JPS60161343A - Preparation of hexagonal ferrite magnetic powder - Google Patents

Preparation of hexagonal ferrite magnetic powder

Info

Publication number
JPS60161343A
JPS60161343A JP59012752A JP1275284A JPS60161343A JP S60161343 A JPS60161343 A JP S60161343A JP 59012752 A JP59012752 A JP 59012752A JP 1275284 A JP1275284 A JP 1275284A JP S60161343 A JPS60161343 A JP S60161343A
Authority
JP
Japan
Prior art keywords
salt
flux
hexagonal ferrite
particles
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012752A
Other languages
Japanese (ja)
Other versions
JPH0545528B2 (en
Inventor
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59012752A priority Critical patent/JPS60161343A/en
Publication of JPS60161343A publication Critical patent/JPS60161343A/en
Publication of JPH0545528B2 publication Critical patent/JPH0545528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare hexagonal ferrite magnetic powder having small particle size and superior magnetic characteristics by treating hydrothermally the coprecipitate obtd. by adding alkali to aq. soln. contg. Ba salt, etc. and Fe salt, then heat-treating the coprecipitate in a flux. CONSTITUTION:Aq. soln. of alkali is added to aq. soln. contg. Fe salt and at least one kind among Ba salt, Sr salt, and Pb salt. Thus obtd. coprecipitate is treated hydrothermally in an autoclave at ca. 200-350 deg.C for 1-6hr to grow fine particles of hexagonal ferrite. The particles are then heat-treated in a flux such as NaCl, etc. at >= melting point of the flux. By this process, sintering between particles is inhibited by the interposition of the flux and crystallizing property of particles is improved. As the result, preferred hexagonal ferrite suitable to a magneticrecording medium for high density recording having extremely small particle size, high saturation magnetization, and superior in dispersibility and orientation, is obtd.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高密度記録に適した磁気記録媒体用として
好適な六方品系フェライト磁性粉末の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing hexagonal ferrite magnetic powder suitable for use in magnetic recording media suitable for high-density recording.

〔背景技術〕[Background technology]

大方晶系フェライト磁性粉末は、従来、Ba塩、Sr塩
およびpb塩のいづれか一種以」二と鉄塩の水1g液に
、アルカリ水溶液を添加し、このアルカリ水溶液の添加
によっ−で得られた共沈物を、オートクレーブを用いて
水熱処理を行う(T、Takada 、、M、Kiya
ma XProcXICF 、Conf 、P 69 
(1971)〕などし−ζ製造されており、板状で板面
に垂直な方向に磁化容易軸を有しているため、この種の
六方晶系フェライト磁性粉末を磁気記録媒体に用い、板
面が磁性層面と平行になるように配向して、垂直方向の
残留磁化成分を利用することが行われ、高密度記録に適
したものとして注目されている。
Orthogonal ferrite magnetic powder is conventionally obtained by adding an alkaline aqueous solution to 1 g of water containing one of Ba salt, Sr salt, and PB salt and iron salt. The coprecipitate was subjected to hydrothermal treatment using an autoclave (T, Takada, M, Kiya
ma XProcXICF, Conf, P 69
(1971)] is produced in the form of a plate with an axis of easy magnetization perpendicular to the plate surface. The magnetic layer is oriented so that its plane is parallel to the plane of the magnetic layer to utilize the residual magnetization component in the perpendicular direction, and it is attracting attention as a method suitable for high-density recording.

