JPS63260107A - Magnetic powder for magnetic recording - Google Patents

Magnetic powder for magnetic recording

Info

Publication number
JPS63260107A
JPS63260107A JP62094805A JP9480587A JPS63260107A JP S63260107 A JPS63260107 A JP S63260107A JP 62094805 A JP62094805 A JP 62094805A JP 9480587 A JP9480587 A JP 9480587A JP S63260107 A JPS63260107 A JP S63260107A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
value
powder
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62094805A
Other languages
Japanese (ja)
Inventor
Akihisa Yamamoto
陽久 山本
Kozo Mitani
幸三 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP62094805A priority Critical patent/JPS63260107A/en
Publication of JPS63260107A publication Critical patent/JPS63260107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic powder for vertical magnetic recording having a small average grain size, by preparing the magnetic powder, whose general composition formula is expressed by FeaTibSicMIdMIIeOf, and specifying the amounts of (a)-(f), which are the numbers of atoms of component elements. CONSTITUTION:This magnetic powder is expressed by a general formula FeaTibSicMIdMIIeOf. In this formula, MI represents at least one kind of a metal element, which is selected among Ba, Sr, Ca and Pb. MII represents at least one kind of a metal element, which is selected among La, V, Mo, W, Cd, Tl, P, Bi, Ce, Nd and Sm. (a), (b), (c), (d), (e) and (f) are the numbers of the atoms of Fe, Ti, Si, MI, MII and O. (a) has a value of 8-12, (b) has a value of 0.01-3.0, (c) has a value of 0.05-2.0, (d) has a value of 0.5-3.0 and (e) has a value of 0.01-3.0. (f) represents the number of oxygen atoms, which satisfies the valence of the other element. In this way, the magnetic powder for vertical magnetic recording having an average grain size of 0.1mum and the aligned grain sizes is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 、 本発明は磁気記録用磁性粉に関し、更に詳しくは、
高密度磁気記録媒体用に適する微細な粒子からなる六方
晶系フェライト磁性粉に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to magnetic powder for magnetic recording, and more specifically,
The present invention relates to hexagonal ferrite magnetic powder consisting of fine particles suitable for high-density magnetic recording media.

(従来の技術) 近年、磁気記録に対する高密度化の要求に伴い磁気記録
媒体の厚味方向に磁界を記録する垂直磁気記録方式が注
目されている。このような垂直磁気記録方式において使
用される磁性材料は記録媒体表面に垂直な方向に磁化容
易軸を有することが必要である。
(Prior Art) In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording methods that record magnetic fields in the thickness direction of a magnetic recording medium have been attracting attention. The magnetic material used in such perpendicular magnetic recording systems needs to have an axis of easy magnetization in a direction perpendicular to the surface of the recording medium.

六方晶系で一軸磁化異方性を有するフェライト、例えば
Baフェライト(BaPe+tO+、)は六角板状の結
晶であって、板面に垂直な方向に磁化容易軸を有してお
り、塗布膜タイプの垂直磁気記録用磁性材料として上記
の要件を満足するものである。該磁性材料としては適度
な保磁力□I C%通常200〜20000e程度)と
できるだけ大きな飽和磁化(σ8、少くとも40es+
u/g以上)を有している事、及び磁性粉の平均粒子径
は記録波長の関係から0.3μm以下であり、かつ超常
磁性の関係から0.01μm以上の範囲であることが必
要である。この範囲では平均粒子径はノイズの関係から
小さい方が好ましく、さらに0.1μ−以下であること
が好ましい。
Ferrite with hexagonal crystal system and uniaxial magnetization anisotropy, such as Ba ferrite (BaPe+tO+), is a hexagonal plate-shaped crystal with an axis of easy magnetization perpendicular to the plate surface, and is a coated film type. This material satisfies the above requirements as a magnetic material for perpendicular magnetic recording. The magnetic material should have a moderate coercive force □I C% usually about 200 to 20,000e) and as large a saturation magnetization as possible (σ8, at least 40es+
u/g or more), and the average particle diameter of the magnetic powder must be 0.3 μm or less in relation to the recording wavelength, and in the range of 0.01 μm or more in relation to superparamagnetism. be. In this range, the average particle diameter is preferably smaller from the standpoint of noise, and more preferably 0.1 μm or less.

