JPS63260827A - Production of magnetic powder - Google Patents

Production of magnetic powder

Info

Publication number
JPS63260827A
JPS63260827A JP9481087A JP9481087A JPS63260827A JP S63260827 A JPS63260827 A JP S63260827A JP 9481087 A JP9481087 A JP 9481087A JP 9481087 A JP9481087 A JP 9481087A JP S63260827 A JPS63260827 A JP S63260827A
Authority
JP
Japan
Prior art keywords
coprecipitate
ions
magnetic powder
aqueous solution
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9481087A
Other languages
Japanese (ja)
Inventor
Akihisa Yamamoto
陽久 山本
Hidenori Sawabe
沢部 秀紀
Hiroyoshi Horikawa
堀川 弘善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP9481087A priority Critical patent/JPS63260827A/en
Publication of JPS63260827A publication Critical patent/JPS63260827A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Abstract

PURPOSE:To enable production of magnetic powder having an uniform and fine particle diameter and excellent magnetic characteristics, by adding a flux to coprecipitates in the presence of an alkaline substance to evaporate moisture and firing the resultant substance in producing a ferrite, such as Ba, by a coprecipitating method. CONSTITUTION:An aqueous solution containing Fe ions and one or more metallic ions of Ba, Sr, Ca and Pb at a molar ratio so as to provide 8-16mol. Fe ions and 0.8-3mol. one or more metallic ions is mixed with an aqueous solution of an alkali so as to afford pH >=5. The resultant coprecipitates, which are then heated in the presence of an alkaline substance in an amount of >=0.2mmol. based on 1mol. Fe atom therein and a flux at >=700 deg.C to afford <=70wt.% moisture content. The resultant substance is subsequently fired at 600-1,200 deg.C. The aimed magnetic powder having an equally uniform average particle diameter as small as <=0.15mu and improved magnetic characteristics without aggregating or sintering of particles is obtained by this method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁性粉の製造方法に関し、更に詳しくは、特に
高密度磁気記録媒体用に適する微細な粒子からなる六方
晶系フェライト磁性粉を容易に製造する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing magnetic powder, and more specifically, a method for easily producing hexagonal ferrite magnetic powder consisting of fine particles particularly suitable for high-density magnetic recording media. Relating to a method of manufacturing.

(従来の技術) 近年磁気記録に対する高密度化の要求に伴い、磁気記録
媒体の厚味方向に磁界を記録する垂直磁気記録方式が注
目されている。
(Prior Art) In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording methods that record a magnetic field in the thickness direction of a magnetic recording medium have been attracting attention.

ところで、六方晶系の一軸磁化異方性を有するフェライ
ト、例えばパリクムフェライトは、上記垂直磁気記録方
式に適した磁性粉であることが知られておシ、保持力(
Ha)が適当な値(200〜20000・)で、飽和磁
化(σI)ができるだけ高く、粒子が小さく(一般に0
.3篇以下)且つ均一で、粒子の凝集、焼結などがなく
、分散性のよいものが望まれている。
By the way, ferrite having hexagonal uniaxial magnetization anisotropy, such as paricum ferrite, is known to be a magnetic powder suitable for the above-mentioned perpendicular magnetic recording method.
Ha) is an appropriate value (200 to 20,000・), the saturation magnetization (σI) is as high as possible, and the particles are small (generally 0
.. 3 particles or less) and is uniform, free of particle agglomeration, sintering, etc., and has good dispersibility.

従来バリウムフェライトの製造法としては、例えば共沈
法、フラックス法、水熱合成法、ガラス結晶他氏なと種
々の方法が知られておシ、共沈法については、例えば特
開昭56−60002号公報、特開昭58−2223号
公報、特開昭60−115204号公報などで提案され
ている。また共沈物に融剤を加える方法としては例えば
特開昭61−55901号公報や特開昭61−1741
18号公報が知られている。
Conventionally, various methods are known for producing barium ferrite, such as coprecipitation method, flux method, hydrothermal synthesis method, glass crystallization method, and others. This method has been proposed in JP-A No. 60002, JP-A-58-2223, and JP-A-60-115204. Further, as a method of adding a fluxing agent to the coprecipitate, for example, Japanese Patent Application Laid-Open No. 61-55901 and Japanese Patent Application Laid-Open No. 61-1741
No. 18 is known.

(発明が解決しようとする問題点) 共沈法によるバリウムフェライトの製造は、保磁力制御
やその他の目的で少量添加される各種金属との混合が非
常に良いため均一なフェライトが得られること、共沈物
が微結晶粉末であるので比較的低温でフェライト化し得
ることなど多くの長所を有している。
(Problems to be Solved by the Invention) The production of barium ferrite by the coprecipitation method allows for very good mixing with various metals added in small amounts for coercive force control and other purposes, resulting in uniform ferrite. Since the coprecipitate is a microcrystalline powder, it has many advantages such as being able to be turned into ferrite at a relatively low temperature.

ところで垂直磁気記録に供せられる磁性粉の粒子は、テ
ープやディスク等の記録体にした時の表面性、再生出力
、い此等に直接影響を及ぼすため、平均粒径は超常磁性
とはならない程度(0,01鴻以下)において小さくか
つそろっていることが重要である。
By the way, the average particle size of the magnetic powder particles used for perpendicular magnetic recording is not superparamagnetic because it directly affects the surface properties, playback output, etc. when made into recording media such as tapes and disks. It is important that they be small and uniform in degree (0.01 mm or less).

