected to a power source 20 are respectively independently and optionally controlled. The formation of the film having the good characteristics on the substrate 17 is thus made possible.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマ発生用に高周波電源を使用したスパ
ッタ装置に係り、特に、プラズマ電位を自由に制御する
ことによシ、良質なスパッタ膜を形成する構造に関する
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a sputtering device using a high frequency power source for plasma generation, and in particular, to a sputtering device that uses a high frequency power source to generate plasma, and in particular, to produce a high quality sputtered film by freely controlling the plasma potential. Concerning the structure to be formed.

〔発明の背景〕[Background of the invention]

各種材料の薄膜化手法の一つとしてスパッタ法は知られ
ておシ、用途に応じて種々の改良がなされているが、基
本的には、成膜すべき基板と真空容器を同電位とし、ス
パッタ材料であるターゲットの間に、直流又は高周波の
1源を接続してプラズマ放電を発生し、この作用で成膜
するものが多い。このとき、プラズマ電位は周囲の露出
部材の電位に左右され、一般に、真空容器の電位である
接地電位に近いものとなる。一方、プラズマ電位に対す
る、基板電位の差であるバイアス電圧が、スパッタ材料
によっては、膜特性に影響することが見出されている。
The sputtering method is known as a method for thinning films of various materials, and various improvements have been made depending on the application, but basically, the sputtering method is made by setting the substrate on which the film is to be formed and the vacuum container at the same potential, and In many cases, a direct current or high frequency source is connected between the targets, which are sputtering materials, to generate plasma discharge, and a film is formed by this action. At this time, the plasma potential depends on the potential of surrounding exposed members and is generally close to the ground potential, which is the potential of the vacuum vessel. On the other hand, it has been found that the bias voltage, which is the difference in substrate potential with respect to plasma potential, affects film characteristics depending on the sputtering material.

このため、基板を真空容器から絶縁保持し、この間に父
流又は直流の′成膜を外部から印加する方法も試みられ
ている。しかし、これでもなお、プラズマ投入域力と、
スパッタ放出粒子の挙dK大きく作用するプラズマ、タ
ーゲット間電圧は任意に独立して制御することは出来な
い。
For this reason, a method has also been attempted in which the substrate is held insulated from the vacuum container, and during this time, a direct current or direct current is applied for film formation from the outside. However, even with this, the plasma injection area force,
The voltage between the plasma and the target, which greatly affects the dK of the sputtered particles, cannot be arbitrarily and independently controlled.

例えば、特開昭54−103789号公報のように、高
周波wL#により、コイルを介してプラズマに電力投入
する方式もあるが、これは、プラズマ投入域力と、プラ
ズマ電位、基板電位、ターゲット電位が独立に制御でき
ない。
For example, as in Japanese Patent Application Laid-Open No. 54-103789, there is a method in which power is input to the plasma via a coil using high frequency wL#, but this method is based on the plasma input area force, plasma potential, substrate potential, and target potential. cannot be controlled independently.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラズマ投入域力と、真空容器に対す
る基板電位、ターゲット電位を任意に独立して制御し、
良質の膜特性の得られるスパッタ装置tを提供すること
にある。
The purpose of the present invention is to arbitrarily and independently control the plasma input area force, the substrate potential and the target potential with respect to the vacuum container,
The object of the present invention is to provide a sputtering apparatus t that can obtain good quality film characteristics.

〔発明のWt要〕[Wt essential points of invention]

第1図に示す実施例を用いて本発明の詳細な説明する。 The present invention will be explained in detail using the embodiment shown in FIG.

第1図において、真空容器1には、ガス給入口2、及び
、ガス排気口3を設けられ、接地線4によシ接地電位に
接続されている。ガス給入口2はガスボンベ、減圧弁、
ガス流量vI4壷升、ガス封止弁等よりなるガス給気系
に接続され、ガス排気口3は真空ポンプ等のガス排気装
置に接続される。スパッタ開始前に、真空ポンプで真空
容器1内を、例えば、1O−IITorr以下にしりめ
ト、ガス給気系で流量をallELながら、Arガス等
を供給し、圧力を、例えば、10’″” 〜10’ ・
rorr等の所望の値に維持する。
In FIG. 1, a vacuum container 1 is provided with a gas inlet 2 and a gas exhaust port 3, and is connected to a ground potential by a ground wire 4. Gas supply port 2 is for gas cylinder, pressure reducing valve,
It is connected to a gas supply system consisting of a gas flow rate vI4 tank, a gas sealing valve, etc., and the gas exhaust port 3 is connected to a gas exhaust device such as a vacuum pump. Before starting sputtering, the inside of the vacuum container 1 is tightened to, for example, 10-II Torr or less using a vacuum pump, and Ar gas or the like is supplied while controlling the flow rate to all EL using the gas supply system, and the pressure is increased to, for example, 10'''. ~10'・
Maintain the desired value such as rorr.