(発明が解決しようとする問題点) ところで、Ba−フェライトは保磁力が50000e以
上であり、このままでは磁気記録用磁性材料としては大
きすぎるので、Feの一部を他の各種金属で置換して、
保磁力を低下させる方法が提案されている(例えば特開
昭61−40823号公報など)。
(Problems to be Solved by the Invention) By the way, Ba-ferrite has a coercive force of 50,000e or more, which is too large to be used as a magnetic material for magnetic recording as it is, so some of the Fe is replaced with various other metals. ,
A method of lowering the coercive force has been proposed (for example, Japanese Patent Application Laid-Open No. 61-40823).

しかしながら、公知のFeの一部を他の各種金属で置換
しただけの磁性粉は、平均粒径が0.1μm以上と比較
的大きく垂直磁気記録用磁性粉としてはまだ不充分であ
る。また、バリウムフェライトの製造にはガラス結晶化
法、水熱合成法あるいは共沈法などが用いられているが
、共沈法は、保磁力制御やその他の目的で少量添加され
る各種金属との混合が非常に良いため均一なフェライト
が得られること、共沈物が微結晶粉末であるので比較的
低温でフェライト化し得ることなど多くの長所を有して
いる。しかしながら、一般に、共沈法で得られる磁性粉
は、粒径は最小でも、0.15μmと大きく (特開昭
61−174118号公報参照)、凝集した状態の粉末
が生成しやすく、粒径が0.5μm位のものが含まれて
おり形状の均一性も低く (特開昭58−2223号公
報参照)、共沈法による磁気記録用に満足できる磁性粉
は未だ得られていない。
However, known magnetic powders in which only a portion of Fe is replaced with various other metals have relatively large average particle diameters of 0.1 μm or more, and are still insufficient as magnetic powders for perpendicular magnetic recording. In addition, glass crystallization, hydrothermal synthesis, coprecipitation, and other methods are used to manufacture barium ferrite, but the coprecipitation method uses various metals added in small amounts for coercive force control and other purposes. It has many advantages, such as being able to mix very well so that uniform ferrite can be obtained, and since the coprecipitate is a microcrystalline powder, it can be turned into ferrite at a relatively low temperature. However, magnetic powder obtained by the coprecipitation method generally has a large particle size of 0.15 μm at the minimum (see Japanese Patent Application Laid-Open No. 174118/1983), tends to produce agglomerated powder, and has a large particle size. It contains particles of about 0.5 μm, and the uniformity of the shape is low (see Japanese Patent Laid-Open No. 58-2223), and magnetic powder satisfactory for magnetic recording by the coprecipitation method has not yet been obtained.

本発明者等は、この様な背景に鑑み、従来にも増して平
均粒径の小さい垂直磁気記録用磁性粉を開発すべく鋭意
検討した結果、本発明において新たな磁性粉を開発する
に到った。
In view of this background, the present inventors conducted intensive studies to develop a magnetic powder for perpendicular magnetic recording with a smaller average particle diameter than ever before, and as a result, they were able to develop a new magnetic powder in the present invention. It was.

(問題点を解決するための手段) すなわち、本発明により、一般組成式 %式% (ここでMlは、Ba、 Sr、 Ca及びpbから選
択される少なくとも一種の金属元素を表わし、MlはL
a。
(Means for Solving the Problems) That is, according to the present invention, the general composition formula % (where Ml represents at least one metal element selected from Ba, Sr, Ca, and PB; Ml represents L
a.