ところが、これら従来の方法で得られる六方晶系フェラ
イト磁性粉末は、高密度記録に適したものとするため粒
子サイズを小さくすると、飽和磁化量が低下するという
難点があり、粒子サイズを高密度記録に適した0、3μ
以1の大きさにすると充分に大きな飽・相位化量が得ら
れず、0,1μ以下の微粒子にすると飽和磁化量は著し
く低下してしまう。そこで、これを改善し、高い飽和磁
些量をflるため、前記の水熱処理で得られた共沈物を
、水洗、乾燥後、空気中450〜1100 ’cで加熱
処理を行ったり(小島浩、宮用長二、粉体粉末冶金1ん
会、昭和47年度春季大会講演概要集P118(197
2) ) しているが、このような力LI Q処理を行
うと、飽和磁化量は増加するものの、粒子サイズが極め
て小さく、またこの微粒子同志が高温下で接触するため
、粒子間の焼結が起こりゃず(、分散性、配向性が低下
するという問題があり、未だ重密度記録に適した磁気記
録媒体用として充分に満足できる六方品系フェライト磁
性粉末は得られていない。
However, hexagonal ferrite magnetic powder obtained by these conventional methods has the disadvantage that when the particle size is reduced to make it suitable for high-density recording, the amount of saturation magnetization decreases. 0, 3μ suitable for
If the size is smaller than 1, a sufficiently large amount of saturation/phasing cannot be obtained, and if the particle size is less than 0.1 μm, the amount of saturation magnetization will drop significantly. Therefore, in order to improve this and reduce the high saturation magnetic flux, the coprecipitate obtained by the above hydrothermal treatment was washed with water, dried, and then heat treated in air at 450 to 1100'C (Kojima Hiroshi, Choji Miyayo, Powder Metallurgy 1st Association, 1971 Spring Conference Lecture Summary Collection P118 (197
2)) However, when such force LIQ treatment is performed, although the saturation magnetization increases, the particle size is extremely small, and since these fine particles come into contact with each other at high temperatures, sintering between particles occurs. However, there are problems in that dispersibility and orientation deteriorate, and a hexagonal ferrite magnetic powder that is fully satisfactory for use in magnetic recording media suitable for heavy density recording has not yet been obtained.

〔発明の目的〕[Purpose of the invention]

この発明はかかる欠点を除去し、粒子サイズが小さくて
飽和磁化量が大きく、かつ分散性、配向性に優れた高密
度記録磁気記録媒体用として好適な六方晶系フェライ1
−磁性粉末を得ることを目的としζなされたものである
The present invention eliminates such drawbacks and provides a hexagonal ferrite 1 suitable for use in high-density recording magnetic recording media, which has small particle size, large saturation magnetization, and excellent dispersibility and orientation.
- It was made for the purpose of obtaining magnetic powder.

〔発明の概要〕[Summary of the invention]

この発明は、Ba塩、Sr塩、Pb塩がら選ばれるいず
れか一種以上の金属塩と鉄塩とを含む金属塩の一水溶液
にアルカリ水溶液を添加し、このアルカリ水溶液の添加
によって得られた共沈物を水熱処理して、六方晶系フェ
ライト粒子を生成する工程と、この工程で得られた六方
晶系フェライト粒子を、融剤中、融剤の融点以上の温度
で加熱処理する工程とを含むことを特徴とするもので、
まず水熱処理による方法で粒子サイズが極めて小さい微
粒子の六方晶系フェライト粒子を生成し、次いで、これ
を高温で溶融し、かつ六方晶系フェライト粒子と全く固
溶しない融剤中で融剤の融点以上の温度で加熱処理する
ことにより、粒子間の焼結を良好に抑制して結晶性を向
上させ、粒子サイズが極めて小さくて飽和磁化量が大き
く、かつ分散性、配向性に優れた高密度記録磁気記録媒
体用として好適な六カ晶系フェライト磁性粉末を得たも
のである。
This invention involves adding an alkaline aqueous solution to an aqueous solution of a metal salt containing one or more metal salts selected from Ba salts, Sr salts, and Pb salts, and an iron salt; A step of hydrothermally treating the precipitate to produce hexagonal ferrite particles, and a step of heat-treating the hexagonal ferrite particles obtained in this step in a flux at a temperature higher than the melting point of the flux. It is characterized by containing,
First, fine hexagonal ferrite particles with an extremely small particle size are produced using a hydrothermal treatment method, and then they are melted at a high temperature and placed in a flux that does not form a solid solution with the hexagonal ferrite particles at the melting point of the flux. By heat-treating at a temperature above, sintering between particles is effectively suppressed and crystallinity is improved, resulting in extremely small particle size, high saturation magnetization, and high density with excellent dispersibility and orientation. A hexagonal ferrite magnetic powder suitable for use in recording magnetic recording media was obtained.

