JPS62128928A - Production of magnetic powder for magnetic recording - Google Patents

Production of magnetic powder for magnetic recording

Info

Publication number
JPS62128928A
JPS62128928A JP60266798A JP26679885A JPS62128928A JP S62128928 A JPS62128928 A JP S62128928A JP 60266798 A JP60266798 A JP 60266798A JP 26679885 A JP26679885 A JP 26679885A JP S62128928 A JPS62128928 A JP S62128928A
Authority
JP
Japan
Prior art keywords
ions
aqueous solution
coprecipitate
chloride
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60266798A
Other languages
Japanese (ja)
Inventor
Akihisa Yamamoto
陽久 山本
Kunio Okubo
邦雄 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP60266798A priority Critical patent/JPS62128928A/en
Publication of JPS62128928A publication Critical patent/JPS62128928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To produce hexagonal series barium ferrite magnetic powder in case of producing barium ferrite in a coprecipitation method by heating immediately an aq. soln. contg. a coprecipitate without filtering and water-washing it and evaporating water content, drying and calcining it and thereafter washing water soluble metallic salt to remove it. CONSTITUTION:A coprecipitate is formed by mixing 8-12mol chloride or sulfate of Fe as Fe ion and an aq. soln. contg. 0.8-3mol ion of Ba, Sr, Ca, Pb wherein one or two kinds or above of chloride or nitrate of Ba, Sr, Ca and Pb are dissolved and an alkaline aq. soln. contg. hydroxide or carbonate of alkali metal such as NaOH, Na2CO3, NH4OH and (NH4)2CO3. pH of this coprecipitate- contg. aq. soln. is regulated to >=5 and heated at >=70 deg.C in the presence or nonpresence of one or two kinds or above of compds. such as NaCl, KCl, BaCl2 and SrCl2 to evaporate water content and dried. Hexagonal barium ferrite magnetic powder preferable for high-density magnetic recording medium is easily produced by successively calcining it at 600-1,200 deg.C for 0.5-5hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録用磁性粉の製造方法に関し、更に詳し
くは、高密度磁気記録媒体用に適する微細な粒子からな
る六方晶系フェライト磁性粉を容易に製造する方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing magnetic powder for magnetic recording, and more specifically to a hexagonal ferrite magnetic powder consisting of fine particles suitable for use in high-density magnetic recording media. This invention relates to a method for easily manufacturing.

(従来の技術) 近年磁気記録に対する高密度化の要求に伴い、磁気記録
媒体の厚味方向に磁界を記録する垂直磁気記録方式が注
目されている。
(Prior Art) In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording methods that record a magnetic field in the thickness direction of a magnetic recording medium have been attracting attention.

ところで、六方晶系の一軸磁化異方性を有するフェライ
ト、例えばバリウムフェライトは、上記垂直磁気記録方
式に適した磁性粉であることが知られており、保持力(
Ha )が適当な伍(400〜20000θ)で、飽和
磁化(σ8)ができるだけ高く、粒子が小さく(一般に
0.3μm以下〕且つ均一で、粒子の凝集、焼結などが
なく、分散性のよいものが望まれている。
By the way, ferrite having hexagonal uniaxial magnetization anisotropy, such as barium ferrite, is known to be a magnetic powder suitable for the above-mentioned perpendicular magnetic recording method, and has a coercive force (
Ha) is at an appropriate level (400 to 20,000θ), the saturation magnetization (σ8) is as high as possible, the particles are small (generally 0.3 μm or less) and uniform, there is no agglomeration or sintering of particles, and there is good dispersibility. something is desired.

従来バリウムフェライトの製造法としては、例えば共沈
法、フラックス法、水熱合成法、ガラス結晶化法など種
々の方法が知られており、共沈法については、例えば特
開昭56−60001号公報、特開昭56−60002
号公報、特開昭58−2223号公報、特開昭60−1
15204号公報などで提案されている。
Conventionally, various methods are known for producing barium ferrite, such as a coprecipitation method, a flux method, a hydrothermal synthesis method, and a glass crystallization method. Publication, JP-A-56-60002
No. 1, JP-A-58-2223, JP-A-60-1
This method has been proposed in Publication No. 15204 and the like.

(発明が解決しようとする問題点) 共沈法によるバリウムフェライトの製造は、保磁力制御
やその他の目的で少量添加される各種金属との混合が非
常に良いため均一なフェライトが得られること、共沈物
が微結晶粉末であるので比較的低温で7エライト化し得
ることなど多くの長所を有している。しかしながら得ら
れる磁性粉の粒径が最小でも0.15μmと比較的大き
いことや、焼成過程で微粒子の焼結が進行し、分散性が
非常に悪いといった大きな難点がある。このため共沈物
に水不混和性の有機溶媒を加え共沸脱水処理する方法(
特開昭60−115204号公報参照)や、共沈物を−
たん加圧加温下で水熱処理を施す方法(特開昭56−1
60328号公報参照)などが提案されているが、未だ
充分ではない。
(Problems to be Solved by the Invention) The production of barium ferrite by the coprecipitation method allows for very good mixing with various metals added in small amounts for coercive force control and other purposes, resulting in uniform ferrite. Since the coprecipitate is a microcrystalline powder, it has many advantages such as being able to form hepteraite at a relatively low temperature. However, there are major drawbacks such as the particle size of the magnetic powder obtained is relatively large, at least 0.15 μm, and the sintering of the fine particles progresses during the firing process, resulting in very poor dispersibility. For this purpose, a method of adding a water-immiscible organic solvent to the coprecipitate and subjecting it to azeotropic dehydration (
(see Japanese Patent Application Laid-Open No. 60-115204) and coprecipitates.
A method of hydrothermal treatment under pressure and heating (Unexamined Japanese Patent Publication No. 56-1
60328) have been proposed, but they are still not sufficient.