V+ Not W、 Cd、 TI、  Pt Bt、
 Ce+ Nd及びSLlから選択される少なくとも一
種の金属元素を表わし、a、b、c、d、e及びfはそ
れぞれI’e、 Co、 St。
V+ Not W, Cd, TI, Pt Bt,
Ce+ represents at least one metal element selected from Nd and SLl, and a, b, c, d, e, and f are I'e, Co, and St, respectively.

Ml、Ml及び0の原子数であり、aは8〜12、bは
0.01〜3.0、Cは0.05〜2.0、dは0.5
〜3.0及びeは0.01〜3.0の値をとり、fは他
の元素の原子価を満足する酸素の原子数を表わす、)で
表わされることを特徴とする磁気記録用磁性粉が提供さ
れる。
The number of atoms of Ml, Ml and 0, a is 8 to 12, b is 0.01 to 3.0, C is 0.05 to 2.0, d is 0.5
~3.0 and e takes a value of 0.01 to 3.0, and f represents the number of oxygen atoms satisfying the valence of other elements. Powder provided.

本発明においては、磁性粉の各成分元素の原子数a ”
−eが上記の数値範囲内にあることが必要で、この範囲
外では平均粒子径が0.1μm以上となるばかりでなく
磁気記録用磁性粉に適した保磁力や飽和磁化を持うた磁
性粉は得られ難い。
In the present invention, the number of atoms of each component element of the magnetic powder a ”
-e must be within the above numerical range; outside this range, the average particle diameter will not only be 0.1 μm or more, but also the magnetic powder will have coercive force and saturation magnetization suitable for magnetic recording magnetic powder. is difficult to obtain.

好ましい磁性粉の各成分割合は、aは8〜12、bは0
.02〜2.4、Cは0.1〜1.0.bは0.8〜2
.0及びeは0.02〜2.4の値をとり、fは他の元
素の原子価を満足する酸素の原子数である。本発明の磁
性粉は、製造条件などによっては得られる磁性粉粒子の
結晶がかならずしも正常な六角板状を呈していない粒子
が混在している場合もあるが、該原子数が本発明の範囲
内であれば、本発明の目的を充分に達成することができ
る。
The preferable ratio of each component of magnetic powder is a: 8 to 12, b: 0
.. 02-2.4, C is 0.1-1.0. b is 0.8-2
.. 0 and e take values of 0.02 to 2.4, and f is the number of oxygen atoms that satisfies the valences of other elements. The magnetic powder of the present invention may contain particles whose crystals do not necessarily have a normal hexagonal plate shape depending on the manufacturing conditions, but the number of atoms is within the range of the present invention. If so, the purpose of the present invention can be fully achieved.

本発明の磁性粉は平均粒径が0.1μm以下で、かつ磁
気記録用磁性粉として要求される所定の保磁力及び飽和
磁化を有している。
The magnetic powder of the present invention has an average particle diameter of 0.1 μm or less, and has a predetermined coercive force and saturation magnetization required as a magnetic powder for magnetic recording.

本発明の磁性粉はガラス結晶化法、水熱合成法によって
も製造することができるが、共沈法もしくは共沈フラツ
クス性により製造すると粒径及び磁気特性が著しく改善
されるものとなる。以下に共沈法による本発明磁性粉の
製造について説明する。
The magnetic powder of the present invention can also be produced by glass crystallization or hydrothermal synthesis, but when produced by coprecipitation or coprecipitation flux, the particle size and magnetic properties are significantly improved. The production of the magnetic powder of the present invention by the coprecipitation method will be explained below.