しかしながら、一般に共沈法で得られる磁性粉の粒径は
最小でも0.151mと比較的大きく(特開昭61−1
74118号公報参照)また、凝集した状態の粉末が生
成しやすく、粒径が0.541位のものが含まれておシ
形状の均一性が低い(特開昭58−2223号公報参照
)ため、優れた製造法とけ云えない。ま九共沈物に融剤
を加える方法では、平均粒子径は0.15綿〜0.25
#Lと大きく(特開昭61−174118号公報参照)
、また、粒径分布も大きく垂直磁気記録用磁性粉として
は未だ充分ではない。
However, the particle size of magnetic powder obtained by the coprecipitation method is generally relatively large, at least 0.151 m (Japanese Patent Laid-Open No. 61-1
(See Japanese Patent Laid-Open Publication No. 74118) In addition, agglomerated powder is likely to be produced, and particles with a particle size of about 0.541 are included, resulting in poor uniformity in shape (see Japanese Patent Application Laid-Open No. 58-2223). I can't say enough about the excellent manufacturing method. In the method of adding a flux to the coprecipitate, the average particle size is 0.15 to 0.25.
Large as #L (see Japanese Patent Application Laid-Open No. 174118/1983)
In addition, the particle size distribution is large, and it is still not sufficient as a magnetic powder for perpendicular magnetic recording.

一般に、共沈法では少なくとも声10以上、通常−12
以上のアルカリ大過剰の条件下で共沈物を得、これを濾
過し次いで実質的に共沈物中にアルカリ性物質がなくな
るまで大過剰の水で洗浄する(特開昭58−56302
号公報参照)。これは共沈物中にアルカリ性物質が残存
すると、焼成時に焼結した粉末が存在することをさける
ために行われる。
Generally, in the coprecipitation method, the voice is at least 10 or higher, usually -12
A coprecipitate is obtained under the above conditions with a large excess of alkali, which is filtered and then washed with a large excess of water until substantially no alkaline substances are present in the coprecipitate (Japanese Patent Laid-Open No. 58-56302
(see publication). This is done to avoid the presence of sintered powder during firing if alkaline substances remain in the coprecipitate.

本発明者らは、粒径が均一で小さく、粒子の凝集や焼結
などがなく、分散性がよく、且つ磁気特性のすぐれた六
方晶系フェライト磁性粉を製造することを目的として、
鋭意研究を行った結果、おどろいた事に上記の如き従来
の常識に反して共沈物中にアルカリ性物質を含有せしめ
、これに融剤を加えて水分を加熱蒸発し、これを焼成後
、融剤等を水洗除去することによって上記の目的が達成
されることを見い出し、本発明を完成するに到った。
The present inventors aimed to produce hexagonal ferrite magnetic powder with uniform and small particle size, no particle agglomeration or sintering, good dispersibility, and excellent magnetic properties.
As a result of intensive research, we were surprised to find that, contrary to the conventional wisdom as mentioned above, we included an alkaline substance in the coprecipitate, added a flux to it, heated the water to evaporate, and fired it, then added the flux, etc. The inventors have discovered that the above object can be achieved by washing away with water, and have completed the present invention.

(問題点を解決するための手段) かかる本発明によれば、Feイオンが8〜16モルと、
Ba 、 Sr 、 Ca及びPbから成る群から選ば
れる1種又は29以上の金属のイオンが0.8〜3モル
となる様なモル比で含有する水溶液とアルカリ水溶液と
を−が5以上となる様に混合して共沈物を得、該共沈物
を共沈物中のFe原子1モル当り0.2ミ’Jモル以上
のアルカリ性物質及び融剤の存在下に70℃以上の温度
で加熱して含水率を70重量−以下とし、次いで600
〜1200℃の温度で焼成することを特徴とする磁性粉
の製造方法が提供される。
(Means for solving the problem) According to the present invention, Fe ions are 8 to 16 moles,
An aqueous solution containing ions of one metal or 29 or more metals selected from the group consisting of Ba, Sr, Ca, and Pb in a molar ratio of 0.8 to 3 moles and an alkaline aqueous solution in which - is 5 or more. Mix to obtain a coprecipitate, and heat the coprecipitate at a temperature of 70°C or higher in the presence of an alkaline substance and a flux of 0.2 mmol or more per mol of Fe atoms in the coprecipitate. to reduce the moisture content to 70% by weight or less, then to 600% by weight.
Provided is a method for producing magnetic powder characterized by firing at a temperature of ~1200°C.

本発明によれば、得られる磁性粉の平均粒径が0.15
崗以下と小さく、また均一にそろっておシ、粒子の凝集
や焼結などがなく、分散性がよく、且つ磁気特性に優れ
た磁性粒が得られる。
According to the present invention, the average particle size of the obtained magnetic powder is 0.15
It is possible to obtain magnetic particles that are as small as 300 yen or less, are uniformly arranged, have no agglomeration or sintering, have good dispersibility, and have excellent magnetic properties.