(問題点を解決するための手段) 本発明者らは、この様な実情に鑑み、粒径が均一で小さ
く、粒子の凝集や焼結などがな(、分散性がよく、且つ
磁気特性のすぐれた六方晶系フェライト磁性粉を製造す
ることを目的として、鋭意研究を行った結果、通常の共
沈法で得られる共沈物を含む水溶液を、従来の如(共沈
物を戸別、水洗することな(ただちに70℃以上に加熱
して水分を蒸発乾燥させ、これを焼成した後水溶性金属
塩を洗浄除去することによって、上記の目的が達成され
ることを見い出し、本発明を完成した。
(Means for Solving the Problems) In view of the above circumstances, the present inventors have developed a material with uniform and small particle size, no agglomeration or sintering of particles, good dispersibility, and good magnetic properties. As a result of intensive research with the aim of producing excellent hexagonal ferrite magnetic powder, we found that an aqueous solution containing a coprecipitate obtained by a normal coprecipitation method was prepared in the conventional manner (the coprecipitate was washed door to door, washed with water, etc.). The inventors have discovered that the above object can be achieved by immediately heating the product to 70°C or higher to evaporate the moisture, sintering it, and then washing and removing the water-soluble metal salt, and have completed the present invention. .

かかる本発明の目的は (1)少なくともIt’sイオンが8〜12モル及びJ
3aイオン、Brイオン、Caイオン及びPbイオンか
ら成る群から選ばれる1種または2種以上の金属イオン
が0.8〜3モルとなる様なモル比で含有する水溶液と
アルカリ水溶液とを混合して共沈物を得、該共沈物を含
む水溶液を、塩化ナトリウム、塩化カリウム、塩化バリ
ウム、塩化ストロンチウム、硫酸ナトリウム、硫酸カリ
ウム及び硫酸リチウムから成る群から選ばれる1種又は
2種の化合物の存在下あるいは不存在下に70℃以上に
加熱して水分を蒸発乾燥し、次いで600〜1200’
Oで焼成した後洗浄乾燥することにより、 また、 (2)少なくともFsイオンが8〜12モル及び、3a
イオン、!3rイオン、Caイオン及びPbイオンから
成る群から選ばれる1sまたは2種以上の金属イオンが
0.8〜3モルとなる様なモル比で含有する水溶液とア
ルカリ水溶液とを混合して得られる共沈物を含む水溶液
のpHを塩酸及び/又は硫酸の添加によυ原核水溶液の
pH未満に調整し、この水溶液を塩化ナトリウム、塩化
カリウム、塩化バリウム、塩化ストロンチウム、硫酸ナ
トリウム、硫酸カリウム及び硫酸リチウムから成る群か
ら選ばれる1種又は2種の化合物の存在下あるいは不存
在下に、70″C以上に加熱して水分を蒸発乾燥し、次
いで600〜1200’Cで焼成した後洗浄乾燥するこ
とによって達成される。
The purpose of the present invention is to (1) contain at least 8 to 12 moles of It's ions and J
An aqueous solution containing one or more metal ions selected from the group consisting of 3a ions, Br ions, Ca ions, and Pb ions in a molar ratio of 0.8 to 3 mol and an alkaline aqueous solution are mixed. The aqueous solution containing the coprecipitate is mixed with one or two compounds selected from the group consisting of sodium chloride, potassium chloride, barium chloride, strontium chloride, sodium sulfate, potassium sulfate, and lithium sulfate. Heat to 70°C or higher in the presence or absence of water to evaporate moisture, then dry for 600-1200'
By washing and drying after baking with O, (2) at least 8 to 12 moles of Fs ions and 3a
ion,! A compound obtained by mixing an aqueous solution containing 1s or two or more metal ions selected from the group consisting of 3r ions, Ca ions, and Pb ions in a molar ratio of 0.8 to 3 mol and an alkaline aqueous solution. The pH of the aqueous solution containing the precipitate is adjusted to below the pH of the υ prokaryotic aqueous solution by adding hydrochloric acid and/or sulfuric acid, and the aqueous solution is mixed with sodium chloride, potassium chloride, barium chloride, strontium chloride, sodium sulfate, potassium sulfate, and lithium sulfate. In the presence or absence of one or two compounds selected from the group consisting of: heating to 70"C or higher to evaporate moisture, followed by baking at 600 to 1200"C followed by washing and drying. achieved by

本発明によれば、特開昭60−115204号公報に記
載されている如き大量の有機溶媒による処理や、特開昭
56−160328号公報に記載されている如き共沈物
を−たん加圧加温下で水熱処理を施すといった、煩雑な
処理を行う必要がない0 本発明において用いられるFeイオン、BaイオンSB
rイオン、Caイオン、Pbイオン及び磁気特性の制御
やその他の目的で所望により少量添加される各種金属イ
オン(例えばMg、Sc、Y、’V、Ta。
According to the present invention, treatment with a large amount of organic solvent as described in JP-A-60-115204 or coprecipitate under high pressure as described in JP-A-56-160328 There is no need to perform complicated treatments such as hydrothermal treatment under heating.Fe ion, Ba ion SB used in the present invention
r ions, Ca ions, Pb ions, and various metal ions (for example, Mg, Sc, Y, 'V, Ta) that may be added in small amounts as desired to control magnetic properties or for other purposes.

Mo、W、Re、Ru、○s、Rh、工r、Pd、Pt
、Ag、Hg。
Mo, W, Re, Ru, ○s, Rh, Engineering r, Pd, Pt
, Ag, Hg.

Ga、Go、As、To、C!o、Ni、Mn、Zn、
Ti、工n。
Ga, Go, As, To, C! o, Ni, Mn, Zn,
Ti, Eng.

Nb、Sm、Nd、Zr、Or、La、Ou、Cd、A
4.Tj。
Nb, Sm, Nd, Zr, Or, La, Ou, Cd, A
4. Tj.

si、sn、p、sb、Bt、so、ce、pr、’r
b、Ga、yb。
si, sn, p, sb, Bt, so, ce, pr, 'r
b, Ga, yb.