本発明の磁性粉を構成する各金属元素の原料化合物とし
ては酸化物、オキシ水酸化物、水酸化物、アンモニウム
塩、硝酸塩、硫酸塩、炭酸塩、有機酸塩、ハロゲン化物
、アルカリ金属塩等の塩類、遊離酸、酸無水物、縮合酸
等を挙げることができる。特に水溶性化合物が好ましい
、各金属元素の原料化合物は、各金属元素の原子数が前
記の各値となる様に水に混合溶解される。また、アルカ
リ水溶液に混合溶解した方が都合がよい場合には、後述
のアルカリ水溶液中に混合溶解される。
The raw material compounds for each metal element constituting the magnetic powder of the present invention include oxides, oxyhydroxides, hydroxides, ammonium salts, nitrates, sulfates, carbonates, organic acid salts, halides, alkali metal salts, etc. Examples include salts, free acids, acid anhydrides, and condensed acids. The raw material compounds of each metal element, which are particularly preferably water-soluble compounds, are mixed and dissolved in water so that the number of atoms of each metal element becomes the above-mentioned values. Further, if it is convenient to mix and dissolve in an alkaline aqueous solution, it can be mixed and dissolved in an alkaline aqueous solution, which will be described later.

一方アルカリ水溶液に用いるアルカリ成分としては、水
溶性のものであれば特に限定されず、アルカリ金属の水
酸化物や炭酸塩、アンモニア、炭酸アンモニウム等が挙
げられる。例えばNaOH。
On the other hand, the alkaline component used in the alkaline aqueous solution is not particularly limited as long as it is water-soluble, and examples thereof include alkali metal hydroxides, carbonates, ammonia, ammonium carbonate, and the like. For example, NaOH.

NazCOz。Na1lCO+、  KOH,KgCO
i、  NH40B、(NH*) zcOi等が用いら
れ、特に水酸化物と炭酸塩の併用が賞月される。
NazCOz. Na1lCO+, KOH, KgCO
i, NH40B, (NH*)zcOi, etc. are used, and the combined use of hydroxide and carbonate is particularly preferred.

しかして、上記金属イオン水溶液とアルカリ水溶液とを
混合し、pH5以上、好ましくはpH8以上で共沈物を
生ぜしめる。得られた共沈物は、水洗した後決別する。
Then, the metal ion aqueous solution and the alkaline aqueous solution are mixed to form a coprecipitate at a pH of 5 or higher, preferably at a pH of 8 or higher. The obtained coprecipitate is separated after washing with water.

この様にして得られたケーキ状ないしスラリー状の共沈
物は、共沈法による場合には、これを乾燥後、600〜
1100℃で10分〜30時間高温焼成して該当する六
方晶系フェライト磁性粉を得る。また、共沈フラックス
法による場合には、水洗された共沈物に水溶性フラック
ス(例えば塩化ナトリウムや塩化カリウム等のハロゲン
化アルカリ金属塩、塩化バリウムや塩化ストロンチウム
等のハロゲン化アルカリ土類金属塩、硫酸ナトリウム、
硫酸カリウム、硝酸ナトリウム、硝酸カリウム、及びこ
れ等の混合物等が通常使用される)を適当量加えて、あ
るいは、金属イオン水溶液とアルカリ水溶液との混合物
から得られる共沈物を水洗することなくそのまま水分を
蒸発させでこれを乾燥後、600〜1100℃で10分
〜30時間高温焼成した後、水溶性フラックスを水また
は酸水溶液で洗浄炉別し、必要に応じ、更に水洗した後
、乾燥して該当する六方晶系フェライト磁性粉を得る。
When using the coprecipitation method, the cake-like or slurry-like coprecipitate obtained in this way is dried and then
The corresponding hexagonal ferrite magnetic powder is obtained by high-temperature firing at 1100° C. for 10 minutes to 30 hours. In addition, when using the coprecipitation flux method, a water-soluble flux (for example, an alkali metal halide such as sodium chloride or potassium chloride, or an alkaline earth metal halide such as barium chloride or strontium chloride) is added to the washed coprecipitate. , sodium sulfate,
Potassium sulfate, sodium nitrate, potassium nitrate, and mixtures thereof are usually used), or a coprecipitate obtained from a mixture of a metal ion aqueous solution and an alkaline aqueous solution is directly hydrated without washing with water. After drying this by evaporating it, it is fired at a high temperature of 600 to 1100°C for 10 minutes to 30 hours, and then the water-soluble flux is washed with water or an acid aqueous solution and separated in a furnace.If necessary, it is further washed with water and then dried. A corresponding hexagonal ferrite magnetic powder is obtained.