この発明において、六方晶系フェライト粒子の生成ば、
Ba塩、Sr塩、Pb塩がら選ばれるいずれか一種以上
の金属塩と鉄塩とを含む金属塩の水/8液にアルカリ水
溶液を添加し、このアルカリ水溶液の添加によってfl
られた共沈物を水熱処理することによっ°ζ行われ、B
a塩、Sr塩、pb塩および鉄塩としては、これらの金
属の塩化物、硫酸塩、硝酸塩、炭酸塩等が好適に使用さ
れる。
In this invention, when hexagonal ferrite particles are generated,
An alkaline aqueous solution is added to a metal salt water/8 solution containing one or more metal salts selected from Ba salt, Sr salt, and Pb salt and an iron salt, and by addition of this alkaline aqueous solution, fl
By hydrothermal treatment of the coprecipitate, B
As the a salt, Sr salt, pb salt, and iron salt, chlorides, sulfates, nitrates, carbonates, etc. of these metals are preferably used.

このとき、これらとともにCo、Ti、Zn、Mn等の
金属イオンを適当量添加すると、保磁力を任意に制御で
き、粒子サイズを小さくできて粒子サイズ分布のシャー
プな六方晶系フェライト粒子が得られるため、これらC
o、Ti、Zn、、Mn等の塩化物、硫酸塩、硝酸塩、
炭酸塩も、必要に応し、同時に添加されて使用される。
At this time, if appropriate amounts of metal ions such as Co, Ti, Zn, and Mn are added together with these, the coercive force can be controlled arbitrarily, the particle size can be reduced, and hexagonal ferrite particles with a sharp particle size distribution can be obtained. Therefore, these C
Chlorides, sulfates, nitrates of o, Ti, Zn, Mn, etc.
Carbonate may also be added at the same time if necessary.

またアルカリとしては、通常、苛性ソーダが使用され、
その好適な配合量は添加する金属塩のモル当量以上で、
過剰アルカリ濃度が0.1モル/12以」二となるよっ
にするのが好ましく、特に得られる六方晶系フェライト
粒子の粒子サイズを極めて小さくするため過剰アルカリ
濃度が2モル/7!以」二となるようにするのが好まし
い。
Caustic soda is usually used as the alkali.
The preferred amount is more than the molar equivalent of the metal salt to be added,
It is preferable that the excess alkali concentration is 0.1 mol/12 or more, and in particular, the excess alkali concentration is 2 mol/7! in order to make the particle size of the obtained hexagonal ferrite particles extremely small. It is preferable to do the following.

水熱処理は、オートクレーブを用いて行われ、オーミー
クレープ中での加熱処理は、六方晶系フェライト粒子の
粒子サイズを極めて小さくするため200〜350°C
の温度で1〜6時間加熱して行われる。
The hydrothermal treatment is carried out using an autoclave, and the heat treatment in the Ohmy crepe is carried out at 200 to 350 °C in order to extremely reduce the particle size of the hexagonal ferrite particles.
This is done by heating at a temperature of 1 to 6 hours.

このようにして生成された極めて微粒子の六方晶系フェ
ライト粒子は、次に融剤中、融剤の融点以上の温度で加
熱処理されると、加熱処理中六方品系フェライI・粒子
間に、溶融した融剤が介在し六方晶系フェライト粒子同
志が接触しないため、たとえ六方晶系フェライト粒子が
非密に粒子径の小さな微粒子であっても粒子間の焼結が
起こらず、従って、この融剤中での加熱処理により、粒
子間の焼結が起こることなく六方晶系フェライト粒子の
結晶性が向上し、粒子サイズが極めて小さくて飽和磁化
量が大きく、かつ分散性、配向性に優れた六方晶系フェ
ライト磁性粉末が得られる。
The extremely fine hexagonal ferrite particles produced in this way are then heat-treated in a flux at a temperature higher than the melting point of the flux. Since the hexagonal ferrite particles do not come into contact with each other due to the presence of a flux, sintering between the particles does not occur even if the hexagonal ferrite particles are non-dense and small particles. The heat treatment inside improves the crystallinity of the hexagonal ferrite particles without sintering between the particles, resulting in hexagonal ferrite particles with extremely small particle size, high saturation magnetization, and excellent dispersibility and orientation. A crystalline ferrite magnetic powder is obtained.