本発明において用いられるFeイオン、 Baイオン、
Srイオン、Caイオン、pbイオン及び磁気特性の制
御やその他の目的で所望によシ少量添加される各種金属
イオン(例えばMg e So + Yt vrTa、
Mo+W、Re 、 Ru t Os e Rh 、 
Ir + Pd*Pt。
Fe ions, Ba ions used in the present invention,
Sr ions, Ca ions, PB ions, and various metal ions (for example, Mg e So + Yt vrTa,
Mo+W, Re, Ru t Os e Rh,
Ir + Pd*Pt.

Ag g Hg g Ga + Go # Am p 
To I Co HN1 # Mn H2n 、 Ti
 、 In 、 Nb 、 am 、 Nd 、 Zr
 、 Cr z La 。
Ag g Hg g Ga + Go # Amp
To I Co HN1 # Mn H2n , Ti
, In, Nb, am, Nd, Zr
, Cr z La.

Cu 、 Cct 、 At p Tt 、 Ss 、
 Sn e P 、 Sb 、 Bt 。
Cu, Cct, AtpTt, Ss,
SneP, Sb, Bt.

Ss  、 D@、 Pr  + Tb 、 Gd 、
 Yb 、 Th 、 Uなどから選ばれる1種または
2種以上の金属イオン)を含む水溶液の調製には、各金
属の水に可溶性の金属塩、例えば硝酸塩、硫酸塩、ノ1
0グン化物、アンモニウム塩、炭酸塩、酸無水物、縮合
酸等を使用することができる。特にFeイオンの原料が
塩化物、硝酸塩または硫酸塩で、且つBaイオン、Sr
イオン、C1イオン及びpbイオンの原料が塩化物また
は硝酸塩であることが好ましい。この場合でも、磁気特
性の制御等で少量添加される各徨金属イオンの原料につ
いては特に制限はない。
Ss, D@, Pr + Tb, Gd,
To prepare an aqueous solution containing one or more metal ions selected from Yb, Th, U, etc., water-soluble metal salts of each metal, such as nitrates, sulfates, and
Oxide compounds, ammonium salts, carbonates, acid anhydrides, condensed acids, etc. can be used. In particular, if the Fe ion raw material is chloride, nitrate or sulfate, and Ba ion, Sr
It is preferable that the raw materials for the ions, C1 ions and pb ions are chlorides or nitrates. Even in this case, there are no particular restrictions on the raw materials for each of the free metal ions that are added in small amounts to control magnetic properties or the like.

本発明において所期の磁性粉を得るためには、少なくと
もFeイオンが8〜16モルとBa、8r*Ca及びP
bから成る群から選ばれる1種または2才1以上の金属
のイオンが0.8〜3モルとなる様なモル比で含有する
水溶液を用いねばならない。この他に、磁気特性の制御
などの目的で上記の各種金属イオンを少量添加する場合
は、これ等の添加金属イオンの合計は上記モル比に対し
、4モル以下が望ましい。これは各金属イオンがこの様
なモル比の範囲にある時に限って、磁気記録用磁性粉と
して優れた磁気特性(保磁力200〜20000e及び
飽和磁化40 emuAI−以上)を示しうるからであ
る。
In order to obtain the desired magnetic powder in the present invention, at least 8 to 16 moles of Fe ions, Ba, 8r*Ca, and P
An aqueous solution containing ions of one or more metals selected from the group consisting of b in a molar ratio of 0.8 to 3 moles must be used. In addition, when adding a small amount of the various metal ions mentioned above for the purpose of controlling magnetic properties, etc., the total amount of these added metal ions is desirably 4 moles or less with respect to the above molar ratio. This is because only when the molar ratio of each metal ion is in such a range, the magnetic powder for magnetic recording can exhibit excellent magnetic properties (coercive force of 200 to 20,000 e and saturation magnetization of 40 emu AI or more).

また上記金属イオンの水溶液中の濃度は、金属イオンの
総計が10 mol//以下であるのが好ましく、更に
好ましくは2 mol/l以下である。
Further, the concentration of the metal ions in the aqueous solution is preferably such that the total amount of metal ions is 10 mol/l or less, more preferably 2 mol/l or less.

一方アルカリ水溶液に用いるアルカリ成分としては、水
溶性のものであれば特に制限されず、アルカリ金属の水
酸化物や炭酸塩、アンモニア、炭酸アンモニウム等が挙
げられる。例えばNaOH。
On the other hand, the alkaline component used in the alkaline aqueous solution is not particularly limited as long as it is water-soluble, and examples thereof include alkali metal hydroxides, carbonates, ammonia, ammonium carbonate, and the like. For example, NaOH.

KOH、Na2CO,、NaHCOs 、 K2CO2
,KHCO3゜NH4OH、(NH4)2Co3等が用
いられ、特に、水酸化物と炭酸塩の併用が賞月される。
KOH, Na2CO,, NaHCOs, K2CO2
, KHCO3°NH4OH, (NH4)2Co3, etc., and the combination of hydroxide and carbonate is particularly preferred.