(発明の効果) 本発明に係る磁性粉は六方晶C面に磁化容易軸を有する
板状粒子であり、平均粒径が0.1μm以下と小さいば
かりでなく、粒径もととのっており、しかも、磁気記録
用に要求される保磁力、飽和磁化を有するので、垂直磁
気記録用磁性材料として好適である。
(Effect of the invention) The magnetic powder according to the present invention is a plate-shaped particle having an axis of easy magnetization in the hexagonal C plane, and not only has an average particle size of 0.1 μm or less, but also has a particle size that is the same as the original size. Since it has the coercive force and saturation magnetization required for magnetic recording, it is suitable as a magnetic material for perpendicular magnetic recording.

(実施例) 以下に実施例を挙げて、本発明をさらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化はVSM (振
動磁気測定装置)を用い、最大印加磁場10 kOe、
測定温度28℃で測定した。平均粒子径は、透過型電子
顕微鏡で得られた写真から400、個の粒子の最大直径
を測定し算術平均により算出した。
(Example) The present invention will be described in more detail with reference to Examples below. The coercive force and saturation magnetization in the examples were measured using a VSM (vibrating magnetometer), with a maximum applied magnetic field of 10 kOe,
The measurement was performed at a measurement temperature of 28°C. The average particle diameter was calculated by measuring the maximum diameter of 400 particles from a photograph taken with a transmission electron microscope and calculating the arithmetic average.

また、実施例中に示す磁性粉の組成式は、原料調製時の
各元素の原子比を用いている。磁性粉成分中の酸素の表
示については、簡略化のため省略した。
Further, the compositional formula of the magnetic powder shown in the examples uses the atomic ratio of each element at the time of raw material preparation. The display of oxygen in the magnetic powder components has been omitted for the sake of brevity.

実施例1゜ BaCJ1g’2Hz0 0.55モル、TiCl1a
  0.25モル、CdC12g ・2WHz0 0.
35モル及びPeC1、・6Hz0 5.4モルを10
j!の蒸留水にこの順に溶解し、これをA液とした。 
NaOH17,5モル、NazCOz4.72モル及び
NagSiOs・911tOO,2モルを151の室温
の蒸留水に溶解し、これをB液とした。
Example 1゜BaCJ1g'2Hz0 0.55 mol, TiCl1a
0.25 mol, CdC12g ・2WHz0 0.
35 moles and PeC1, 6Hz0 5.4 moles to 10
j! were dissolved in distilled water in this order, and this was used as Solution A.
17.5 moles of NaOH, 4.72 moles of NazCOz, and 2 moles of NagSiOs.911tOO were dissolved in 151 room temperature distilled water, and this was used as liquid B.

50℃に熱したA液にB液を徐々に加えた後、50℃で
16時間攪拌した。こうして得られた共沈物を炉別し充
分水洗した後150℃で乾燥し、890℃で2時間電気
炉で焼成した。こうして得られたBa−フェライトはB
at、 +Fe+o、 5Tie、 5cdo、 ys
io、 aで示される。
After gradually adding Solution B to Solution A heated to 50°C, the mixture was stirred at 50°C for 16 hours. The coprecipitate thus obtained was separated in a furnace, thoroughly washed with water, dried at 150°C, and fired in an electric furnace at 890°C for 2 hours. The Ba-ferrite thus obtained is B
at, +Fe+o, 5Tie, 5cdo, ys
io, denoted by a.

この微粒子粉末は、平均粒径0.073μ−の板状であ
り、保磁力は6440e、飽和磁化は55.4emu/
gであった。
This fine particle powder has a plate shape with an average particle size of 0.073μ, a coercive force of 6440e, and a saturation magnetization of 55.4emu/
It was g.