高周波コイル5は、絶縁支持吻6により真空容器1内に
保持され、インピーダンス整合回路を含めた、高周波゛
電源7にその両端を接続される。高周波コイル5は管状
の構成とし、その中を冷却水を通して、加熱を防止する
ことも可能でおる。高周波電源7は工業用割り当て周波
数の13.56MHzを便用されることが多い。高周波
コイル5に適度の電力が投入されると、電磁誘導作用に
よυ高周波の円筒状電界が誘起され、中に注入電力に応
じたグロー放電によるプラズマ密度が得られる。
The high frequency coil 5 is held within the vacuum vessel 1 by an insulating support snout 6, and both ends thereof are connected to a high frequency power source 7 including an impedance matching circuit. The high frequency coil 5 has a tubular configuration, and cooling water can be passed through the coil to prevent heating. The high frequency power source 7 often uses an industrially assigned frequency of 13.56 MHz. When a suitable amount of power is applied to the high frequency coil 5, a high frequency cylindrical electric field is induced by electromagnetic induction, and a plasma density is obtained by glow discharge corresponding to the injected power.

円筒成極8ri絶縁物9によ)、Ic空容器1内に保持
され、絶縁物10でシールされた導入端子11により、
電気的に外部に接続されている。本実施例では構成の簡
単さのため接地電位としているが、当然のことながら、
任意の電位に設定可能である。
(by the cylindrical polarization 8ri insulator 9), by the introduction terminal 11 held in the Ic empty container 1 and sealed with the insulator 10,
electrically connected to the outside. In this example, the ground potential is used to simplify the configuration, but as a matter of course,
Can be set to any potential.

前述の高周波コイル5によシ誘起されたプラズマの電位
は、プラズマに対する露出面積の大きい、円筒1!7L
極8からの影響を受け、はぼ、接地電位と等しくなる。
The potential of the plasma induced by the above-mentioned high frequency coil 5 is the same as that of the cylinder 1!7L, which has a large exposed area to the plasma.
Under the influence of pole 8, it becomes equal to ground potential.

ターゲット12Vi、成膜すべき材料からなシ、ターゲ
ツト面以外からのスパッタを防止するためのアースシー
ルド13に包囲され、絶縁物14で7−ルされた導電性
のターゲットホルダ15に支持されている。さらに、電
源16によシプラズマに対し負の電位が与えられている
ため、プラズマ中のプラスイオンがターゲット12の異
面にできた電界によシ加速され、ターゲット12に衝突
する。その結果、ターゲット12を構成する原子が多く
は中性のスパッタ粒子としてターゲット120表面よシ
放出される。ターゲット12は入射するプラスイオンの
エネルギにより加熱され、高温になるため、ターゲット
ホルダ15中に冷却水を流し、冷却することが多いが図
では省略した。
The target 12Vi is surrounded by an earth shield 13 for preventing sputtering from a material other than the target surface, and is supported by a conductive target holder 15 surrounded by an insulator 14. . Furthermore, since a negative potential is applied to the plasma by the power supply 16, the positive ions in the plasma are accelerated by the electric field created on the opposite surface of the target 12 and collide with the target 12. As a result, most of the atoms constituting the target 12 are emitted from the surface of the target 120 as neutral sputtered particles. Since the target 12 is heated by the energy of the incident positive ions and reaches a high temperature, it is often cooled by flowing cooling water into the target holder 15, but this is not shown in the figure.

基板17は絶縁物18によシシールされた基板ホルダ1
9で支持され、電源20によルミ位を付与される。この
場合の電位はさほど大きいものではなく成膜材質によシ
最適値が異なるが、最大でもプラズマ電位に対し負の1
00V根度であり、接地として使用可能な場合も多い。
The substrate 17 is a substrate holder 1 sealed with an insulator 18.
9 and is provided with a luminous position by a power source 20. The potential in this case is not very large and the optimum value differs depending on the film forming material, but at most it is negative 1 to the plasma potential.
00V, and can often be used as a ground.