Th、σなどから選ばれる1種または2種以上の金属イ
オン)を含む水溶液の調製には、各金属の水に可溶性の
金属塩、例えば硝酸塩、硫酸塩、ノ・ロゲン化物、アン
モニウム塩、炭酸塩、酸無水物、縮合酸等を挙げること
ができる0特にFllイオンの原料が塩化物または硫酸
塩で、且つBaイオン、Brイオン、CI!Lイオン及
びPbイオンの原料が塩化物または硝酸塩であることが
好ましい。この場合でも、磁気特性の制御等で少量添加
される各種金属イオンの原料については特に制限はない
0本発明において所期の磁性粉を得るためには、少なく
ともFeイオンが8〜12モル及びBaイオン、Brイ
オン、Caイオン及びPbイオンから成る群から選ばれ
る1種または2種以上の金属イオンが0.8〜3モルと
なる様なモル比で含有する水溶液を用いねばならない。
To prepare an aqueous solution containing one or more metal ions selected from Th, σ, etc., water-soluble metal salts of each metal, such as nitrates, sulfates, chlorides, ammonium salts, carbonates, etc. Examples include salts, acid anhydrides, condensed acids, etc. 0 In particular, the raw material for FlI ions is chloride or sulfate, and Ba ions, Br ions, CI! It is preferable that the raw materials for L ions and Pb ions are chlorides or nitrates. Even in this case, there are no particular restrictions on the raw materials for various metal ions added in small amounts to control magnetic properties, etc. In order to obtain the desired magnetic powder in the present invention, at least 8 to 12 moles of Fe ions and Ba ion, Br ion, Ca ion, and Pb ion in a molar ratio of 0.8 to 3 mol.

この他に、磁気特性の制御などの目的で各種金属イオン
を少量添加する場合は、これ等の添加金属イオンの合計
は上記モル比で、3モル以下が望ましい0これは各金属
イオンがこの様なモル比の範囲にある時に限って、磁気
記録用磁性粉として優れた磁気特性(保磁力400〜2
0000e及び飽和磁化40 emu79以上)を示し
うるからである。
In addition, when adding small amounts of various metal ions for the purpose of controlling magnetic properties, etc., the total of these added metal ions is preferably 3 moles or less at the above molar ratio. This means that each metal ion is Excellent magnetic properties (coercive force 400 to 2
0000e and saturation magnetization of 40 emu79 or higher).

また上記金属イオンの水溶液中の濃度は、金属イオンの
総量が10mol/l以下であるのが好ましく、更に好
ましくは1mo1/z以下である。
Further, the concentration of the metal ions in the aqueous solution is preferably such that the total amount of metal ions is 10 mol/l or less, more preferably 1 mol/z or less.

一方アルカリ水溶液に用いるアルカリ成分としては、水
溶性のものであればよく、アルカリ金属の水酸化物や炭
酸塩、アンモニア、炭酸アンモニウム等が挙げられる0
例えばNaOH,KOH,Na2CO3゜NaHCO3
,’!−2CO3,KHCO3,NH4OH,(NH4
)zC!03等が用いられ、特に、水酸化物と炭酸塩の
併用が賞用される。
On the other hand, the alkaline component used in the alkaline aqueous solution may be any water-soluble one, such as alkali metal hydroxides, carbonates, ammonia, ammonium carbonate, etc.
For example, NaOH, KOH, Na2CO3゜NaHCO3
,'! -2CO3, KHCO3, NH4OH, (NH4
)zC! 03 etc. are used, and a combination of hydroxide and carbonate is particularly preferred.

アルカリ水溶液の濃度は、アルカリ金属イオン及びまた
はアンモニウムイオンの総量が好ましくは25m01/
I!以下更に好ましくは10mo1/j以下にするのが
良い。
The concentration of the alkaline aqueous solution is such that the total amount of alkali metal ions and/or ammonium ions is preferably 25m01/
I! More preferably, it is 10 mo1/j or less.

本発明方法においては、上記金属イオン水溶液とアルカ
リ水溶液とを混合し共沈物を含む水溶液を得る。この場
合金属イオン水溶液にアルカリ水溶液を加えても、また
逆にアルカリ水溶液に金属イオン水溶液を加えても良い
が、後者の方が好ましい。
In the method of the present invention, the metal ion aqueous solution and the alkaline aqueous solution are mixed to obtain an aqueous solution containing a coprecipitate. In this case, the aqueous alkaline solution may be added to the aqueous metal ion solution, or conversely, the aqueous metal ion solution may be added to the aqueous alkaline solution, but the latter is preferred.

本発明においては共沈物を含む水溶液のpHは特に制限
されないが、磁性粉の磁気特性及び粉体特性の点から好
ましくは液温25℃でpH5以上、更に好ましくは5.
5〜13の範囲である。
In the present invention, the pH of the aqueous solution containing the coprecipitate is not particularly limited, but from the viewpoint of the magnetic properties and powder properties of the magnetic powder, preferably the pH is 5 or higher at a liquid temperature of 25°C, more preferably 5.
It ranges from 5 to 13.

従来、このpH値は、一般に10以上好ましくは12以
上といわれており(例えば特開昭58−56303号公
報)、具体的には、13.0以上で実施されている。と
ころでpH値の調整に要するアルカリ量は、pH13を
こえたあた9から顕著に増大する。このため、公知の方
法では大量のアルカリ成分が必要である。本発明におい
ては、液温25℃における])H値が5以上であれば良
(これによって使用するアルカリ成分を大幅に削減する
ことができる。これは経済的であるばかシでなく、反応
器材質の選択が容易となる、人体への有害性が緩和され
るため取扱が容易となる等従来の製造法にない改良点で
ある。
Conventionally, this pH value is generally said to be 10 or more, preferably 12 or more (for example, JP-A-58-56303), and specifically, it is practiced at 13.0 or more. By the way, the amount of alkali required for adjusting the pH value increases significantly from pH 9, which exceeds 13. For this reason, known methods require large amounts of alkaline components. In the present invention, it is acceptable if the H value (at a liquid temperature of 25°C) is 5 or more (this makes it possible to significantly reduce the amount of alkaline components used. This is an improvement not found in conventional manufacturing methods, such as easier selection of materials and ease of handling due to reduced toxicity to the human body.