比較例1 塩化カジミウムを除いた他は実施例1と全く同様の方法
でBa−フェライトを製造した。得られたBa−フェラ
イトはBad、 +Fe+o、 5Tio、 B51o
、 aで示される。この微粒子粉末は平均粒径0.28
μ第の板状であり、Hcは12380e 、σ3は40
.4 emu/gであった・ 実施例2 BaCJ!*・2To0 0.55モル、Tic Il
a O,45モル、La(Not)s・6H*o  0
.25モル及び FeCR3・61110 5、3モル
をlOlの蒸留水にこの順に溶解し、これをA液とした
。 NaOH17,5モル、NagCOs4.72モル
、及びNagSiOs・9BgOO,2モルを151の
室温の蒸留水に溶解し、これをB液とした。50℃に熱
したA液にB液を徐々に加えた後、50℃で16時間攪
拌した。こうして得られた共沈物を炉別し水洗して得ら
れたケーキ状の共沈物スラリーにフラックスとしてNa
Cl1400gを加え、充分に混合した後水分を蒸発乾
固せしめ、これを870℃で2時間電気炉で焼成した。
Comparative Example 1 Ba-ferrite was produced in exactly the same manner as in Example 1 except that cadmium chloride was removed. The obtained Ba-ferrite is Bad, +Fe+o, 5Tio, B51o
, denoted by a. This fine particle powder has an average particle size of 0.28
μth plate shape, Hc is 12380e, σ3 is 40
.. 4 emu/g. Example 2 BaCJ! *・2To0 0.55 mol, Tic Il
a O, 45 mol, La(Not)s・6H*o 0
.. 25 moles of FeCR3.61110 and 5.3 moles of FeCR3.61110 were dissolved in 1O1 of distilled water in this order, and this was used as liquid A. 17.5 moles of NaOH, 4.72 moles of NagCOs, and 2 moles of NagSiOs.9BgOO were dissolved in 151 room temperature distilled water, and this was used as liquid B. After gradually adding Solution B to Solution A heated to 50°C, the mixture was stirred at 50°C for 16 hours. The coprecipitate thus obtained was separated in a furnace and washed with water, and Na was added as a flux to the cake-like coprecipitate slurry obtained.
After adding 1,400 g of Cl and thoroughly mixing, water was evaporated to dryness, and the mixture was fired in an electric furnace at 870° C. for 2 hours.

この焼酸物を水を用いて可溶物がなくなるまで洗浄した
後、炉別、乾燥した。こうして得られたBa−フェーラ
イトは、Ba、 1pel11. bTt@、 gLa
@、 Sst@、 aで示される。
This baked acid product was washed with water until no soluble matter remained, and then separated in a furnace and dried. The Ba-ferrite thus obtained is Ba, 1pel11. bTt@, gLa
Indicated by @, Sst@, a.

この微粒子粉末は、平均粒径0.075μ−の板状であ
り、Hcは6160e、σ3は55.6 emu/gで
あった。
This fine particle powder had a plate shape with an average particle size of 0.075μ, Hc of 6160e, and σ3 of 55.6 emu/g.

実施例3〜6 MI!成分、組成比、フラックスの種類及び量を変えた
他は実施例2と全く同様の方法で表−1に示すBa−フ
ェライトを製造した。
Examples 3-6 MI! Ba-ferrite shown in Table 1 was produced in exactly the same manner as in Example 2, except that the components, composition ratio, and type and amount of flux were changed.

実施例1〜6の結果から、本発明に係る磁性粉は、0.
1μm以下の平均粒径を有する磁性粉が得られることが
わかる。
From the results of Examples 1 to 6, the magnetic powder according to the present invention has a 0.
It can be seen that magnetic powder having an average particle size of 1 μm or less can be obtained.