基板温度につの構成によシ、ターゲット12よシ放出さ
れたスパッタ粒子は基板17面上に蓄積され、初期の膜
が形成される。
Depending on the substrate temperature, the sputtered particles emitted from the target 12 accumulate on the surface of the substrate 17, forming an initial film.

本構成例では省略し九が、プレスパツタ時の異常スパッ
タを防止するための、基板前面に設置するシャッター機
構、装置の状態、プラズマ状態をモニタするための各種
分析、測定装置等を通常備えて筐用されるが、これらは
本発明に含むものである。
In this configuration example, 9 (not shown) is usually equipped with a shutter mechanism installed in front of the substrate to prevent abnormal spatter during press sputtering, and various analysis and measurement devices for monitoring the equipment status and plasma status. However, these are included in the present invention.

本実施例では、高周波コイル5の内側に円筒電極8を設
け、これに独立した電位を与えるようにしたことによシ
、高周波コイル5の表面に生じる電位分布のプラズマ電
位に与える影響がなく、安定したプラズマが得られる。
In this embodiment, the cylindrical electrode 8 is provided inside the high-frequency coil 5 and an independent potential is applied to it, so that the potential distribution generated on the surface of the high-frequency coil 5 does not affect the plasma potential. Stable plasma can be obtained.

〔発明の実施例〕[Embodiments of the invention]

第2図及び第3図は円筒電極8について、高周波電流で
誘起されるうず電流による損失を防ぐため、軸方向にス
リットを設けた構成を示す。第2図では、電極部21と
絶縁部22を交互に張シ合わせ、電位を与える導体23
を個別に接続したものである。第3図では円筒絶縁体2
4に電極部材を張シ合わせこれを構成しているう 第4図は、円筒電極8の外側にカスプ磁場発生用の磁石
25を設けたものであシ、これによ勺磁場26を発生さ
せ、プラズマを閉じ込め、円筒電極8への電子の損失を
軽減したものである。これにより、高周波コイル5を流
れる高゛周波電流によるプラズマ発生効率を向上させる
ことが出来る。
FIGS. 2 and 3 show a structure in which a slit is provided in the axial direction of the cylindrical electrode 8 in order to prevent loss due to eddy current induced by high frequency current. In FIG. 2, electrode portions 21 and insulating portions 22 are alternately stretched together, and a conductor 23 that applies a potential
are connected individually. In Figure 3, the cylindrical insulator 2
Fig. 4 shows a structure in which a magnet 25 for generating a cusp magnetic field is provided on the outside of a cylindrical electrode 8, and a magnet 25 for generating a cusp magnetic field is thereby generated. , the plasma is confined and the loss of electrons to the cylindrical electrode 8 is reduced. Thereby, the efficiency of plasma generation by the high frequency current flowing through the high frequency coil 5 can be improved.

第5図は、ターゲット12とターゲットホルダ13の間
に空間を設け、この中にターゲット12面上にプラズマ
閉じ込め用の磁場を発生させるためのマグネトロン磁石
27を配したものである。
In FIG. 5, a space is provided between the target 12 and the target holder 13, and a magnetron magnet 27 for generating a magnetic field for plasma confinement on the surface of the target 12 is arranged in the space.

さらに、円筒′電極8の外周に円環状のカスプ磁場発生
用の磁石25を設置している。この結果、ターゲット1
2面から円筒電極8の上端まで連続的に磁場26が得ら
れ、プラズマ発生効率をさらに向上させることが出来る
Furthermore, an annular magnet 25 for generating a cusp magnetic field is installed around the outer periphery of the cylindrical electrode 8. As a result, target 1
A magnetic field 26 is obtained continuously from the two surfaces to the upper end of the cylindrical electrode 8, and the plasma generation efficiency can be further improved.

第6図は真空容器1をプラズマに電位を付与する円筒電
極として用いたものである。この実施例では、真空容器
1を接地電位以外で便用するとき全体を絶縁して、大地
から電気的に浮かせて便用しなければならないが、反面
、簡単な構成で本発明の目的を果すことができる利点が
ある。
FIG. 6 shows the vacuum vessel 1 used as a cylindrical electrode for applying a potential to plasma. In this embodiment, when the vacuum container 1 is to be used at a potential other than the ground potential, the entire vacuum container 1 must be insulated and electrically suspended from the earth. There is an advantage that it can be done.