また、本発明においては共沈時の温度は0〜100’C
の範囲で任意に選択することができる0本発明において
は、この様にして得られた共沈物を含む溶液は、次いで
70℃以上の温度に加熱して、溶液中の水分を蒸発乾燥
するが、その際塩化ナトリウム、塩化カリウム、塩化バ
リウム、塩化ストロンチウム、硫酸ナトリウム、硫酸カ
リウム及び硫酸リチウムから成る群から選ばれる11重
または2種以上の化合物の存在下に加熱することにより
最終的に得られる磁性粉の粉体特性、特に、磁性粉の粒
径や厚さを小さくすることができる。
In addition, in the present invention, the temperature during coprecipitation is 0 to 100'C.
In the present invention, the solution containing the coprecipitate obtained in this way is then heated to a temperature of 70°C or higher to evaporate and dry the water in the solution. is finally obtained by heating in the presence of 11 or more compounds selected from the group consisting of sodium chloride, potassium chloride, barium chloride, strontium chloride, sodium sulfate, potassium sulfate and lithium sulfate. The powder characteristics of the magnetic powder, particularly the particle size and thickness of the magnetic powder, can be reduced.

これらの化合物はFaイオン及びJ3aイオン等の金属
イオンを含む水溶液、アルカリ水溶液あるいは共沈物を
含む水溶液のいずれに添加してもよく、最終的に得られ
る磁性粉に対し0.01〜10重量倍、好ましくは0.
05〜3重量倍添加される。
These compounds may be added to any aqueous solution containing metal ions such as Fa ions and J3a ions, alkaline aqueous solutions, or aqueous solutions containing coprecipitates, and are added in an amount of 0.01 to 10% by weight based on the final magnetic powder obtained. times, preferably 0.
05 to 3 times the weight is added.

また、本発明の効果は前記共沈物を含む水溶液の1)H
を、塩酸及び/又は硫酸を添加して、該酸添加前の該水
溶液のpH未満の任意の範囲に調整し、この水溶液を7
0℃以上に加熱して水分を蒸発乾燥することにより磁性
粉の分散性が更に改善される。加熱に際しては、上記の
金属塩化物及び金属硫酸塩の一種以上の存在は本発明の
効果を高める。これらの化合物は、pH調整前の該共沈
物を含む水溶液に、本発明の金属イオン金倉む水溶液に
、あるいは、アルカリ浴液に添加しても良いし、または
、1)H調整後の該共沈物を含む水溶液に添加してもよ
い。該化合物の添加量は前記と同じである。
Further, the effect of the present invention is that 1) H of the aqueous solution containing the coprecipitate is
is adjusted to an arbitrary range below the pH of the aqueous solution before addition of the acid by adding hydrochloric acid and/or sulfuric acid, and this aqueous solution is
The dispersibility of the magnetic powder is further improved by heating to 0° C. or higher to evaporate water. During heating, the presence of one or more of the metal chlorides and metal sulfates enhances the effects of the present invention. These compounds may be added to the aqueous solution containing the coprecipitate before pH adjustment, to the aqueous solution containing the metal ions of the present invention, or to the alkaline bath solution, or 1) to the aqueous solution containing the coprecipitate after H adjustment. It may be added to an aqueous solution containing a coprecipitate. The amount of the compound added is the same as above.

こうして得られた共沈物を含む水溶液は70℃以上に加
熱して溶液中の水分を蒸発乾燥する。水分の蒸発乾燥の
方法としては、ドラムドライヤーやスプレードライヤー
等でもよいが、蒸発缶で共沈物を含む溶液を70℃以上
で煮詰める方法が最も安易である。すなわち上記共沈物
を含む溶液を蒸発缶に入れ、攪拌しながらスチームまた
は直火で加熱し、大部分の水分を蒸発させる。本発明に
おいては、水分を蒸発させる温度は、必ず70℃以上と
しなければならない。もしこの温度が70℃以下では得
られる磁性粉の平均粒径は0.25μm以上となる。水
分の蒸発は、充分に行った方が良いが、不充分であって
も差しつかえない。こうして大部分の水分を蒸発せしめ
た後、残余の水分を蒸発させるために適当な温度、通常
100〜300℃で乾燥する。
The aqueous solution containing the coprecipitate thus obtained is heated to 70° C. or higher to evaporate and dry the water in the solution. Although a drum dryer, a spray dryer, or the like may be used to evaporate the water, the easiest method is to boil down the solution containing the coprecipitate at 70° C. or higher in an evaporator. That is, the solution containing the coprecipitate is placed in an evaporator and heated with steam or direct flame while stirring to evaporate most of the water. In the present invention, the temperature at which water is evaporated must be 70° C. or higher. If this temperature is below 70°C, the average particle size of the magnetic powder obtained will be 0.25 μm or more. It is better to evaporate water sufficiently, but there is no problem even if it is insufficient. After most of the moisture has been evaporated in this way, it is dried at an appropriate temperature, usually 100 to 300° C., to evaporate the remaining moisture.

この乾燥物はこのまま焼成しても良いが、より均一に焼
成せしめる目的で、粉状にしたり、打鋺成形したシ、あ
るいは押出し成形したりしてから+500〜1200℃
好ましくは650〜950℃で焼成する。焼成時間は0
.5〜50時間が適当であり、また焼成雰囲気は窒素雰
囲気下でも酸素雰囲気下でも良いが、通常は空気雰囲気
下で行う事が好ましい。また焼成は前原って、予備焼成
を行ってもよい。
This dried product may be fired as is, but for the purpose of more uniform firing, it may be powdered, molded with a hammer, or extruded at +500 to 1200°C.
Preferably it is fired at 650 to 950°C. Baking time is 0
.. A suitable firing time is 5 to 50 hours, and the firing atmosphere may be either a nitrogen atmosphere or an oxygen atmosphere, but it is usually preferable to perform the firing in an air atmosphere. In addition, preliminary firing may be performed during the firing.