アルカリ水溶液の濃度は、アルカリ金属イオン及びまた
はアンモニウムイオンの総量が好ましくは25 mol
/j’以下更に好ましくは10 mol/J以下にする
のが良い。
The concentration of the alkaline aqueous solution is such that the total amount of alkali metal ions and/or ammonium ions is preferably 25 mol.
/j' or less, more preferably 10 mol/J or less.

本発明方法においては、上記金属イオン水溶液とアルカ
リ水溶液とを混合し共沈物を含む水溶液を得る。この場
合金属イオン水溶液にアルカル水溶液を加えても、また
逆にアルカリ水溶液に金属イオン水溶液を加えても良く
、また同時に一気に混合してもよい。
In the method of the present invention, the metal ion aqueous solution and the alkaline aqueous solution are mixed to obtain an aqueous solution containing a coprecipitate. In this case, the aqueous alkali solution may be added to the aqueous metal ion solution, or conversely, the aqueous metal ion solution may be added to the aqueous alkaline solution, or they may be mixed all at once.

本発明においては共沈物を含む水溶液の−は5以上とし
なければならず、磁性粉の磁気特性及び粉体特性の点か
ら好ましくは液温25℃でpH8以上である。
In the present invention, - of the aqueous solution containing the coprecipitate must be 5 or more, and preferably has a pH of 8 or more at a liquid temperature of 25° C. from the viewpoint of the magnetic properties and powder properties of the magnetic powder.

また、本発明においては共沈時の温度は0〜100℃の
範囲で任意に選択することができる。
Further, in the present invention, the temperature during coprecipitation can be arbitrarily selected within the range of 0 to 100°C.

本発明においては、この様にして得られた共沈物を含む
溶液は常法に従りて濾過水洗し、共沈物を含む溶液中に
、含まれる水溶性物質、例えば過剰のアルカリ性物質、
共沈時に生成し九NaC1、共沈しなかった各種金属イ
オン等を洗浄せしめてもよいし、また、本発明において
はこの様な洗浄を充分に行わず、共沈物を含む溶液を適
当量−過し、濃縮せしめるだけでもよい。
In the present invention, the solution containing the coprecipitate obtained in this way is filtered and washed with water according to a conventional method, and the water-soluble substances contained in the solution containing the coprecipitate, such as excess alkaline substances, are removed.
The nine NaCl generated during coprecipitation and various metal ions that did not co-precipitate may be washed away, or in the present invention, such washing is not performed sufficiently, and an appropriate amount of the solution containing the coprecipitate is washed. - It is also possible to simply filtrate and concentrate.

この様にして得られた水洗された共沈物、あるいは未洗
浄の共沈物を含む溶液K、アルカリ性物質及び融剤が加
えられる。
Solution K containing the water-washed coprecipitate or unwashed coprecipitate thus obtained, an alkaline substance, and a flux are added.

加えられるアルカリ性物質は、1 mol/lの水溶液
とした時に−が8以上を示す物質であれば、いずれでも
よいが、前述した共沈物を生成せしめるために用いられ
るアルカリ成分の他、アルカリ土類金属の水酸化物、炭
酸塩、及びアミン類やその他の水溶性有機アルカリ性化
合物、が慣用される。
The alkaline substance to be added may be any substance that exhibits -8 or more when made into a 1 mol/l aqueous solution, but in addition to the alkali component used to generate the coprecipitate mentioned above, alkaline earth Metal hydroxides, carbonates, and amines and other water-soluble organic alkaline compounds are commonly used.

アルカリ性物質の添加量は、共沈物中に含まれるFeの
1ぶ子モル当り0.2ミリモル以上、好ましくは0.5
 ミIJモル以上であればよいが、添加量が5モル以上
となるとこれ以上の効果は認められなくなる。
The amount of the alkaline substance added is 0.2 mmol or more, preferably 0.5 mmol or more per mole of Fe contained in the coprecipitate.
It is sufficient if the amount is more than 5 moles, but if the amount added is more than 5 moles, no further effect will be observed.

一方、同時に加えられる融剤としては、通常、塩化ナト
リ9ム、塩化カリウム、塩化バリウム、塩化ストロンチ
クム、硫酸ナトリ9ム、硫酸カリワム及び硫酸リチウム
から成る群から選ばれる1種または2種以上の化合物が
使用され、最終的に得られる磁性粉に対し、通常0.0
1〜1011fi倍、好ましくは0.05〜3重量倍と
なるように添加される。
On the other hand, the flux added at the same time is usually one or more compounds selected from the group consisting of sodium chloride, potassium chloride, barium chloride, stronticum chloride, sodium 9m sulfate, potassium sulfate, and lithium sulfate. is used, and usually 0.0
It is added in an amount of 1 to 1011 times by weight, preferably 0.05 to 3 times by weight.

本発明において、水洗された共沈物の溶液のかわシに洗
浄の充分でない共沈物を含む溶液を用いる場合には、ヂ
遇する液量を適当に選ぶことにょシ溶液中に含まれるア
ルカリ性物質や塩化ナトリウム等が有効に利用できる。
In the present invention, when using a solution containing a coprecipitate that has not been sufficiently washed as a substitute for the solution of the coprecipitate washed with water, it is necessary to appropriately select the amount of the solution containing the coprecipitate. Substances such as sodium chloride can be used effectively.