第7図は、ターゲット12が絶縁物のときのターゲット
電位の与え方を示している。ターゲットホルダ13に、
インピーダンス整合回路を含む高周波電源28を接続し
、高周波電圧を印加している。この様な構成によシ、タ
ーゲツト面に直流バイアス電圧が誘起される。本方式は
、基板が絶縁物の場合にも適用でき、同様の効果が得ら
れる。
FIG. 7 shows how to apply a target potential when the target 12 is an insulator. In the target holder 13,
A high frequency power source 28 including an impedance matching circuit is connected to apply a high frequency voltage. With this configuration, a DC bias voltage is induced on the target surface. This method can also be applied when the substrate is an insulator, and similar effects can be obtained.

本発明では高周波コイル5でプラズマを発生し、円筒電
極8でプラズマ電位を与えているので、本構成例によれ
ば、絶縁物の基板、ターゲット、あるいは、双方に、プ
ラズマに対する任意の゛電圧を与えることができる。
In the present invention, plasma is generated by the high-frequency coil 5 and a plasma potential is applied by the cylindrical electrode 8. Therefore, according to this configuration example, an arbitrary voltage for the plasma can be applied to the insulating substrate, the target, or both. can give.

第8図は、インピーダンス整合回路29を介して基板、
ターゲットの電位を与えるために、高周波コイル用の高
周波電源7を共用した場合の構成例を示す。インピーダ
ンス整合回路は、一般に、L、Cの組み合わせで構成さ
れるが、構成の仕方は諸方式があり、本図に限ったもの
ではない。又、構成する要素の変更によシ、バイアス電
圧は任意に設定が可能である。本構成例に従えば1、一
台の高周波電源を共用できるため、装置の全体構成を簡
素化できる特徴がある。
In FIG. 8, the substrate, via the impedance matching circuit 29,
A configuration example will be shown in which the high frequency power source 7 for the high frequency coil is shared in order to provide a target potential. An impedance matching circuit is generally configured by a combination of L and C, but there are various ways to configure it, and the configuration is not limited to the one shown in this figure. Further, the bias voltage can be set arbitrarily by changing the constituent elements. According to this configuration example, one high-frequency power source can be shared, so the overall configuration of the device can be simplified.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマ注入電力、プラズマ電位、タ
ーゲット電位、基板電位を独立して制御できるようにな
シ、かつ高周波コイルに生じる電位分布がプラズマに影
響を及ぼさないので所望の条件で、安定した良質のスパ
ッタ膜を実現できるようになる。
According to the present invention, the plasma injection power, plasma potential, target potential, and substrate potential can be controlled independently, and the potential distribution generated in the high-frequency coil does not affect the plasma, so the plasma can be stably controlled under desired conditions. This makes it possible to realize high-quality sputtered films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部断面図、第2図ないし
第4図は異なる実施例を示す部分横断面第61ffl、
、d異なる実施例を示す要部断面図である。 1・・・容器、12・・・ターゲット、17・・・基板
、7・・・高周波電源、5・・・高周波コイル、訃・・
第三の電極、21・・・電極部、22・・・絶縁部。
FIG. 1 is a sectional view of a main part of one embodiment of the present invention, and FIGS. 2 to 4 are partial cross sections No. 61ffl showing different embodiments.
, d are main part sectional views showing different embodiments. 1... Container, 12... Target, 17... Substrate, 7... High frequency power supply, 5... High frequency coil, Death...
Third electrode, 21... electrode part, 22... insulating part.

Claims (1)

【特許請求の範囲】 1、気密を保持された容器の中に保持された一対の、成
膜材料からなるターゲットと、成膜すべき基板とからな
るものにおいて、 前記ターゲットと前記基板の間隙にプラズマを発生し、
これを維持するための電力を注入する高周波電源と高周
波コイルを設け、前記高周波コイルの内側に、前記プラ
ズマの電位を制御する電極を設けたことを特徴とするス
パッタ装置。 2、特許請求の範囲第1項において、前記電極は、電極
部と絶縁部が交互に組み合わされたものであることを特
徴とするスパッタ装置。 3、特許請求の範囲第1項において、 前記電極、前記ターゲット、前記基板の各電位は、少な
くともその中の二つの電位差で制御可能であることを特
徴とするスパッタ装置。 4、特許請求の範囲第3項において、 前記基板、もしくは前記ターゲットの電位は、直流もし
くは高周波交流電圧を付与されることを特徴とするスパ
ッタ装置。
[Scope of Claims] 1. A device consisting of a pair of targets made of a film forming material and a substrate on which a film is to be formed, which are held in an airtight container, in which a gap between the target and the substrate is provided. generates plasma,
A sputtering apparatus characterized in that a high-frequency power source and a high-frequency coil are provided for injecting power to maintain this, and an electrode for controlling the potential of the plasma is provided inside the high-frequency coil. 2. The sputtering apparatus according to claim 1, wherein the electrode is a combination of electrode parts and insulating parts alternately. 3. The sputtering apparatus according to claim 1, wherein each potential of the electrode, the target, and the substrate can be controlled by a potential difference between at least two of them. 4. The sputtering apparatus according to claim 3, wherein the potential of the substrate or the target is applied with a DC voltage or a high-frequency AC voltage.
JP3040885A 1985-02-20 1985-02-20 Sputter device Pending JPS61190070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040885A JPS61190070A (en) 1985-02-20 1985-02-20 Sputter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040885A JPS61190070A (en) 1985-02-20 1985-02-20 Sputter device