ここで使用される融剤としては、500〜1000°C
で溶融し、かつ六方晶系フェライト粒子と全く固溶しな
いものが好ましく使用され、溶融温度がこれより低いも
のでは六方品系フェライト粒子の熱処理が不充分となり
、六方晶系フェライI・粒子の結晶性を充分に向上して
、飽和磁化量を充分に大きくすることができず、反対に
訪いものでは融剤中での六方晶系フェライト粒子の結晶
成長が顕著になり、粒子が粗大化するため好ましくない
。また六力晶糸フエライ)・粒子と少しでも固溶するも
のは飽和磁化量を充分に向上することができないため好
ましくない。このような融剤としては、たとえば、Na
、におよびL iの硫酸塩、塩化物、臭化物、沃化物な
どが好適なものとして使用され、特にNaC1およびK
Clは水によく溶解するため、加熱処理後、水洗するこ
とによりこれらの融剤を除去し易く、粉末粒子中に不純
物として残らないため好適なものとして用いられる。
The flux used here has a temperature of 500 to 1000°C.
It is preferable to use a material that melts at a temperature of 100° C. and does not form a solid solution with the hexagonal ferrite particles at all. If the melting temperature is lower than this, the heat treatment of the hexagonal ferrite particles will be insufficient, and the crystallinity of the hexagonal ferrite particles will deteriorate. It is not possible to sufficiently improve the saturation magnetization and increase the saturation magnetization sufficiently, and on the other hand, the crystal growth of hexagonal ferrite particles in the flux becomes noticeable and the particles become coarse, so it is preferable. do not have. Further, it is not preferable to use a substance that forms even a small solid solution with the hexagonal crystal fiber (hexagonal crystal fiber) particles because the saturation magnetization cannot be sufficiently improved. As such a fluxing agent, for example, Na
, and Li sulfates, chlorides, bromides, iodides, etc. are used as preferred, especially NaCl and K
Since Cl dissolves well in water, it is easy to remove these fluxes by washing with water after heat treatment, and it does not remain as an impurity in the powder particles, so it is preferably used.

この融剤による加熱処理は、800〜850°Cの範囲
内の温度で1〜4時間行うのが好ましく、処理温度が低
ずぎたり処理時間が短ずぎると熱処理が不充分となり、
六方晶系フェライト粒子の結晶性を充分に向上して飽和
磁化量を充分に大きくすることができず、処理温度が高
すぎたり処理時間が長ずざると融剤が粒子表面にイ」着
して飽和磁化量をかえって低下させるおそれがある。
It is preferable that the heat treatment using the flux be carried out at a temperature within the range of 800 to 850°C for 1 to 4 hours; if the treatment temperature is too low or the treatment time is too short, the heat treatment will be insufficient.
If the crystallinity of the hexagonal ferrite particles cannot be sufficiently improved to sufficiently increase the saturation magnetization, and the processing temperature is too high or the processing time is not long, the flux will adhere to the particle surface. There is a risk that the amount of saturation magnetization may be reduced instead.