また、更に紋末洗浄共沈物に塩酸、硝酸、酢酸あるいは
硫酸等を加えて、アルカリ性物質の量や塩化ナトリウム
等の量を制御することも可能である。
Furthermore, it is also possible to control the amount of alkaline substances, sodium chloride, etc. by adding hydrochloric acid, nitric acid, acetic acid, sulfuric acid, etc. to the washed coprecipitate.

アルカリ性物質及び融剤の添加に際しては、水の存在下
で行う事が好ましいが、通常、共沈物は充分な水分を含
んだケーキ状ないしはスラリー状であシ、水分を充分に
含んでいる。
It is preferable to add the alkaline substance and flux in the presence of water, but the coprecipitate is usually in the form of a cake or slurry containing sufficient moisture.

アルカリ性物質及び融剤を添加した共沈物は、70℃以
上に加熱して水分を蒸発乾燥する。蒸発乾燥の具体的な
方法としてはドラムドライヤー、スプレードライヤー、
パドルドライヤー、溝型ドライヤー等が挙げられる。本
発明においては、水分を蒸発させる温度は、必ず70℃
以上としなければならない。もしこの温度が70℃以下
では得られる磁性粉の平均粒径は0.15μm以上とな
る。
The coprecipitate to which the alkaline substance and flux are added is heated to 70° C. or higher to evaporate and dry the moisture. Specific methods for evaporative drying include drum dryers, spray dryers,
Examples include paddle dryers and groove dryers. In the present invention, the temperature at which water is evaporated is always 70°C.
It must be more than that. If this temperature is below 70°C, the average particle size of the magnetic powder obtained will be 0.15 μm or more.

水分の蒸発は、充分に行った方が良いが、含水率が70
チ以下となっていれば差しつかえない。こうして大部分
の水分を蒸発せしめた後、残余の水分を蒸発させるため
に適当な温度、通常100〜SOO℃で乾燥する。
It is better to evaporate the moisture sufficiently, but if the moisture content is 70
If it is less than or equal to 1, there is no problem. After most of the moisture has been evaporated in this manner, the material is dried at an appropriate temperature, usually 100 to SOO DEG C., to evaporate the remaining moisture.

この乾燥物はこのまま焼成しても良いが、よシ均一に焼
成せしめる目的で、粉状にしたシ、打錠成形したシ、あ
るいは押出し成形したシしてから600〜1200℃好
ましくは650〜950℃で焼成する。焼成時間は0.
5〜50時間が適当であシ、また焼成雰囲気は窒素雰囲
気下でも酸素雰囲気下でも良いが、通常は空気雰囲気下
で行う事が好ましい。また焼成は前以って、予備焼成を
行ってもよい。
This dried product may be fired as it is, but for the purpose of uniform firing, it should be pulverized, tableted, or extruded at a temperature of 600 to 1200°C, preferably 650 to 950°C. Bake at ℃. Baking time is 0.
A suitable firing time is 5 to 50 hours, and the firing atmosphere may be either a nitrogen atmosphere or an oxygen atmosphere, but it is usually preferable to carry out the firing in an air atmosphere. Further, preliminary firing may be performed in advance of the firing.

600〜1200℃で焼成した焼成物は次いでこれを洗
浄乾燥する。洗浄は焼成物中に含まれている金属塩化物
、金属硫酸塩、金属硝酸塩及び、その他のアルカリ金属
イオンや過剰の水酸化バリウムなどの不純物を十分に除
去できればどのような方法で行ってもよい。洗浄液とし
ては水や酢酸、硝酸、塩酸などの水溶液を用いることが
できる。
The fired product fired at 600 to 1200°C is then washed and dried. Cleaning may be carried out by any method as long as it can sufficiently remove impurities such as metal chlorides, metal sulfates, metal nitrates, other alkali metal ions, and excess barium hydroxide contained in the fired product. . As the cleaning liquid, water or an aqueous solution such as acetic acid, nitric acid, or hydrochloric acid can be used.

十分に洗浄した焼成物は次いで乾燥するが、乾燥方法は
特に制限されない。
The baked product that has been sufficiently washed is then dried, but the drying method is not particularly limited.

(発明の効果) 本発明によって得られる六方晶系フェライト磁性粉は、
平均粒径が0115尾以下で一つ一つがバラバラな均一
な粒子から成りている。また、この磁性粉末は粒子の凝
集や焼結などがなく、分散性がよく、200〜2000
0eの保磁力および40emu/iP以上の飽和磁化を
示す。保磁力については種々の元素(例えばCo 、 
T1等)を添加することによって自由にコントロールす
ることができる。
(Effect of the invention) The hexagonal ferrite magnetic powder obtained by the present invention is
It is made up of uniform particles with an average particle diameter of 0.115 particles or less, each of which is individually dispersed. In addition, this magnetic powder does not cause particle aggregation or sintering, has good dispersibility, and has a particle size of 200 to 2000.
It exhibits a coercive force of 0e and a saturation magnetization of 40 emu/iP or more. Regarding coercive force, various elements (e.g. Co,
It can be freely controlled by adding T1, etc.).