Publications (1)

Publication Number Publication Date
JPS61190070A true JPS61190070A (en) 1986-08-23

Family

ID=12303114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040885A Pending JPS61190070A (en) 1985-02-20 1985-02-20 Sputter device

Country Status (1)

Country Link
JP (1) JPS61190070A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234560A (en) * 1989-08-14 1993-08-10 Hauzer Holdings Bv Method and device for sputtering of films
US5431799A (en) * 1993-10-29 1995-07-11 Applied Materials, Inc. Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
US5800688A (en) * 1997-04-21 1998-09-01 Tokyo Electron Limited Apparatus for ionized sputtering
US5919342A (en) * 1997-02-26 1999-07-06 Applied Materials, Inc. Method for depositing golden titanium nitride
US5948215A (en) * 1997-04-21 1999-09-07 Tokyo Electron Limited Method and apparatus for ionized sputtering
US5961793A (en) * 1996-10-31 1999-10-05 Applied Materials, Inc. Method of reducing generation of particulate matter in a sputtering chamber
JPH11269643A (en) * 1998-03-20 1999-10-05 Toshiba Corp Deposition apparatus and deposition method using the same
US6023038A (en) * 1997-09-16 2000-02-08 Applied Materials, Inc. Resistive heating of powered coil to reduce transient heating/start up effects multiple loadlock system
US6042700A (en) * 1997-09-15 2000-03-28 Applied Materials, Inc. Adjustment of deposition uniformity in an inductively coupled plasma source
US6042706A (en) * 1997-01-14 2000-03-28 Applied Materials, Inc. Ionized PVD source to produce uniform low-particle deposition
US6080287A (en) * 1998-05-06 2000-06-27 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6103070A (en) * 1997-05-14 2000-08-15 Applied Materials, Inc. Powered shield source for high density plasma
US6132566A (en) * 1998-07-30 2000-10-17 Applied Materials, Inc. Apparatus and method for sputtering ionized material in a plasma
US6132564A (en) * 1997-11-17 2000-10-17 Tokyo Electron Limited In-situ pre-metallization clean and metallization of semiconductor wafers
US6146508A (en) * 1998-04-22 2000-11-14 Applied Materials, Inc. Sputtering method and apparatus with small diameter RF coil
US6158384A (en) * 1997-06-05 2000-12-12 Applied Materials, Inc. Plasma reactor with multiple small internal inductive antennas
US6179973B1 (en) 1999-01-05 2001-01-30 Novellus Systems, Inc. Apparatus and method for controlling plasma uniformity across a substrate
US6178920B1 (en) 1997-06-05 2001-01-30 Applied Materials, Inc. Plasma reactor with internal inductive antenna capable of generating helicon wave
US6190513B1 (en) 1997-05-14 2001-02-20 Applied Materials, Inc. Darkspace shield for improved RF transmission in inductively coupled plasma sources for sputter deposition
US6193854B1 (en) * 1999-01-05 2001-02-27 Novellus Systems, Inc. Apparatus and method for controlling erosion profile in hollow cathode magnetron sputter source
US6197165B1 (en) 1998-05-06 2001-03-06 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6210539B1 (en) 1997-05-14 2001-04-03 Applied Materials, Inc. Method and apparatus for producing a uniform density plasma above a substrate
US6217718B1 (en) 1999-02-17 2001-04-17 Applied Materials, Inc. Method and apparatus for reducing plasma nonuniformity across the surface of a substrate in apparatus for producing an ionized metal plasma
US6217716B1 (en) * 1998-05-06 2001-04-17 Novellus Systems, Inc. Apparatus and method for improving target erosion in hollow cathode magnetron sputter source
US6224724B1 (en) 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
US6228229B1 (en) * 1995-11-15 2001-05-08 Applied Materials, Inc. Method and apparatus for generating a plasma
US6231725B1 (en) 1998-08-04 2001-05-15 Applied Materials, Inc. Apparatus for sputtering material onto a workpiece with the aid of a plasma
US6235169B1 (en) 1997-08-07 2001-05-22 Applied Materials, Inc. Modulated power for ionized metal plasma deposition
US6238528B1 (en) 1998-10-13 2001-05-29 Applied Materials, Inc. Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source
US6254738B1 (en) 1998-03-31 2001-07-03 Applied Materials, Inc. Use of variable impedance having rotating core to control coil sputter distribution
US6254737B1 (en) 1996-10-08 2001-07-03 Applied Materials, Inc. Active shield for generating a plasma for sputtering
US6254745B1 (en) 1999-02-19 2001-07-03 Tokyo Electron Limited Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source
US6254746B1 (en) 1996-05-09 2001-07-03 Applied Materials, Inc. Recessed coil for generating a plasma
US6280579B1 (en) 1997-12-19 2001-08-28 Applied Materials, Inc. Target misalignment detector
US6287435B1 (en) 1998-05-06 2001-09-11 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6340417B1 (en) * 1996-03-14 2002-01-22 Advanced Micro Devices, Inc. Reactor and method for ionized metal deposition
US6345588B1 (en) 1997-08-07 2002-02-12 Applied Materials, Inc. Use of variable RF generator to control coil voltage distribution
US6359250B1 (en) 1998-07-13 2002-03-19 Applied Komatsu Technology, Inc. RF matching network with distributed outputs
US6361661B2 (en) 1997-05-16 2002-03-26 Applies Materials, Inc. Hybrid coil design for ionized deposition
US6368469B1 (en) 1996-05-09 2002-04-09 Applied Materials, Inc. Coils for generating a plasma and for sputtering
US6375810B2 (en) 1997-08-07 2002-04-23 Applied Materials, Inc. Plasma vapor deposition with coil sputtering
US6451179B1 (en) 1997-01-30 2002-09-17 Applied Materials, Inc. Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US6474258B2 (en) 1999-03-26 2002-11-05 Tokyo Electron Limited Apparatus and method for improving plasma distribution and performance in an inductively coupled plasma
US6475356B1 (en) 1996-11-21 2002-11-05 Applied Materials, Inc. Method and apparatus for improving sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US6497796B1 (en) 1999-01-05 2002-12-24 Novellus Systems, Inc. Apparatus and method for controlling plasma uniformity across a substrate
US6514390B1 (en) 1996-10-17 2003-02-04 Applied Materials, Inc. Method to eliminate coil sputtering in an ICP source
US6565717B1 (en) 1997-09-15 2003-05-20 Applied Materials, Inc. Apparatus for sputtering ionized material in a medium to high density plasma
US6579426B1 (en) 1997-05-16 2003-06-17 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6599399B2 (en) 1997-03-07 2003-07-29 Applied Materials, Inc. Sputtering method to generate ionized metal plasma using electron beams and magnetic field
US6652717B1 (en) 1997-05-16 2003-11-25 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6660134B1 (en) 1998-07-10 2003-12-09 Applied Materials, Inc. Feedthrough overlap coil
JP2004506090A (en) * 2000-03-10 2004-02-26 アプライド マテリアルズ インコーポレイテッド Method and apparatus for performing high pressure physical vapor deposition
JP2006307243A (en) * 2005-04-26 2006-11-09 Tsuru Gakuen Magnetron sputtering film deposition system with multiplex magnetic poles, and film deposition method therefor
US8398832B2 (en) 1996-05-09 2013-03-19 Applied Materials Inc. Coils for generating a plasma and for sputtering