以上のように、この発明においては、まず水熱処理によ
る方法で粒子サイスが極めて小さい微粒子の六方晶系フ
ェライト粒子を生成し、次いでこれを1温で溶融し、か
つ六方晶系フェライト粒子と全(固溶しない融剤中で融
剤の融点以上の温度で加熱処理したため、粒子間の焼結
が生じることなく六方晶系フェライト粒子の結晶性が向
上し、粒子サイズが極めて小さくて飽和磁化量が大きく
、かつ分散性、配向性に優れた高密度記録磁気記録媒体
用として好適な六方晶系フェライト磁性粉末が得られる
As described above, in the present invention, first, fine hexagonal ferrite particles with extremely small particle sizes are produced by a hydrothermal treatment method, and then these are melted at one temperature, and the hexagonal ferrite particles and all ( Because the heat treatment is carried out in a flux that does not form a solid solution at a temperature above the melting point of the flux, the crystallinity of the hexagonal ferrite particles is improved without sintering between particles, and the particle size is extremely small and the amount of saturation magnetization is low. A hexagonal ferrite magnetic powder which is large in size and has excellent dispersibility and orientation and is suitable for use in high-density recording magnetic recording media can be obtained.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例I <13aフ工ライト粒子の生成〉 塩化第二鉄1モル、塩化バリウム1/8モル、塩化コバ
ルI−1/20モルを17!の水に溶解した混合溶液を
、5モルのカセイソーダを溶解した1aのカセイソーダ
水溶液に加えて攪拌した。次いでこの一懸濁ll!<を
1日熟成した後、沈機物をオートクレーブ中に入れ、2
80°Cで4時間、加熱反応させて13aフ工ライト粒
子を冑た。
Example I <Production of 13a fluorite particles> 1 mol of ferric chloride, 1/8 mol of barium chloride, and 1/20 mol of cobal chloride I-17! The mixed solution dissolved in water was added to the caustic soda aqueous solution of 1a in which 5 mol of caustic soda was dissolved and stirred. Next, this one suspension! After aging for 1 day, put the sediment in an autoclave and
The 13a fluorite particles were removed by a heating reaction at 80°C for 4 hours.

<Baフェライト粒子の融剤中熱処理〉前記の方法で得
たBaフェライト粒子をP Hが8以下になるまで充分
に水洗したのち、Baフェライト粒子を含む全体の容量
が1βになるような懸濁液をつ(す、この懸濁液中に3
00gのNaCpを加えて攪拌し、溶解した。
<Heat treatment of Ba ferrite particles in a flux> After thoroughly washing the Ba ferrite particles obtained by the above method with water until the pH becomes 8 or less, suspend the Ba ferrite particles so that the total volume containing the Ba ferrite particles is 1β. Add the liquid to this suspension.
00g of NaCp was added and stirred to dissolve.

次に、このNaC1を溶解したBaフェライ)・粒子慰
濁液を面積の広いハツトに入れ、乾燥機でi o o 
’cに加熱して、水を蒸発させた。
Next, put this Ba ferrite (Ba ferrite) particle suspension in which NaCl has been dissolved into a large-area hat, and dry it in a dryer.
'C to evaporate the water.

このようにして得られたBaフェライト粒子とNaCf
fの混合物をるつほに入れ、830℃で2時間加熱処理
した後、室温まで冷却した。次に、水洗によりNaC(
lを溶解して除去し、Baフェライト粒子のみを取り出
して、Baフェライト磁性粉末を得た。得られたBaフ
ェライト磁性粉末の粒子径は0.10μであった。
The Ba ferrite particles thus obtained and NaCf
The mixture of f was placed in a rutsuho, heated at 830°C for 2 hours, and then cooled to room temperature. Next, NaC (
1 was dissolved and removed, and only Ba ferrite particles were taken out to obtain Ba ferrite magnetic powder. The particle size of the obtained Ba ferrite magnetic powder was 0.10μ.

実施例2 実施例1におけるBaフェライト粒子の生成において、
塩化コバルトを省き、塩化バリウムの使用量を1/8モ
ルから1/6モルに変更した以外は、実施例1と同様に
して、Baフェライト粒子を合成し、融剤中熱処理を行
ってBaフェライト磁性粉末を得た。得られたBaフェ
ライト磁性粉末の粒子径は0.15μであった。
Example 2 In the production of Ba ferrite particles in Example 1,
Ba ferrite particles were synthesized in the same manner as in Example 1, except that cobalt chloride was omitted and the amount of barium chloride used was changed from 1/8 mol to 1/6 mol, and heat treatment was performed in a flux to form Ba ferrite. A magnetic powder was obtained. The particle size of the obtained Ba ferrite magnetic powder was 0.15μ.