600〜1200“Cで焼成した焼成物は次いでこれを
洗浄乾燥する。洗浄は焼成物中に含まれている金属塩化
物、金属硫酸塩、金属硝酸塩及び、その他のアルカリ金
属イオンや過剰の水酸化バリウムなどの不純物を十分に
除去できればどのような方法で行ってもよい。洗浄液と
しては水や酢酸、硝酸、塩酸などを用いることができる
。十分に洗浄した焼成物は次いで乾燥するが、乾燥方法
は特に制限されない。
The fired product fired at 600 to 1200"C is then washed and dried.Washing removes metal chlorides, metal sulfates, metal nitrates, other alkali metal ions, and excess hydroxide contained in the fired product. Any method may be used as long as it can sufficiently remove impurities such as barium.Water, acetic acid, nitric acid, hydrochloric acid, etc. can be used as the cleaning liquid.The fired product that has been sufficiently washed is then dried, but the drying method is not particularly limited.

(発明の効果) 本発明によって得られる六方晶系フェライト磁性粉は、
平均粒径がCL25μm以下で一つ一つがバラバラな均
一な粒子から成っている。また、この磁性粉末は分散性
がよ(,400〜20000eの保磁力および40 e
mu/り以上の飽和磁化を示す。
(Effect of the invention) The hexagonal ferrite magnetic powder obtained by the present invention is
It consists of uniform particles with an average particle diameter of CL25 μm or less, each of which is individually dispersed. In addition, this magnetic powder has good dispersibility (coercive force of 400-20000e and coercive force of 40e
It exhibits a saturation magnetization of mu/l or more.

保磁力については種々の元素(例えばCo、Ti等)を
添加することによって自由にコントロールすることがで
きる。
The coercive force can be freely controlled by adding various elements (eg Co, Ti, etc.).

以下に実施例を挙げて、不発明金さらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化は、得られた磁
性粉を内径sms、長さ5働のガラス製試験管に充てん
し、直流磁化特性測定機を用い、最大印加磁場3500
0eで行った。平均粒子径は、透過型電子顕微鏡で得ら
れた写真から400個の粒子の最大直径を測定し算術平
均により算出した。ここに掲げた実施例及び比較例につ
いて、X線回折を行ったが、いずれも、磁性粉の結晶相
はマグネトブランバイト構造をもつ六方晶系フェライト
であった0 また、実施例中に示す磁性粉の実験式は、原料調製時の
金属の原子比を用いている。フェライト成分中の酸素の
表示については、簡略化のため省略した。
The invention will be explained in more detail with reference to Examples below. The coercive force and saturation magnetization in the examples were determined by filling a glass test tube with an inner diameter of SMS and a length of 5 mm with the obtained magnetic powder, using a DC magnetization characteristic measuring machine, and measuring the maximum applied magnetic field of 3500 yen.
I went with 0e. The average particle diameter was calculated by measuring the maximum diameter of 400 particles from a photograph taken with a transmission electron microscope and calculating the arithmetic average. X-ray diffraction was performed on the Examples and Comparative Examples listed here, and in both cases, the crystal phase of the magnetic powder was hexagonal ferrite with a magnetobrambite structure. The empirical formula for powder uses the atomic ratio of metals at the time of raw material preparation. The representation of oxygen in the ferrite component has been omitted for the sake of brevity.

実施例1 BaO/2 ・2H200,55モル、Ti0j40.
575 モル、CoC/2 ・6H200,375モル
、及びFeCl3・6H205.25モル−qlo−e
の蒸留水にこの順に溶解し、これをA液としたc) N
aOH17,5モル及びNa20034.72モルを1
52の室温の蒸留水に溶解し・これをB液とした。50
℃に熱したB液にA液を徐々に加えた後、50℃で1時
間攪拌した。攪拌後のpHは10.9であった。こうし
て得られた共沈物を含む水溶液を、蒸発皿に移し、電熱
機で約100℃に沸騰させ、よ(攪拌混合しながら、含
水率50%になるまで水分を蒸発させた。こうして得ら
れたケーキ状共沈物を更に、150”Oで乾燥した後、
これを焼成温度850℃で2時間電気炉で焼成した。こ
の焼成物を水を用いて可溶物がな(なるまで洗浄した後
、濾過、乾燥し、B ”11pe1α5COα75T1
α75で示されるバリウムフェライト磁性粉末を得た。
Example 1 BaO/2.2H200.55 mol, Ti0j40.
575 mol, CoC/2 6H200,375 mol, and FeCl3 6H205.25 mol-qlo-e
c) N
17.5 mol aOH and 20034.72 mol Na
52 in distilled water at room temperature, and this was used as Solution B. 50
After gradually adding Solution A to Solution B heated to .degree. C., the mixture was stirred at 50.degree. C. for 1 hour. The pH after stirring was 10.9. The aqueous solution containing the coprecipitate thus obtained was transferred to an evaporating dish, boiled to about 100°C using an electric heater, and then stirred and mixed to evaporate water until the water content reached 50%. After further drying the cake-like coprecipitate at 150"O,
This was fired in an electric furnace at a firing temperature of 850°C for 2 hours. This baked product was washed with water until no soluble matter was removed, filtered and dried, and B "11pe1α5COα75T1
Barium ferrite magnetic powder represented by α75 was obtained.