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234560A (en) * 1989-08-14 1993-08-10 Hauzer Holdings Bv Method and device for sputtering of films
US5431799A (en) * 1993-10-29 1995-07-11 Applied Materials, Inc. Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
US6224724B1 (en) 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
US6228229B1 (en) * 1995-11-15 2001-05-08 Applied Materials, Inc. Method and apparatus for generating a plasma
US6297595B1 (en) 1995-11-15 2001-10-02 Applied Materials, Inc. Method and apparatus for generating a plasma
US6264812B1 (en) 1995-11-15 2001-07-24 Applied Materials, Inc. Method and apparatus for generating a plasma
US6340417B1 (en) * 1996-03-14 2002-01-22 Advanced Micro Devices, Inc. Reactor and method for ionized metal deposition
US6254746B1 (en) 1996-05-09 2001-07-03 Applied Materials, Inc. Recessed coil for generating a plasma
US6783639B2 (en) 1996-05-09 2004-08-31 Applied Materials Coils for generating a plasma and for sputtering
US6368469B1 (en) 1996-05-09 2002-04-09 Applied Materials, Inc. Coils for generating a plasma and for sputtering
US8398832B2 (en) 1996-05-09 2013-03-19 Applied Materials Inc. Coils for generating a plasma and for sputtering
US6254737B1 (en) 1996-10-08 2001-07-03 Applied Materials, Inc. Active shield for generating a plasma for sputtering
US6514390B1 (en) 1996-10-17 2003-02-04 Applied Materials, Inc. Method to eliminate coil sputtering in an ICP source
US5961793A (en) * 1996-10-31 1999-10-05 Applied Materials, Inc. Method of reducing generation of particulate matter in a sputtering chamber
US6475356B1 (en) 1996-11-21 2002-11-05 Applied Materials, Inc. Method and apparatus for improving sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US6042706A (en) * 1997-01-14 2000-03-28 Applied Materials, Inc. Ionized PVD source to produce uniform low-particle deposition
US6451179B1 (en) 1997-01-30 2002-09-17 Applied Materials, Inc. Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US5919342A (en) * 1997-02-26 1999-07-06 Applied Materials, Inc. Method for depositing golden titanium nitride
US6599399B2 (en) 1997-03-07 2003-07-29 Applied Materials, Inc. Sputtering method to generate ionized metal plasma using electron beams and magnetic field
US5948215A (en) * 1997-04-21 1999-09-07 Tokyo Electron Limited Method and apparatus for ionized sputtering
US5800688A (en) * 1997-04-21 1998-09-01 Tokyo Electron Limited Apparatus for ionized sputtering
US6103070A (en) * 1997-05-14 2000-08-15 Applied Materials, Inc. Powered shield source for high density plasma
US6190513B1 (en) 1997-05-14 2001-02-20 Applied Materials, Inc. Darkspace shield for improved RF transmission in inductively coupled plasma sources for sputter deposition
US6210539B1 (en) 1997-05-14 2001-04-03 Applied Materials, Inc. Method and apparatus for producing a uniform density plasma above a substrate
US6579426B1 (en) 1997-05-16 2003-06-17 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6361661B2 (en) 1997-05-16 2002-03-26 Applies Materials, Inc. Hybrid coil design for ionized deposition
US6652717B1 (en) 1997-05-16 2003-11-25 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6178920B1 (en) 1997-06-05 2001-01-30 Applied Materials, Inc. Plasma reactor with internal inductive antenna capable of generating helicon wave
US6158384A (en) * 1997-06-05 2000-12-12 Applied Materials, Inc. Plasma reactor with multiple small internal inductive antennas
US6375810B2 (en) 1997-08-07 2002-04-23 Applied Materials, Inc. Plasma vapor deposition with coil sputtering
US6235169B1 (en) 1997-08-07 2001-05-22 Applied Materials, Inc. Modulated power for ionized metal plasma deposition