また、本発明によれば保磁力を20000e以上に大き
くすることもできゴム磁石やプラスチック磁石等の永久
磁石として使用することができる。
Further, according to the present invention, the coercive force can be increased to 20,000e or more, and it can be used as a permanent magnet such as a rubber magnet or a plastic magnet.

この場合にも、得られる磁性粉は平均粒径を0.15崗
以下とすることができるため、従来使用されているゴム
磁石やグラスチック磁石用磁性粉に較べ、はるかに高い
保磁力とすることができる。
In this case as well, the average particle size of the resulting magnetic powder can be reduced to 0.15 mm or less, resulting in a much higher coercive force than conventionally used magnetic powder for rubber magnets and glass magnets. be able to.

(実施例) 以下に実施例を挙げて、本発明をさらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化はVSM (振
動磁気測定装置)を用い、最大印加磁m 10 KO・
、測定温度28℃で測定した。平均粒子径は、透過型電
子顕微鏡で得られた写真から400個の粒子の最大直径
を測定し算術平均によシ算出した。
(Example) The present invention will be described in more detail with reference to Examples below. In addition, the coercive force and saturation magnetization in the examples were measured using a VSM (vibrating magnetism measurement device), and the maximum applied magnetic field m 10 KO・
, Measured at a measurement temperature of 28°C. The average particle diameter was calculated by measuring the maximum diameter of 400 particles from a photograph taken with a transmission electron microscope and calculating the arithmetic mean.

−また、実施例中に示す磁性粉の組成式は、原料調製時
の各元素の原子比を用いている。磁性粉成分中の酸素の
表示については、簡略化のため省略した。
-Also, the compositional formula of the magnetic powder shown in the examples uses the atomic ratio of each element at the time of raw material preparation. The display of oxygen in the magnetic powder components has been omitted for the sake of brevity.

実施例I B畠ct2・2H200,55モル、Tic/、40.
375モル、CoCl2’6H200,375モル、及
びFeCA3’6H205,25そルを101の蒸留水
にこの順に溶解し、これをA液とした。NaOH17,
5モル及びNa2Co、 4.72モルを15ノの室温
の蒸留水に溶解し、これをB液とした。50℃に熱した
B液にA液を徐々に加えた後、50℃で1時間攪拌した
。攪拌後の声は10.9であった。こうして得られた共
沈物を含む水溶液を、濾過水洗し、これにNaOH4,
2? (Fel原子モル当り、20ミリモルに相当)と
NaCL400iPを加えた後、電熱機で約100℃に
沸騰させ、よく攪拌混合しながら、含水率50チに々る
まで水分を蒸発させた。こうして得られたケーキ状共沈
物を更に、300℃で完全に乾燥した後、これを焼成温
度850℃で2時間電気炉で焼成した。この焼成物を水
を用いて可溶物がなくなるまで洗浄した後、濾過、乾燥
し、” 1.1 ” 10.5 CoO,75”0.7
5で示されるバリウムフェライト磁性粉末を得た。こう
して得られた微粒子粉末は平均粒径0.061 tsn
、厚さ0.019#Lの板状であシ、粒子一つ一つがバ
ラバラで、そろりておシ、またきれいな形状であった。
Example I B Hatake ct2・2H200, 55 mol, Tic/, 40.
375 moles of CoCl2'6H200, 375 moles of CoCl2'6H200, and 5,25 moles of FeCA3'6H20 were dissolved in 101 distilled water in this order, and this was used as liquid A. NaOH17,
5 mol of Na2Co and 4.72 mol of Na2Co were dissolved in 15 ml of distilled water at room temperature, and this was used as Solution B. After gradually adding Solution A to Solution B heated to 50°C, the mixture was stirred at 50°C for 1 hour. The voice after stirring was 10.9. The aqueous solution containing the coprecipitate thus obtained was filtered and washed with water, and added with NaOH4,
2? After adding NaCL400iP (equivalent to 20 mmol per atomic mole of Fel), the mixture was boiled to about 100° C. using an electric heater, and the water was evaporated while stirring and mixing well until the water content reached 50 cm. The cake-like coprecipitate thus obtained was further dried completely at 300°C, and then fired in an electric furnace at a firing temperature of 850°C for 2 hours. This fired product was washed with water until all soluble materials were removed, filtered and dried to obtain a "1.1" 10.5 CoO,75"0.7
A barium ferrite magnetic powder represented by No. 5 was obtained. The fine powder thus obtained had an average particle size of 0.061 tsn.
The particles were in the form of a plate with a thickness of 0.019 #L, and each particle was disjointed, but all together, and had a beautiful shape.

磁気特性を測定したところHaは7200e、σ畠は5
6 emu/fであった。
When we measured the magnetic properties, Ha was 7200e and σ Hata was 5.
It was 6 emu/f.