こうして得られた微粒子粉末は平均粒径0.17μm1
厚さ0.045μmの板状であり、粒子一つ一つがバラ
バラで、そろっておシ、またきれいな形状であった。磁
気特性を測定したところ’f(aは8290e、σGは
57 emu/?であった〇 実施例2 実施例1の共沈物を含む水溶液に、塩酸を加えpHを1
0.0とした他は、実施例1と全く同様の方法でバリウ
ムフェライトを製造し之。得られたバリウムフェライト
微粒子粉末は、平均粒径0.14μm1厚さo、 03
2μmの板状であり、粒子一つ一つがバラバラでそろっ
ており、またきれいな形状であった。磁気特性は、Ha
は8110eS #sは57 emu/りであった。
The fine particle powder thus obtained has an average particle size of 0.17 μm1
It was plate-like with a thickness of 0.045 μm, and each particle was separate and had a neat shape. When the magnetic properties were measured, 'f(a) was 8290e, and σG was 57 emu/?〇Example 2 Hydrochloric acid was added to the aqueous solution containing the coprecipitate of Example 1 to adjust the pH to 1.
Barium ferrite was produced in exactly the same manner as in Example 1, except that the value was 0.0. The obtained barium ferrite fine particle powder has an average particle size of 0.14 μm and a thickness of 0.03 μm.
It had a plate shape of 2 μm, and each particle was arranged separately and had a beautiful shape. The magnetic properties are Ha
was 8110eS #s was 57 emu/liter.

実施例3 実施例1の共沈物を含む水溶液に、Nap/ 2002
を加えた他は、実施例1と全く同様の方法でバリウムフ
ェライトを製造した。得られたバリウムフェライト微粒
子粉末は、平均粒径0.11μm。
Example 3 Nap/2002 was added to the aqueous solution containing the coprecipitate of Example 1.
Barium ferrite was produced in exactly the same manner as in Example 1, except that . The obtained barium ferrite fine particles had an average particle size of 0.11 μm.

厚さ0.028μmの板状であシ、粒子一つ一つがバラ
バラでそろっており、またきれいな形状であった。磁気
特性は、HCは8050e1#6は58e m u /
f!であった。
It was plate-like with a thickness of 0.028 μm, and each particle was arranged in a uniform manner, and had a nice shape. The magnetic properties are 8050e1#6 for HC and 58e mu/
f! Met.

実施例4 実施例1のA液に、NIL2SO4500tを加えた他
は、実施例1と全(同様の方法でバリウムフェライトを
製造した。得られたバリウムフェライト微粒子粉末は、
平均粒径0512μm、厚さ0.0215μmの板状で
あり、粒子一つ一つがバラバラでそろっており、またき
れいな形状であった。磁気特性は、Haは、8460e
、egは、58 emu/7であった0 実施例5 実施例1の共沈物を含む水溶液に、塩酸を加えpEを1
0.0とした後Na2SO4200?を加えた他は、実
施例1と全く同様の方法でバリウムフェライトを製造し
た。得られたバリウムフェライト微粒子粉末は、平均粒
径0.12μ〃星、厚さ0.029μnlの板状であり
、粒子一つ一つがバラバラでそろっており、またきれい
な形状であった。磁気特性は、Haは、7860e、a
Bは、55 smu/Pであった。
Example 4 Barium ferrite was produced in the same manner as in Example 1, except that 500 t of NIL2SO4 was added to liquid A in Example 1. The obtained barium ferrite fine particles were as follows:
The particles were plate-shaped with an average particle size of 0512 μm and a thickness of 0.0215 μm, and each particle was arranged separately and had a nice shape. Magnetic properties: Ha, 8460e
, eg was 58 emu/7.0 Example 5 Hydrochloric acid was added to the aqueous solution containing the coprecipitate of Example 1 to bring the pE to 1.
After setting it to 0.0, Na2SO4200? Barium ferrite was produced in exactly the same manner as in Example 1, except that . The obtained barium ferrite fine particle powder had a plate shape with an average particle diameter of 0.12 μm and a thickness of 0.029 μnl, and each particle was arranged separately and had a neat shape. The magnetic properties are Ha, 7860e, a
B was 55 smu/P.

実施例6 実施例1の共沈物を含む水溶液に、He−C12001
を加えた後硫酸を加えpHを85とした他は、実施N1
と全く同様の方法で、バリウムフェライトを製造した。
Example 6 He-C12001 was added to the aqueous solution containing the coprecipitate of Example 1.
was added, and then sulfuric acid was added to adjust the pH to 85.
Barium ferrite was produced in exactly the same manner.

得られたバリウムフェライト微粒子粉末は、平均粒径0
.15μm1厚さα027μmの板状であシ、粒子一つ
一つがバラバラでそろっており、またきれいな形状であ
った0磁気特性は、Hcは、7980e、msは、57
 emu/7であった。
The obtained barium ferrite fine particle powder has an average particle size of 0.
.. It was plate-shaped with a thickness of 15 μm and a thickness α of 27 μm. Each particle was arranged separately and had a nice shape.0 Magnetic properties: Hc is 7980e, ms is 57
It was emu/7.

実施例7 実施例1のB液にNaC/100P、BaC/2・2H
20502を加えた他は、実施例1と全く同様の方法で
バリウムフェライトを製造した。得られたバリウムフェ
ライト微粒子粉末は、平均粒径0.16μm1厚さ0.
018μmの板状であり、粒子一つ一つがバラバラでそ
ろっており、またきれいな形状であった0磁気特性は、
HCは、7930e、σθは、56 emu/7であっ
た。
Example 7 NaC/100P, BaC/2・2H in the B solution of Example 1
Barium ferrite was produced in exactly the same manner as in Example 1, except that 20502 was added. The obtained barium ferrite fine particle powder has an average particle size of 0.16 μm and a thickness of 0.1 μm.
The magnetic properties of the 018 μm plate-shaped particles were uniform, with each particle being uniform, and had a neat shape.
HC was 7930e, and σθ was 56 emu/7.