US6345588B1 (en) 1997-08-07 2002-02-12 Applied Materials, Inc. Use of variable RF generator to control coil voltage distribution
US6565717B1 (en) 1997-09-15 2003-05-20 Applied Materials, Inc. Apparatus for sputtering ionized material in a medium to high density plasma
US6042700A (en) * 1997-09-15 2000-03-28 Applied Materials, Inc. Adjustment of deposition uniformity in an inductively coupled plasma source
US6023038A (en) * 1997-09-16 2000-02-08 Applied Materials, Inc. Resistive heating of powered coil to reduce transient heating/start up effects multiple loadlock system
US6132564A (en) * 1997-11-17 2000-10-17 Tokyo Electron Limited In-situ pre-metallization clean and metallization of semiconductor wafers
US6280579B1 (en) 1997-12-19 2001-08-28 Applied Materials, Inc. Target misalignment detector
JPH11269643A (en) * 1998-03-20 1999-10-05 Toshiba Corp Deposition apparatus and deposition method using the same
US6254738B1 (en) 1998-03-31 2001-07-03 Applied Materials, Inc. Use of variable impedance having rotating core to control coil sputter distribution
US6146508A (en) * 1998-04-22 2000-11-14 Applied Materials, Inc. Sputtering method and apparatus with small diameter RF coil
US6287435B1 (en) 1998-05-06 2001-09-11 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6197165B1 (en) 1998-05-06 2001-03-06 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6217716B1 (en) * 1998-05-06 2001-04-17 Novellus Systems, Inc. Apparatus and method for improving target erosion in hollow cathode magnetron sputter source
US6080287A (en) * 1998-05-06 2000-06-27 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
US6660134B1 (en) 1998-07-10 2003-12-09 Applied Materials, Inc. Feedthrough overlap coil
US6359250B1 (en) 1998-07-13 2002-03-19 Applied Komatsu Technology, Inc. RF matching network with distributed outputs
US6552297B2 (en) 1998-07-13 2003-04-22 Applied Komatsu Technology, Inc. RF matching network with distributed outputs
US6132566A (en) * 1998-07-30 2000-10-17 Applied Materials, Inc. Apparatus and method for sputtering ionized material in a plasma
US6231725B1 (en) 1998-08-04 2001-05-15 Applied Materials, Inc. Apparatus for sputtering material onto a workpiece with the aid of a plasma
US6238528B1 (en) 1998-10-13 2001-05-29 Applied Materials, Inc. Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source
US6179973B1 (en) 1999-01-05 2001-01-30 Novellus Systems, Inc. Apparatus and method for controlling plasma uniformity across a substrate
US6193854B1 (en) * 1999-01-05 2001-02-27 Novellus Systems, Inc. Apparatus and method for controlling erosion profile in hollow cathode magnetron sputter source
US6497796B1 (en) 1999-01-05 2002-12-24 Novellus Systems, Inc. Apparatus and method for controlling plasma uniformity across a substrate
US6217718B1 (en) 1999-02-17 2001-04-17 Applied Materials, Inc. Method and apparatus for reducing plasma nonuniformity across the surface of a substrate in apparatus for producing an ionized metal plasma
US6254745B1 (en) 1999-02-19 2001-07-03 Tokyo Electron Limited Ionized physical vapor deposition method and apparatus with magnetic bucket and concentric plasma and material source
US6474258B2 (en) 1999-03-26 2002-11-05 Tokyo Electron Limited Apparatus and method for improving plasma distribution and performance in an inductively coupled plasma
US6719886B2 (en) 1999-11-18 2004-04-13 Tokyo Electron Limited Method and apparatus for ionized physical vapor deposition
JP2004506090A (en) * 2000-03-10 2004-02-26 アプライド マテリアルズ インコーポレイテッド Method and apparatus for performing high pressure physical vapor deposition
JP2006307243A (en) * 2005-04-26 2006-11-09 Tsuru Gakuen Magnetron sputtering film deposition system with multiplex magnetic poles, and film deposition method therefor