実施例2 実施例1と同様にしてA液とB液を製造し、50℃に熱
したB液KA液を徐々に加えた後50℃で1時間攪拌し
た。こうして得られた共沈物を含む水溶液を全景がIA
になるまで濾過した後、共沈物を含む溶液にNaOH2
,5iP (Fe原原子1ルル尚シ12ミリルに相当)
とNaCL 2.59を加えた後、電熱機で約100℃
に沸騰させて含水率を50チ以下とした。以下実施例1
と同様にしてバリウムフェライトを製造した。こうして
得られたバリウムフェライト微粒子粉末は、平均粒径0
.062μm、厚さ0.015 μmの板状であシ、粒
子一つ一つがパラ・ぐうでそろっておシ、またきれいな
形状であった。磁気特性は、Heは7450e、C8は
57 emu汐であった。
Example 2 Solution A and Solution B were produced in the same manner as in Example 1, and after gradually adding Solution B and Solution KA heated to 50°C, the mixture was stirred at 50°C for 1 hour. A panoramic view of the aqueous solution containing the coprecipitate thus obtained is shown in IA.
After filtration, add NaOH to the solution containing the coprecipitate.
,5iP (equivalent to 1 lulu and 12 ml of Fe raw atom)
After adding NaCL 2.59, heat to about 100℃ using an electric heating machine.
The water content was reduced to below 50 cm. Example 1 below
Barium ferrite was produced in the same manner. The barium ferrite fine particle powder thus obtained has an average particle size of 0.
.. It was a plate-like material with a thickness of 0.062 μm and a thickness of 0.015 μm, and each particle was perfectly aligned and had a nice shape. The magnetic properties were 7450e for He and 57 emu for C8.

比較例1 実施例1において、濾過水洗した共沈物に、NaOH及
びNaC2を加えなかった他は実施例1と同様ノ方法で
バリウムフェライトを製造した。得られたバリウムフェ
ライト微粒子粉末は、平均粒径0.39鏑、厚さ0.0
9 #Lの板状でありたが、粒子は数個ずつが強く凝集
したものが数多く見られ、また粒径は0.71sn以上
の大きな粒子から0.15prIL位の粒子まで広く分
布しておシ、不ぞろいで形状もきたなかった。磁気特性
は、Hcは8310@、σSは31 emuAI−であ
った。
Comparative Example 1 Barium ferrite was produced in the same manner as in Example 1 except that NaOH and NaC2 were not added to the filtered and washed coprecipitate. The obtained barium ferrite fine particles had an average particle size of 0.39 and a thickness of 0.0.
Although the particles were in the form of a #9 #L plate, many particles were seen to be strongly aggregated, and the particle size was widely distributed from large particles of 0.71 sn or more to particles of about 0.15 prIL. Shi, it was uneven and the shape was ugly. As for the magnetic properties, Hc was 8310@, and σS was 31 emuAI-.

比較例2 実施例1において、−過水流した共沈物にNaCtを加
えなかりた他は実施例1と同様の方法でi4リウムフェ
ライトを製造した。得られたパリラムフェライト微粒子
粉末は、平均粒径0.95都、厚さ0.22prnの板
状であったが、粒子は数個ずつが強く凝集したものが数
多く見られ、また粒径は3.0尾以上の大きな粒子から
0.3尾位の粒子まで広く分布しておシ、不ぞろいで形
状もきたなかった。
Comparative Example 2 I4lium ferrite was produced in the same manner as in Example 1, except that NaCt was not added to the coprecipitate that had been flushed with water. The obtained parylum ferrite fine particle powder had a plate shape with an average particle size of 0.95 mm and a thickness of 0.22 prn, but many particles were observed to be strongly agglomerated, and the particle size was The particles were widely distributed, ranging from large particles of 3.0 particles or more to particles of about 0.3 particles, and were irregular and in poor shape.

磁気特性は、Heは11200e、σSは46 emu
/iPであった。
The magnetic properties are He: 11200e, σS: 46 emu
/iP.

°比較例3 電熱機による100℃での蒸発乾燥にかえて減圧下、−
5℃で水分がなくなるまで凍結乾燥した他は実施例1と
同様の方法で、バリウムフェライトを製造した。得られ
たバリウムフェライト微粒子粉末は、平均粒径0.25
 twn 、厚さ約0.05綿の板状であった。またH
eは6360・、C3は41emu沙であった。
° Comparative Example 3 Instead of evaporative drying at 100°C using an electric heating machine, -
Barium ferrite was produced in the same manner as in Example 1, except that it was freeze-dried at 5° C. until moisture was removed. The obtained barium ferrite fine particle powder has an average particle size of 0.25
twn, and was in the form of a plate with a thickness of about 0.05 cotton. Also H
e was 6360·, and C3 was 41 emu.

実施例3〜13 実施例1において、共沈時の声、添加したアルカリ性物
質の種類と添加量、融剤の種類と添加量を第1表に示す
とうシにかえた他は実施例1と同様の方法でバリウムフ
ェライトを製造した。第1表において添加したアルカリ
性物質の添加量は鉄の1原子モル当りの量である。
Examples 3 to 13 Same as Example 1 except that the voice during coprecipitation, the type and amount of added alkaline substance, and the type and amount of flux shown in Table 1 were changed to those shown in Table 1. Barium ferrite was produced in a similar manner. The amount of the alkaline substance added in Table 1 is the amount per atomic mole of iron.