比較例1 実施例1と同様の方法によって得られた共沈物を含む水
溶液から共沈物を炉別し、これを充分水洗した。こうし
て得られた共沈物を150 ’Cで乾燥し、次いでこれ
を焼成温度850℃で2時間電気炉で焼成した。この焼
成物を水洗し、濾過乾燥して Bat+ Fe1CL5
 G!O[L75 Ti(L75 で示される′ゝリウ
ムフエライトを製造した。得られたバリウムフェライト
微粒子粉末は、平均粒径0.41μm、厚さ0.085
μη番の板状であったが、粒子は数個ずつが強(凝集し
たものが数多(見られ、また粒径は0.7μn1以上の
大きな粒子から0.15μm位の粒子まで広く分布して
おり、不ぞろいで形状もきたなかった。磁気特性は、H
Oは、8500e、σ6は\32θmu/7であった。
Comparative Example 1 The coprecipitate was separated from the aqueous solution containing the coprecipitate obtained by the same method as in Example 1, and thoroughly washed with water. The coprecipitate thus obtained was dried at 150'C, and then fired in an electric furnace at a firing temperature of 850C for 2 hours. This fired product was washed with water, filtered and dried to obtain Bat+ Fe1CL5.
G! O[L75 Ti (L75) '' ferrite was produced. The obtained barium ferrite fine particles had an average particle size of 0.41 μm and a thickness of 0.085 μm.
The particles were in the shape of a μη plate, but several particles were strongly aggregated (many were seen), and the particle size was widely distributed from large particles of 0.7 μn1 or more to particles of about 0.15 μm. The magnetic properties were H
O was 8500e, and σ6 was \32θmu/7.

比較例2 共沈物を含む水溶液を液体窒素中に噴射して凍結させ、
これを減圧下、−5℃で凍結乾燥した他は実施例1と同
様の方法で、バリウムフェライトを製造した。得られた
バリウムフェライト微粒子粉末は、平均粒径0.43μ
〃1、厚さ約0092μmの板状であった・またHaは
、5B60e、6eは32smu/yであった。
Comparative Example 2 An aqueous solution containing a coprecipitate was injected into liquid nitrogen and frozen,
Barium ferrite was produced in the same manner as in Example 1, except that this was freeze-dried at −5° C. under reduced pressure. The obtained barium ferrite fine particle powder has an average particle size of 0.43μ
〃1. It was plate-shaped with a thickness of about 0092 μm. Also, Ha was 32 smu/y for 5B60e and 6e.

比較例3 共沈物を含む水溶液を、60℃で乾燥した他は、実施例
1と同様の方法でバリウムフェライトを製造した。得ら
れたバリウムフェライト微粒子粉末の磁気特性は、実施
例1とはゾ同様の値であったが、平均粒径0,35μm
1厚さ0.057μmであり、大きな粒子であった〇 実施例8〜16 Nacztたは同効物質の種類及び使用量ならびに焼成
条件を第1表記載のように変えたことを除いて実施例5
と同様の方法でバリウムフェライトを製造した。得られ
た微粒子粉末はいずれも比較例1と比較して粒子一つ一
つがバラバラでそろっており、またきれいな形状であっ
た。それぞれの平均粒子径、厚さ、保磁力及び飽和磁化
は、第1表のとうりである〇 実施例17 BaCl2−2H20のかわシにBrC12・6FI2
0 f用いた他は実施例1と全(同様の方法で 5rtI Fetas coays Ti(L75で示
される5r−7エライトを製造した。
Comparative Example 3 Barium ferrite was produced in the same manner as in Example 1, except that the aqueous solution containing the coprecipitate was dried at 60°C. The magnetic properties of the obtained barium ferrite fine particles were similar to those in Example 1, but the average particle size was 0.35 μm.
1 Thickness was 0.057 μm and the particles were large 〇Examples 8 to 16 Examples 8 to 16 Examples except that the type and amount of Naczt or the equivalent substance used and the firing conditions were changed as shown in Table 1. 5
Barium ferrite was produced in the same manner. Compared to Comparative Example 1, each of the obtained fine powder particles had individual particles that were uniform and had a neat shape. The average particle diameter, thickness, coercive force, and saturation magnetization of each are as shown in Table 1. Example 17 BrC12.6FI2 on BaCl2-2H20
A 5r-7 elite represented by 5rtI Fetas coays Ti (L75) was produced in the same manner as in Example 1 except that 0 f was used.

この微粒子粉末は平均粒径0,18μmの板状であり、
Haは9550s、#8は55 emu/7であった0 実施例18 BaC/212H200,55モルのかわりに、BaC
J2−2H20及びE3rQ12・6H20を各々0.
275モル用いた他は、実施例1と全(同様の方法で Ba(L555r(L55 Fe1 [L5 coll
Lys TirL75で示されるBa−8r−フェライ
トを製造した。
This fine particle powder is plate-shaped with an average particle size of 0.18 μm,
Ha was 9550s, #8 was 55 emu/70 Example 18 Instead of BaC/212H200,55 mol, BaC
J2-2H20 and E3rQ12・6H20 were each 0.
Ba(L555r(L55 Fe1 [L5 coll
A Ba-8r-ferrite designated Lys TirL75 was produced.

この微粒子粉末は平均粒径0.17μ〃1の板状であり
、HCは8760s、σeは57 smu/y であっ
た。
This fine particle powder was plate-shaped with an average particle size of 0.17μ〃1, HC was 8760s, and σe was 57 smu/y.