Similar Documents

Publication Publication Date Title
JPS61190070A (en) Sputter device
US3956093A (en) Planar magnetron sputtering method and apparatus
US5414324A (en) One atmosphere, uniform glow discharge plasma
US4716491A (en) High frequency plasma generation apparatus
US5417834A (en) Arrangement for generating a plasma by means of cathode sputtering
US6296742B1 (en) Method and apparatus for magnetically enhanced sputtering
EP0621979B1 (en) Radio-frequency ion source
JP3652702B2 (en) Linear arc discharge generator for plasma processing
CA2326202C (en) Method and apparatus for deposition of biaxially textured coatings
US5006218A (en) Sputtering apparatus
JP4945566B2 (en) Capacitively coupled magnetic neutral plasma sputtering system
US5531877A (en) Microwave-enhanced sputtering configuration
US5397448A (en) Device for generating a plasma by means of cathode sputtering and microwave-irradiation
RU2030807C1 (en) Closed-electron-drift ion source
JP3045752B2 (en) Thin film sputtering method and apparatus
US6342139B1 (en) Sputtering system
JP7114368B2 (en) Sputtering equipment
Yonesu et al. Cylindrical DC magnetron sputtering assisted by microwave plasma
JPH01139762A (en) Sputtering apparatus
JPH0578849A (en) High magnetic field microwave plasma treating device
JPS6127464B2 (en)
JP2552700B2 (en) Plasma generating apparatus and thin film forming apparatus using plasma
KR20240004297A (en) sputter device
JPH0565632A (en) Apparatus for coating base with indium/tin oxide
CA2284181A1 (en) A method and apparatus for magnetically enhanced sputtering