実施例3 実施例1におけるBaフェライト粒子の融剤中熱処理に
おいて、NaC6に代えてKCIを同量使用した以外は
、実施例1と同様にして、Baフェライト粒子を生成し
、融剤中熱処理を行ってBaフェライト磁性粉末を得た
。得られたBaフェライト磁性粉末の粒子径は0.08
μであった。
Example 3 Ba ferrite particles were produced in the same manner as in Example 1, except that the same amount of KCI was used instead of NaC6 in the heat treatment in a flux of Ba ferrite particles in Example 1, and the heat treatment in a flux was performed. Ba ferrite magnetic powder was obtained. The particle size of the obtained Ba ferrite magnetic powder was 0.08
It was μ.

各実施例で得られたBaフェライト磁性粉末について、
融剤中熱処理前後の保磁力、飽和磁化量、角型を測定し
た。
Regarding the Ba ferrite magnetic powder obtained in each example,
Coercive force, saturation magnetization, and square shape were measured before and after heat treatment in a flux.

下表はその結果である。The table below shows the results.

〔発明の効果〕〔Effect of the invention〕

」二表から明らかなように、融剤中熱処理後のものは、
保磁力、飽和磁化量および角型が著るしく増加しており
、このことからこの発明の製造方法によれば、保磁力お
よび飽和磁化が大きく、かつ分散性、配向性に優れた六
方品系フェライト磁性粉末が得られることががわかる。
As is clear from Table 2, after heat treatment in a flux,
The coercive force, saturation magnetization, and square shape are significantly increased. Therefore, according to the manufacturing method of the present invention, a hexagonal ferrite with large coercive force and saturation magnetization, and excellent dispersibility and orientation. It can be seen that magnetic powder can be obtained.

また、飽和磁化量の増加は特に著しく、さらに融剤中熱
処理前後のBaフェライト粒子の形状を電子顕微鏡観察
を行ったところ、粒子形状は六角板状で粒子間焼結は観
察されず、熱処理による形状の変化は、はとんど認めら
れなかった。従ってこの発明の製造方法によれば粒子間
の焼結が有効に抑制され、その結果、特に+t’liい
飽和磁化量が得られていることがわかる。さらにX線回
折を行った結果、融剤中熱処理前の粒子の回折線は13
aフ工ライト粒子によるもののみであったが、その回折
線はブローードであり、一方、融剤中熱処理を行った粒
子の場合には、Baフェライト粒子による回折線はシャ
ープであった。従って、この発明の製造方法によれは、
Baフェライト磁性粉末の結晶性が向上し、飽和磁化量
が著るしく向上したと考えられる。
In addition, the increase in saturation magnetization was particularly remarkable.Furthermore, when the shape of the Ba ferrite particles was observed before and after heat treatment in a flux using an electron microscope, the shape of the particles was hexagonal plate-like, and no interparticle sintering was observed. No changes in shape were observed. Therefore, it can be seen that according to the manufacturing method of the present invention, sintering between particles is effectively suppressed, and as a result, a particularly high saturation magnetization amount of +t'li is obtained. Furthermore, as a result of X-ray diffraction, the diffraction line of the particles before heat treatment in the flux was 13
The diffraction lines were only due to the A ferrite particles, but the diffraction lines were broad, while the diffraction lines due to the Ba ferrite particles were sharp in the case of the particles heat-treated in a flux. Therefore, depending on the manufacturing method of this invention,
It is thought that the crystallinity of the Ba ferrite magnetic powder was improved and the saturation magnetization was significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 1、Ba塩、Sr塩、Pb塩から選ばれるいずれか一杯
以」二の金属塩と鉄塩とを含む金属塩の水18液にアル
カリ水/8液を添加し、このアルカリ水/8?^の添加
tこよって得られた共沈物を水熱処理して、六方晶系フ
ェライト粒子を生成する]二程と、この工程で得られた
六方晶系フェライト粒子を、融剤中、融剤の融点以上の
温度で加熱処理する工程とを含むことを特徴とする六方
晶系フェライト併性わ〕末の製造方法。
1. Add 8 liquids of alkaline water to 18 liquids of metal salt water containing at least one cup of Ba salt, Sr salt, Pb salt, and 2 metal salts and iron salts. The coprecipitate thus obtained is hydrothermally treated to produce hexagonal ferrite particles] and the hexagonal ferrite particles obtained in this step are added to a flux in a flux. 1. A method for producing a hexagonal ferrite powder, the method comprising the step of heat treatment at a temperature higher than the melting point of the hexagonal ferrite powder.
JP59012752A 1984-01-26 1984-01-26 Preparation of hexagonal ferrite magnetic powder Granted JPS60161343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012752A JPS60161343A (en) 1984-01-26 1984-01-26 Preparation of hexagonal ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012752A JPS60161343A (en) 1984-01-26 1984-01-26 Preparation of hexagonal ferrite magnetic powder