実施例19 実施例1におけるBaCl2・2H20f CaCl2
又はPbCl2を用いる以外は実施例1と同様にしてC
a−フェライト及びPb−フエライトヲ製造した。これ
らのフェライトの特性はBa−フェライトと同等であっ
た。また粒子は一つ一つバラバラで均一であり、分散性
のよいものであった。
Example 19 BaCl2.2H20f CaCl2 in Example 1
Or C in the same manner as in Example 1 except for using PbCl2.
A-ferrite and Pb-ferrite were produced. The properties of these ferrites were equivalent to Ba-ferrite. In addition, the particles were uniform and dispersed one by one, and had good dispersibility.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくともFeイオンが8〜12モル及びBaイ
オン、Brイオン、Caイオン及びPbイオンから成る
群から選ばれる1種または2種以上の金属イオンが0.
8〜3モルとなる様なモル比で含有する水溶液とアルカ
リ水溶液とを混合して共沈物を得、該共沈物を含む水溶
液を、塩化ナトリウム、塩化カリウム、塩化バリウム、
塩化ストロンチウム、硫酸ナトリウム、硫酸カリウム及
び硫酸リチウムから成る群から選ばれる1種又は2種の
化合物の存在下あるいは不存在下に70℃以上に加熱し
て水分を蒸発乾燥し、次いで600〜1200℃で焼成
した後洗浄乾燥することを特徴とする磁気記録用磁性粉
の製造方法。
(1) At least 8 to 12 moles of Fe ions and 0.0 moles of one or more metal ions selected from the group consisting of Ba ions, Br ions, Ca ions, and Pb ions.
A coprecipitate is obtained by mixing an aqueous solution containing an alkaline aqueous solution in a molar ratio of 8 to 3 moles, and the aqueous solution containing the coprecipitate is mixed with sodium chloride, potassium chloride, barium chloride,
In the presence or absence of one or two compounds selected from the group consisting of strontium chloride, sodium sulfate, potassium sulfate and lithium sulfate, water is evaporated and dried by heating to 70°C or higher, and then at 600 to 1200°C. 1. A method for producing magnetic powder for magnetic recording, which comprises firing the powder, followed by washing and drying.
(2)少なくともFeイオンが8〜12モル及びBaイ
オン、Brイオン、Caイオン及びPbイオンから成る
群から選ばれる1種または2種以上の金属イオンが0.
8〜3モルとなる様なモル比で含有する水溶液とアルカ
リ水溶液とを混合して得られる共沈物を含む水溶液のp
Hを塩酸及び/又は硫酸の添加により原該水溶液のpH
未満に調整し、この水溶液を塩化ナトリウム、塩化カリ
ウム、塩化バリウム、塩化ストロンチウム、硫酸ナトリ
ウム、硫酸カリウム及び硫酸リチウムから成る群から選
ばれる1種又は2種の化合物の存在下あるいは不存在下
に、70℃以上に加熱して水分を蒸発乾燥し、次いで6
00〜1200℃で焼成した後洗浄乾燥することを特徴
とする磁気記録用磁性粉の製造方法。
(2) At least 8 to 12 moles of Fe ions and 0.0 to 0.0 moles of one or more metal ions selected from the group consisting of Ba ions, Br ions, Ca ions, and Pb ions.
p of an aqueous solution containing a coprecipitate obtained by mixing an aqueous solution and an alkaline aqueous solution containing a molar ratio of 8 to 3 moles.
The pH of the original aqueous solution is adjusted by adding H to hydrochloric acid and/or sulfuric acid.
the aqueous solution in the presence or absence of one or two compounds selected from the group consisting of sodium chloride, potassium chloride, barium chloride, strontium chloride, sodium sulfate, potassium sulfate and lithium sulfate, Heat to 70°C or higher to evaporate moisture, then dry at 60°C.
A method for producing magnetic powder for magnetic recording, which comprises firing at a temperature of 00 to 1200°C, followed by washing and drying.
(3)Feイオン原料が塩化物または硫酸塩で且つBa
イオン、Brイオン、Caイオン及びPbイオンの原料
が塩化物または硝酸塩であることを特徴とする特許請求
の範囲第1項記載の磁気記録用磁性粉の製造方法。
(3) Fe ion raw material is chloride or sulfate and Ba
2. The method for producing magnetic powder for magnetic recording according to claim 1, wherein the raw material for the ions, Br ions, Ca ions, and Pb ions is chloride or nitrate.
JP60266798A 1985-11-27 1985-11-27 Production of magnetic powder for magnetic recording Pending JPS62128928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266798A JPS62128928A (en) 1985-11-27 1985-11-27 Production of magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266798A JPS62128928A (en) 1985-11-27 1985-11-27 Production of magnetic powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPS62128928A true JPS62128928A (en) 1987-06-11

Family

ID=17435830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266798A Pending JPS62128928A (en) 1985-11-27 1985-11-27 Production of magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS62128928A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081027A (en) * 1983-10-08 1985-05-09 Fuji Elelctrochem Co Ltd Manufacture of hexagonal system ferrite fine powder
JPS6262505A (en) * 1985-09-12 1987-03-19 Sony Corp Manufacture of hexagonal system ferrite magnetic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081027A (en) * 1983-10-08 1985-05-09 Fuji Elelctrochem Co Ltd Manufacture of hexagonal system ferrite fine powder
JPS6262505A (en) * 1985-09-12 1987-03-19 Sony Corp Manufacture of hexagonal system ferrite magnetic powder

Similar Documents

Publication Publication Date Title
JPS62100417A (en) Fine isometric hexaferrite pigments
JPS62128928A (en) Production of magnetic powder for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPS62100419A (en) Production of magnetic powder for magnetic recording
JPS62138330A (en) Production of magnetic powder for magnetic recording
JPS62105932A (en) Method of producing magnetic powder for magnetic recording
JPS61141625A (en) Production of barium ferrite powder
JPS60122727A (en) Manufacture of fine powder of hexagonal ferrite
JPH025692B2 (en)
JPS63260827A (en) Production of magnetic powder
JPH04362020A (en) Ferritic magnetic powder and its production
JPH0797211A (en) Production of rare earth element oxide
JPS63265827A (en) Production of hexagonal ferrite magnetic powder
JPS60151224A (en) Manufacture of barium ferrite powder
JPH0677034A (en) Method of manufacturing compound ferrite magnetic particles
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH01115826A (en) Production of hexagonal ferrite magnetic powder
JPH0545528B2 (en)
JPH04362021A (en) Ferrite magnetic powder and its production
JPH0712933B2 (en) Magnetic powder for magnetic recording
JPH01119521A (en) Magnetic powder for magnetic recording
JPS63260105A (en) Magnetic powder for magnetic recording
JPS63260106A (en) Magnetic powder for magnetic recording
JPS63260109A (en) Magnetic powder for magnetic recording