実施例14〜24 実施例1においてA液のF@Ct3・6H20を5.1
5モルとし、更に第2表に示す成分原料として硝酸タリ
ウム、塩化第二スズ、硝酸ジルコニル、及び硝酸ネオジ
ウム、硝酸ニッケル、硝酸鋼、硝酸亜鉛、及び硝酸イン
ジクムの場合にはそれぞれ0.1モルをA液に、またケ
イ酸ナトリウム、タングステン酸アンモニウム、及びメ
タバナジン酸アンモニウムについては、それぞれ0.1
モルをB液に加えた他は、実施例1と同様の方法でBa
1.1 ”、o、3 ”0.75”0.75 MO,2
(MはTt r Sn + Zr 、 Nd 、 Nj
 、 Cu 。
Examples 14-24 In Example 1, F@Ct3・6H20 of liquid A was 5.1
5 mol, and further 0.1 mol for each of thallium nitrate, stannic chloride, zirconyl nitrate, neodymium nitrate, nickel nitrate, steel nitrate, zinc nitrate, and indicum nitrate as component raw materials shown in Table 2. For liquid A, sodium silicate, ammonium tungstate, and ammonium metavanadate each have a concentration of 0.1
Ba was added in the same manner as in Example 1, except that mol of Ba
1.1", o, 3"0.75"0.75 MO,2
(M is Ttr Sn + Zr, Nd, Nj
, Cu.

Zn、In、St、WまたはV)で示されるバリウムフ
ェライト磁性粉末を製造した。
Barium ferrite magnetic powder represented by Zn, In, St, W or V) was manufactured.

これらの磁性粉の平均粒径、厚さ、保磁力及び飽和磁化
を第2表に示す。これ等の磁性粉は、いずれも粒子一つ
一つがバラバラでそろりておシ、また、きれいな形状で
あった。
Table 2 shows the average particle size, thickness, coercive force, and saturation magnetization of these magnetic powders. All of these magnetic powders had individual particles that were uniform and had a neat shape.

第  2  表Table 2

Claims (1)

【特許請求の範囲】[Claims]  Feイオンが8〜16モルと、Ba、Br、Ca及び
Pbから成る群から選ばれる1種又は2種以上の金属の
イオンが0.8〜3モルとなる様なモル比で含有する水
溶液とアルカリ水溶液とをpHが5以上となる様に混合
して共沈物を得、該共沈物を共沈物中のFe原子1モル
当り0.2ミリモル以上のアルカリ性物質及び融剤の存
在下に70℃以上の温度で加熱して含水率を70重量%
以下とし、次いで600〜1200℃の温度で焼成する
ことを特徴とする磁性粉の製造方法。
An aqueous solution containing 8 to 16 moles of Fe ions and 0.8 to 3 moles of ions of one or more metals selected from the group consisting of Ba, Br, Ca, and Pb; A coprecipitate is obtained by mixing with an alkaline aqueous solution so that the pH becomes 5 or more, and the coprecipitate is mixed with an alkaline substance of 0.2 mmol or more per mol of Fe atoms in the coprecipitate and a fluxing agent of 70 mmol or more in the presence of an alkaline substance and a flux. Heat to a temperature of ℃ or higher to reduce moisture content to 70% by weight
A method for producing magnetic powder, which is characterized in that:
JP9481087A 1987-04-17 1987-04-17 Production of magnetic powder Pending JPS63260827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9481087A JPS63260827A (en) 1987-04-17 1987-04-17 Production of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9481087A JPS63260827A (en) 1987-04-17 1987-04-17 Production of magnetic powder

Publications (1)

Publication Number Publication Date
JPS63260827A true JPS63260827A (en) 1988-10-27

Family

ID=14120411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9481087A Pending JPS63260827A (en) 1987-04-17 1987-04-17 Production of magnetic powder

Country Status (1)

Country Link
JP (1) JPS63260827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093762A (en) * 2009-10-30 2011-05-12 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder and hexagonal ferrite particulate powder, and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093762A (en) * 2009-10-30 2011-05-12 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder and hexagonal ferrite particulate powder, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JP5445843B2 (en) Magnetic iron oxide particles, magnetic material, and electromagnetic wave absorber
JP5521287B2 (en) Ferrite particles for magnetic recording media
JPH0725553B2 (en) Method for producing plate-like magnetic powder
JPS63260827A (en) Production of magnetic powder
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPS62123023A (en) Magnetic powder for magnetic recording
JPH0247209A (en) Production of fine platy barium ferrite powder
JPS62138330A (en) Production of magnetic powder for magnetic recording
JPH0380725B2 (en)
JPS63260109A (en) Magnetic powder for magnetic recording
JPH02296303A (en) Magnetic powder for magnetic record medium
JP2001284113A (en) Permanent magnet and manufacturing method for the same
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPS63185829A (en) Magnetic powder for magnetic recording
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JPS63260103A (en) Magnetic powder for magnetic recording
JPS63260105A (en) Magnetic powder for magnetic recording
JPS62100419A (en) Production of magnetic powder for magnetic recording
JP5309466B2 (en) Ferrite particles for magnetic recording media
JPS6377105A (en) Magnetic powder for magnetic recording
JPH0618073B2 (en) Magnetic powder for magnetic recording
JP2023027860A (en) Magnetic powder material and method for producing permanent magnet and magnetic powder material
JPH0712933B2 (en) Magnetic powder for magnetic recording
JPS63260107A (en) Magnetic powder for magnetic recording
JPS63260106A (en) Magnetic powder for magnetic recording