Publications (2)

Publication Number Publication Date
JPS60161343A true JPS60161343A (en) 1985-08-23
JPH0545528B2 JPH0545528B2 (en) 1993-07-09

Family

ID=11814141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012752A Granted JPS60161343A (en) 1984-01-26 1984-01-26 Preparation of hexagonal ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JPS60161343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632812A (en) * 1986-06-24 1988-01-07 Toda Kogyo Corp Production of particulate powder of lamellate ba ferrite for magnetic recording
KR20050006545A (en) * 2003-07-09 2005-01-17 강규채 Manufacturing method of the Sr-ferrite magnet for double-layered pressing magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145303A (en) * 1979-04-28 1980-11-12 Toda Kogyo Corp Manufacture of hexagonal plate shaped magnetplumbite type ferrite particle powder
JPS6090829A (en) * 1983-10-25 1985-05-22 Ube Ind Ltd Treatment of barium ferrite

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012973B2 (en) * 1980-05-08 1985-04-04 株式会社東芝 Method for producing Ba-ferrite powder
DE3132677A1 (en) * 1981-08-19 1983-03-17 Basf Ag, 6700 Ludwigshafen Process for preparing finely particulate hexagonal ferrites and their use for the manufacture of magnetic recording media
JPS60151224A (en) * 1984-01-17 1985-08-09 Ube Ind Ltd Manufacture of barium ferrite powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145303A (en) * 1979-04-28 1980-11-12 Toda Kogyo Corp Manufacture of hexagonal plate shaped magnetplumbite type ferrite particle powder
JPS6090829A (en) * 1983-10-25 1985-05-22 Ube Ind Ltd Treatment of barium ferrite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632812A (en) * 1986-06-24 1988-01-07 Toda Kogyo Corp Production of particulate powder of lamellate ba ferrite for magnetic recording
JPH0524869B2 (en) * 1986-06-24 1993-04-09 Toda Kogyo Kk
KR20050006545A (en) * 2003-07-09 2005-01-17 강규채 Manufacturing method of the Sr-ferrite magnet for double-layered pressing magnet

Also Published As

Publication number Publication date
JPH0545528B2 (en) 1993-07-09

Similar Documents

Publication Publication Date Title
JPH0578161B2 (en)
JPH0314205B2 (en)
JPS6311763B2 (en)
JPS60161343A (en) Preparation of hexagonal ferrite magnetic powder
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPS61141625A (en) Production of barium ferrite powder
JPH025692B2 (en)
JP2662902B2 (en) Method for producing hexagonal plate-like Ba ferrite fine particle powder for magnetic recording
Lee et al. Synthesis of nano‐sized barium ferrite particles using an inorganic dispersing phase
JPH0417897B2 (en)
JPS6090829A (en) Treatment of barium ferrite
JPS62138330A (en) Production of magnetic powder for magnetic recording
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPS5893806A (en) Production of magnetic particle powder of needle crystal alloy
JPS59217623A (en) Preparation of magnetic oxide material
JPH025690B2 (en)
JPH0524869B2 (en)
JPS632813A (en) Production of particulate powder of lamellate ba ferrite for magnetic recording
JPS63225534A (en) Production of hexagonal plate-shaped barium ferrite
JPS6312107A (en) Manufacture of superfine barium ferrite superfine grain
JPS63195125A (en) Barium ferrite magnetic powder and production thereof
JPH0314782B2 (en)
JPS6366903A (en) Manufacture of barium ferrite ultrafine particle
JPH04149029A (en) Needle-like barium ferrite magnetic powder and its production
JPS63114201A (en) Manufacture of super-fine barium ferrite grain