実施例7〜31 MI酸成分l成分及び組成比を変えた他は、実施例2と
全く同様の方法によって表−2に示す磁性粉を調製した
。なお、MI酸成分原料は塩化物を使用し、MI酸成分
原料は、Cdは塩化物を使用し、V、 Mo、 W、及
びPはアンモニウム塩を使用し、その他の成分は硝酸塩
を使用した。 V、 Mo。
Examples 7 to 31 Magnetic powders shown in Table 2 were prepared in exactly the same manner as in Example 2, except that the MI acid component and the composition ratio were changed. Note that chloride was used as the MI acid component raw material, chloride was used for Cd, ammonium salt was used for V, Mo, W, and P, and nitrate was used for the other components. . V, Mo.

W、及びPの原料化合物は、アルカリ水溶液中に溶解し
た。
The raw material compounds of W and P were dissolved in an alkaline aqueous solution.

Claims (1)

【特許請求の範囲】 一般組成式 Fe_aTi_bSi_cM^I_dM^I^I_eO
_f(ここでM^IはBa、Br、Ca及びPbから選
択される少なくとも一種の金属元素を表わし、M^I^
IはLa、V、Mo、W、Cd、Tl、P、Bi、Ce
、Nd及びSmから選択される少なくとも一種の金属元
素を表わし、a、b、c、d、e及びfはそれぞれFe
、Ti、Si、M^I、M^I^I及びOの原子数であ
り、aは8〜12、bは0.01〜3.0、cは0.0
5〜2.0、dは0.5〜3.0及びeは0.01〜3
.0の値をとり、fは他の元素の原子価を満足する酸素
の原子数である。)で表わされる磁気記録用磁性粉
[Claims] General composition formula Fe_aTi_bSi_cM^I_dM^I^I_eO
_f (here, M^I represents at least one metal element selected from Ba, Br, Ca, and Pb, and M^I^
I is La, V, Mo, W, Cd, Tl, P, Bi, Ce
, Nd and Sm, and a, b, c, d, e and f each represent Fe.
, Ti, Si, M^I, M^I^I and O atoms, a is 8 to 12, b is 0.01 to 3.0, c is 0.0
5-2.0, d is 0.5-3.0 and e is 0.01-3
.. The value is 0, and f is the number of oxygen atoms satisfying the valences of other elements. ) magnetic powder for magnetic recording
JP62094805A 1987-04-17 1987-04-17 Magnetic powder for magnetic recording Pending JPS63260107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62094805A JPS63260107A (en) 1987-04-17 1987-04-17 Magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62094805A JPS63260107A (en) 1987-04-17 1987-04-17 Magnetic powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPS63260107A true JPS63260107A (en) 1988-10-27

Family

ID=14120272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094805A Pending JPS63260107A (en) 1987-04-17 1987-04-17 Magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS63260107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625653B2 (en) * 2005-03-15 2009-12-01 Panasonic Corporation Ionic conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625653B2 (en) * 2005-03-15 2009-12-01 Panasonic Corporation Ionic conductor

Similar Documents

Publication Publication Date Title
JPS63277523A (en) Production of platelike magnetic powder
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
US4820433A (en) Magnetic powder for magnetic recording
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPS63260107A (en) Magnetic powder for magnetic recording
US5062983A (en) Magnetic powder for magnetic recording media
JPS63260104A (en) Magnetic powder for magnetic recording
JPS62123023A (en) Magnetic powder for magnetic recording
JPH01119521A (en) Magnetic powder for magnetic recording
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPS63260109A (en) Magnetic powder for magnetic recording
JPH0459620A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS63260103A (en) Magnetic powder for magnetic recording
JPS63260105A (en) Magnetic powder for magnetic recording
JPS63260106A (en) Magnetic powder for magnetic recording
JPH0380725B2 (en)
JPS63185829A (en) Magnetic powder for magnetic recording
US5062982A (en) Magnetic powder for magnetic recording media
JPS61141625A (en) Production of barium ferrite powder
JPS6377105A (en) Magnetic powder for magnetic recording
JPH01119516A (en) Magnetic powder for magnetic recording
JPH01119517A (en) Magnetic powder for magnetic recording
JPS6364922A (en) Magnetic powder for magnetic recording
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS63260110A (en) Magnetic powder for magnetic recording